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Skolem Sequences and Erdosian Labellings of m
Paths with 2 and 3 Vertices

H. V. Chen

Abstract—Assume that we have m identical graphs where the
graphs consists of paths with k vertices where k is a positive integer.
In this paper, we discuss certain labelling of the m graphs called
c-Erdösian for some positive integers c. We regard labellings of the
vertices of the graphs by positive integers, which induce the edge
labels for the paths as the sum of the two incident vertex labels.
They have the property that each vertex label and edge label appears
only once in the set of positive integers {c, . . . , c + 6m − 1}. Here,
we show how to construct certain c-Erdösian of m paths with 2 and
3 vertices by using Skolem sequences.
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I. INTRODUCTION

GRAPH labellings are assignment of integers to the ver-
tices or edges, or both, subject to certain conditions. In

1963, Sedláček [7] introduced magic labellings for graphs. A
connected graph is said to be semi-magic if there is a labelling
of the edges with integers such that for each vertex v the sum
of the labels of all edges incident with v is the same for all
v. A semi-magic labelling where the edges are labelled with
distinct positive integers is called a magic labelling. In 1970,
Kotzig and Rosa [4] introduced magic labellings of a graph
G(V,E) as a bijection f from V ∪ E to {1, 2, . . . , |V ∪ E|}
such that for all edges xy, f(x) + f(y) + f(xy) is constant
and this type of graph labelling is called edge-magic total
labelling. In 1999, MacDougall, Miller, Slamin, and Wallis [5]
introduced the notion of a vertex-magic total labelling. For a
graph G(V,E), an injective mapping f from V ∪ E to the
set {1, 2, . . . , |V | + |E|} is a vertex-magic total labelling if
there is a constant k, called the magic constant, such that for
every vertex v, f(v) +

∑
f(vu) = k where the sum is over

all vertices u adjacent to v.

Let m · Pk = (Vm, Em) be the finite (disconnected) graph
with vertex set V of size |V | = km and edge set Em of size
|Em| = km, consisting of m disjoint paths. When k = 2,
m · P2 represents m disjoint paths with 2 vertices and when
k = 3, m · P3 represents m disjoint paths with 3 vertices. A
total labelling of the graph m ·Pk is a positive integer valued
function f : Vm ∪Em → N. A labelling is said to be magic
if its range consists of the integers {1, 2, . . . , (2k− 1)m} and
it is said to be c-magic if its range consists of the integers
{c, c + 1, . . . , c + (2k − 1)m − 1}, for any positive integer
c > 0.

We say that f is a c-Erdösian triangle labelling if it is
c−magic and if it has the following property: For any edge

Department of Mathematical Sciences, Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak 53300 Kuala
Lumpur, Malaysia.

xy ∈ Em, with x, y ∈ Vm we have

f(x) + f(y) = f(xy).

For convenience, we say that m ·Pk is c-Erdösian if it satisfies
the conditions above for any positive integer k.

Let m · Pk consists of m disjoint paths with k vertices.
Let D2

i = {ai, bi, ai + bi}, i = 1, . . . , m be their vertex and
edge labels for each path with 2 vertices. By using the similar
terminology, we have D3

i = {ai, bi, ci, ai + bi, bi + ci}, i =
1, . . . , m be the vertex and edge labels for each path with 3
vertices. In other word, the system {Dk

1 , . . . , Dk
m} (for k =

2, 3) is called c-Erdösian if its range consists of the integers
{c, c+1, . . . , c+(2k−1)m−1}, for any positive integer c > 0.
For convenience, the elements of Dk

i can be represented in the
following form of a 2-by-k array, where the top row indicates
the vertex labels and the bottom row shows the edge labels as
shown below for the case k = 2 and 3 respectively:

ai bi

ai + bi

ai bi ci

ai + bi bi + ci

In this paper, we only consider graph which consists of m
paths with 2 or 3 vertices. The following is an example of the
2 · P3 which is 3-Erdösian.

