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SMART:Solution Methods with Ants Running by
Types

Nicolas Zufferey

Abstract—Ant algorithms are well-known metaheuristics which
have been widely used since two decades. In most of the literature,
an ant is a constructive heuristic able to build a solution from scratch.
However, other types of ant algorithms have recently emerged: the
discussion is thus not limited by the common framework of the
constructive ant algorithms. Generally, at each generation of an ant
algorithm, each ant builds a solution step by step by adding an
element to it. Each choice is based on the greedy force (also called the
visibility, the short term profit or the heuristic information) and the
trail system (central memory which collects historical information of
the search process). Usually, all the ants of the population have the
same characteristics and behaviors. In contrast in this paper, a new
type of ant metaheuristic is proposed, namely SMART (for Solution
Methods with Ants Running by Types). It relies on the use of different
population of ants, where each population has its own personality.

Keywords—Optimization, Metaheuristics, Ant Algorithms,
Evolutionary Procedures, Population-Based Methods.

I. INTRODUCTION

AS exposed in [1], modern methods for solving complex

optimization problems are often divided into exact
methods and metaheuristic methods. An exact method

guarantees that an optimal solution is obtained in a finite

amount of time. However, for a large number of applications

and most real-life optimization problems, which are typically

NP-hard, such methods need a prohibitive amount of time

to find an optimal solution. For these difficult problems,

it is preferable to quickly find a satisfying solution. If

solution quality is not a dominant concern, then a simple

heuristic can be employed, but if quality plays a critical

role, then a more advanced metaheuristic procedure is

recommended. There are mainly two classes of metaheuristics:

local search and population based methods. The former

type of algorithm works on a single solution (e.g., descent

local search, tabu search, variable neighborhood search),

whereas the latter makes a population of (pieces of) solutions

evolve (e.g., genetic algorithms, ant colonies, adaptive memory

algorithms). The reader is referred to [2] for a recent book on

metaheuristics.
Ant algorithms were first introduced in [3], and relevant

surveys are [4], [5] and [6]. Different roles are possible for

each ant, ranging from a negligible help in the decision process

to a refined local search technique [7]. The common points of

all the ant algorithms are the following [8].

• A population of N ants is handled.

• Each ant is able of self-adaptation (independently of the

other ants).
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• The ants are able to collaborate (e.g., exchange

information).

• At each generation, solutions are provided based on the

ants’ activity.

• The output of the method is the best encountered solution

during the search process.

As presented in [7] and [9], in most ant algorithms, the

role of each ant is to build a solution step by step. At each

step, an ant adds an element to the current partial solution.

Each decision or move m is based on two ingredients: the

greedy force GF (m) (short-term profit) and the trail Tr(m)
(information obtained from other ants). The probability pi(m)
that ant i chooses decision m is given by (1), where α and β
are parameters, and Mi is the set of admissible decisions that

ant i can make.

pi(m) =
GF (m)α · Tr(m)β∑

m′∈Mi

GF (m′)α · Tr(m′)β
(1)

Let M be the set of all possible decisions. When each ant

of the population has built a solution, the trails are generally

updated as in (2):

Tr(m) = ρ · Tr(m) + ΔTr(m), ∀m ∈ M (2)

ρ ∈]0, 1[ is a parameter representing the evaporation of the

trails, which is usually close or equal to 0.9. ΔTr(m) is a

term which reinforces the trails left on decision m by the

ant population. That quantity is usually proportional to the

following elements:

• the number of times the ants have made decision m;

• the quality of the obtained solutions when decision m
was made.

More precisely, let N be the number of ants, then ΔTr(m)
is updated as in (3), where ΔTri(m) is proportional to the

quality of the solution provided by ant i if it has made decision

m.

ΔTr(m) =

N∑

i=1

ΔTri(m) (3)

The pseudo-code of a classical ant method is given in

Algorithm 1. A generation consists in performing steps (1)

to (4). A stopping condition can be a maximum number of

generations or a maximum time limit.

The contribution of this paper consists in designing a new

type of ant metaheuristics denoted SMART (for Solution

Methods with Ants Running by Types). A generic presentation

of SMART is proposed in Section II. Then, in Section

III, relying on [10], the adaptation of SMART is briefly



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:1, 2016

6

Algorithm 1 Classical ant metaheuristic

Initialize the ant system.

While no stopping condition is met, do:

(1) for i = 1 to N , do: ant i builds a solution si step by

step based on (1);

(2) intensification (optional): apply a local search to some

solutions of {s1, . . . , sN};

(3) update s� (best ever encountered solution found during

the search);

(4) update the trails by the use of a subset of {s1, . . . , sN};

Output: solution s�.

described for the VRP, which is the well-known Vehicle
Routing Problem.

II. PRESENTATION OF SMART

Two main elements define the personality of an ant: the

role assigned to the ant, and the way to use the greedy forces

and the trail system in order to select a move (i.e., to make

a decision). On the one hand, and as exposed in [7], three

possible roles are possible:

(R1) Constructive ants: each ant builds a solution step by step.

At each step, an ant adds an element to the current partial

solution. It is the classical role found in most of the

literature on ant algorithms.

(R2) Local search ants: a local search algorithm starts with

an initial solution and tries to improve it iteratively. At

each iteration, a modification (called a move) of the

current solution s is performed in order to generate a

neighbor solution s′. The definition of a move, that is the

definition of the neighborhood structure, depends on the

considered problem. Well-known local search methods

are the descent local search, simulated annealing, tabu

search, and variable neighborhood search.

(R3) Improving ants: a single ant can help to make a decision

within a procedure which makes only one solution evolve.

In other words, each ant helps to move from a current

solution to a neighbor solution by performing moves on

the current solution.

On the other hand and as detailed in [8], in every ant algorithm,

each decision m relies on the greedy force GF (m) and on the

trail system Tr(m). The selection of a decision m is based on

a tradeoff between GF (m) and Tr(m). Such a tradeoff can

have at least three different forms, as listed below.

(T1) Give a chance to each tradeoff : use (1) with comparable

values for α and β. The more different are these two

parameter, the least balanced is the tradeoff. Often, in

order to better control the balance between GF and Tr,

such values are normalized within interval [0, 1]. Most of

the ant literature is based on this tradeoff.

(T2) Focus on the best tradeoff : in order to be more aggressive

and thus giving more power to the move associated

with the best tradeoff between GF (m) and Tr(m),
the following technique is sometimes used. At each

step, select strategy S1 with probability p (parameter),

and strategy S2 with probability (1 − p). Strategy S1

consists in selecting a decision m according to (1),

whereas strategy S2 consists in selecting the decision m
maximizing GF (m) ·Tr(m). The smaller p is, the more

aggressive is the method.

(T3) Use sequentially the greedy forces and the trails: a

selection strategy avoiding the use of a probability

function was first proposed in [11]. It works as follows.

At each step associated with an ant, let B be the set of

decisions with the largest greedy force (resp. trail) values.

Then, the selected decision is the one in B with the largest

trail (resp. greedy force) value. Of course, this process is

only interesting if |B| > 1, otherwise the trails (resp.

greedy forces) will have no impact on the search.

The performance of a metaheuristic can be evaluated

according to several criteria [1]. The most relevant criteria

are the following:

(A) Quality: the value of the obtained results, according to a

given objective function.

(B) Speed: the time needed to get good results.

(C) Robustness: the sensitivity to variations in problem

characteristics and data quality.

(D) Ability to take advantage of problem structure,

considering that efficiency often depends on making

effective use of properties that differentiate a given class

of problems from other classes.

(E) Ease of adaptation: the ability to organize the method so

that it can appropriately apply to different specific classes

of problems.

Because of the unlimited number of personalities, the proposed

SMART methodology can have a good behavior according

to all the above criteria but (E), for which basic constructive

methods (e.g., the greedy algorithm, GRASP) or classical local

search metaheuristics (e.g., the descent local search, simulated

annealing, tabu search) rank better. Indeed, in order to design

SMART for a specific problem, all the following ingredients

have to be defined:

• A way to encode a solution s.

• An objective function f .

• The greedy force an the trail system.

• The q (parameter) different personalities P1, P2, . . . , Pq .

• The stopping condition (e.g., a time limit, a specific

number of generations).

Elements are provided below in order to justify the potential

of SMART for each of the above criterion, from (A) to (D).

(A) A personality can have an aggressive (and thus efficient

in the short term) behavior by focusing on the best moves.

For his purpose, the greedy forces should be favored

when compared to the trails. Such a personality can

quickly allow the involved ants to generate solutions with

a fairly good quality. The above strategies (T2) or (T3)
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can be used to reach this goal.

(B) A small number N of ants and aggressive selection

strategies (e.g., strategy (T2) with a small value of p,

or strategy (T3)) should be favored in order to speed up

the method. In addition, a filtering technique (e.g., [12])

could be used to reduce the search space.

(C) SMART has a natural potential to perform well on

robustness, because of the following elements: the use

of a population of ants; the consideration of the short

term profit (namely the greedy force) and the learning

mechanism (namely the trail system); the use of various

personalities.

(D) SMART is likely to take advantage of problem structure,

at least because of the total freedom allowed for encoding

the solution.

Let Nj be the number of ants with personality j (for

j ∈ {1, . . . , q}). It can be assumed that
∑q

i=1 Ni = N . The

pseudo-code of SMART is given in Algorithm 2.

Algorithm 2 SMART

Initialize the ant system.

While no stopping condition is met, do:

(1) for j = 1 to q, do:

for i = 1 to Nj , do: ant i provides a solution sji
based on the greedy forces and the trail system;

(2) intensification: apply a local search to some sji ’s;

(3) update s� (best ever encountered solution found during

the search);

(4) update the trails by the use of some sji ’s;

Output: solution s�.

III. SMART FOR THE VRP

Based on [10] to which the reader is referred for the details,

the main elements involved in the design of SMART for the

VRP (vehicle routing problem) are now exposed.

First, the VRP consists in designing the route of each of

the k identical vehicles with the aim of minimizing the total

traveled distance f (or the total cost or the total travel time).

All vehicles are initially in a depot, where each route starts

and ends. Each client v (with demand D(v)) has to be visited

once by the collection of routes. The problem is defined in an

undirected graph G = (V,E), where V = {v0, v1, . . . , vn}
is the vertex set and E = {(vi, vj) | vi, vj ∈ V, i < j}
is the edge set. Note that v0 is the depot and the other

vertices are clients. The following lexicographical approach

is generally used: minimize k, then the total distance f . The

two most well-known constraints associated with the VRP are:

(1) capacity: each vehicle has a limited capacity Q, thus the

demand of each route cannot exceed Q; (2) autonomy: each

vehicle has a limited autonomy A, thus the total duration of

each route cannot exceed A. Several extensions of the VRP

can be found in the literature. In this paper, only the capacity

constraint is considered, which is the most studied version of

the VRP. For survey papers on the VRP, the reader is referred

to [13]–[18].
The following methods are compared for the VRP. They

will be summarized below.

• GR is a greedy constructive algorithm with restarts. It is

the core procedure for the ant algorithm.

• ANT is an ant algorithm where each ant is a constructive

heuristic derived from GR by mainly adding a trail

system.

• AL is derived from ANT by adding local search techniques

to improve the solutions provided by the ants.

• ALM is derived from AL by adding an intensification

component at the very beginning of the process, where

some parts of the best ever generated solution s� are

integrated in the solutions constructed by the ants.

• ALMP is derived from ALM by giving a specific

personality to each ant. Four types of personality will

be used.

GR is a greedy constructive algorithm with restarts. It

consists in sequentially constructing each of the k routes.

The procedure starts a new route R by choosing randomly

an unserved client v ∈ {v1, . . . , vn}, and creates a tour

v0 − v − v0. Let C(R) be the capacity of route R (defined

as the vehicle capacity, minus the demands D(R) of all the

clients belonging to R). Then, for all the unserved clients v
such that D(v) ≤ C(R) (called the R-available clients), a

move m = (v, p,R) can be performed, which consists in

inserting client v at position p (between two clients vi and

vj , or between the depot v0 and one client vi) in route R. GR
is performed until there is no more R-available client v. When

this occurs, a new route is started by choosing randomly an

unserved client. The process stops when all the clients have

been served (feasible solution), or when it is not anymore

possible to serve a client with one of the k vehicles (unfeasible

solution).
ANT is an ant algorithm. The role of each ant is to build a

solution with a 2-phase algorithm denoted 2PH, where a trail

value is associated with each edge. A move is selected based

on the trail values, among the ones with the most promising

greedy forces (in other words, the technique (T3) is used).

In the first phase (P1), the routes are sequentially built and

extended as in GR, whereas in the second phase (P2), the

unserved clients are sequentially considered to fill any of

the existing routes. In other words, (P1) works tour by tour,

whereas (P2) works client by client (by order of decreasing

demands, which improves the likelihood of the solution to

be feasible). To move from (P1) to (P2), the key idea is to

stop the construction of a route R in (P1) when only poor

R-available insertions are possible (i.e., do not fill route R
just to fill it, because these R-available clients might be much

more efficiently served by other routes).
Often, in order to get competitive results, it is unavoidable

to apply a local search method (e.g., a descent method, tabu

search) to the solutions provided by the classical constructive
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ants [8]. AL is derived from ANT as follows. At the end of

each generation, before updating the trail system (i.e., at step

(2) of Algorithm 1), the following local search techniques

are sequentially applied to the elite solutions: the 2-opt [19],

the forward Or-exchange and the backward Or-exchange [20].

This sequence of three local search procedures is restarted until

no more improvement is encountered by any of the procedure.

ALM is derived from AL by adding an intensification

component at the beginning of 2PH, before (P1). This

component (P0) consists in copying some of the routes of

s� when generating a solution s with the considered ant.

ALMP is derived from ALM and involves different ant

personalities. A specific personality is assigned to each of the

N ants of the population. The personality intervenes anytime

the ant makes a decision, which consists in selecting a move

among the eligible ones. Four ant personalities are proposed:

Normal Ants (NA), Follower Ants (FA), Moody Ants (MA)

and Innovative Ants (IA). These characteristics are likely to

belong to any group of individuals working together to reach

a common goal. In order to work with a well-balanced ant

society, N/4 ants of each personality are used (with N tuned

to 12).

• NA corresponds to the classical ant personality as known

in the literature. NA selects a move proportionally to

its trail value (among the ones with promising greedy

forces).

• FA corresponds to the personality that strictly follows

what others have done previously. FA always selects the

move with the largest trail value. This behavior aims at

intensifying the search.

• MA corresponds to NA with probability (1 − pMA),
but with a probability pMA (parameter tuned to 0.4),

it changes its mood and starts behaving apparently

against the goal. MA selects a move proportionally

to the trail values with probability (1 − pMA), and

inverse-proportionally to the trail values with probability

pMA. This behavior aims at strongly diversifying the

search.

• IA corresponds to the personality that tends to behave

in an unusual way, but with the intention to reach

the goal. IA corresponds to FA with probability (1 −
pIA) (intensification role), but with a probability pIA
(parameter tuned to 0.2), it changes its mood and make a

random decision (diversification role). IA selects the move

with the largest trail values with probability (1−pIA), and

randomly with probability pIA. This personality favors

the exploration of new solutions.

The tests have been run in a Windows 7 PC with an Intel

Core2 Quad Q9400 of 2.66GHz and 4MB of RAM in 32-bit.

For each proposed algorithm, the stopping condition is 5 · n
seconds, where n is the number of clients of the considered

instance. The results are averaged over 9 runs. The considered

instances are all the benchmark instances from [21] and [17]

which do not have the autonomy constraint. The results are

provided in Table I. Let f� be the best known value obtained

from [22]. Column 2 indicates the average percentage gap

between GR and f�. The next columns provide the same

information, but for ANT, AL, ALM and ALMP, respectively. It

can be safely concluded that every single ingredient (i.e., a trail

system, local search procedures, a central memory, and various

personalities) successively added to GR to derive ALMP is

useful.

TABLE I
RESULTS ON THE CONSIDERED BENCHMARK INSTANCES

Method GR ANT AL ALM ALMP

Percentage gap 12.50% 11.00% 7.50% 3.70% 3.30%

IV. CONCLUSION

In this paper, a new ant metaheuristics called SMART

is proposed, which can be adapted to any combinatorial

optimization problem. The paradigm of the ant methodology

is thus extended, as in contrast with most of the literature on

ant algorithms, a specific personality is assigned to each ant.

Because each personality has its own role and characteristics,

SMART can find a good balance between exploitation (i.e., the

ability to guide the search in the solution space and to take

advantage of the problem structure) and exploration (i.e., the

ability to visit various zones of the solution space). A solution

method having a good behavior according to exploitation and

exploration is likely to be a robust method, as robustness

can be defined as the sensitivity to variations in problem

characteristics and data quality. Future works include the

development of SMART for other problems.
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