9 3 5
12 8,

7 4 6
11 10.

Skolem sequences and their generalizations have been used
widely in the construction of combinatorial design. A Skolem
sequence of order n is a sequence S = (s1, s2, . . . , s2n) of
2n integers satisfying the conditions
(S1) for every k ∈ {1, 2, . . . , n} there exist exactly two

elements si, sj ∈ S such that si = sj = k;
(S2) if si = sj = k with i < j, then j − i = k.
A hooked Skolem sequence of order n is a sequence S =
(s1, s2, . . . , s2n+1) of 2n+1 integers satisfying the conditions
(S1) and (S2) above and
(S3) s2n = 0.

To construct our c-Erdösian of m paths, we will use the
Langford sequence if c > 1. A Langford sequence of order n
and defect d, n > d, is a sequence L = (l1, l2, . . . , l2n) of 2n
integers satisfying the conditions
(L1) for every k ∈ {d, d+1, . . . , d+n−1} there exist exactly

two elements li, lj ∈ L such that li = lj = k, and
(L2) if li = lj = k with i < j, then j − i = k.
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The hooked Langford sequences of order n and defect d is a
sequence L = (l1, l2, . . . , l2n+1) of 2n + 1 integers satisfying
conditions (L1) and (L2) above and
(L3) l2n = 0.

Clearly, a (hooked) Langford sequence with defect 1 is a
(hooked) Skolem sequence. It is well-known that a Skolem
sequence of order n exists if and only if n ≡ 0,1 (mod
4) [9] and a hooked Skolem sequence of order n exists if
and only if n ≡ 2,3 (mod 4) [6]. The following theorem
gives necessary and sufficient conditions for the existence of
Langford sequences.

Theorem 1: [8] A Langford sequence of order n and defect
d exists if and only if

(i) n ≥ 2d− 1, and
(ii) n ≡ 0,1 (mod 4) and d is odd, or n ≡ 2,3 (mod 4) and

d is even.
A hooked Langford sequence of order n and defect d exists
if and only if

(i) n(n− 2d + 1) + 2 ≥ 0, and
(ii) n ≡ 2,3 (mod 4) and d is odd, or n ≡ 1,2 (mod 4) and

d is even.

II. SKOLEM SEQUENCES AND ERDOSIAN LABELLINGS OF
m PATHS P2

We begin by considering the paths with two vertices.
Proposition 1: The path P2 is 1−Erdösian but it is not c-

Erdösian for c ≥ 2.
Proof. Let x1, x2 is an enumeration of the vertices of P2. If X
be the sum of the vertex labels, then X ≥ c+(c+1) = 2c+1.
Note that the total sum of all the labels is 2X = c+(c+1)+
(c+2) = 3c+3, and it follows that X = 1

2 (3c+3). Therefore
1
2 (3c + 3) ≥ 2c + 1, and hence c ≤ 1. �

For the case c = 1, there is only a 1−Erdösian labelling for
P2 as follow:

1 2
3

We first look at the following necessary condition:

Proposition 2: If m · P2 is c-Erdösian, then c ≤ m+1
2 .

Proof. Let D2
i be the set of vertex and edge labels for i-th path

with 2 vertices where D2
i = {ai, bi, ai + bi}, i = 1, 2, . . . , m.

Note that D2
1∪· · ·∪D2

m = {c, c+1, . . . , c+3m−1}. Let TS
be the sum of the vertices and BS be the sum of edges. Then,
TS = ai + bi and BS = (ai + bi) = TS for all i = 1, . . . , m.
Note that

TS ≥ c + (c + 1) + · · ·+ [c + (2m− 1)] = m(2c + 2m− 1)

and

BS ≤ (c + 2m) + · · ·+ [c + (3m− 1)] =
m

2
(2c + 5m− 1).

Then m(2c + 2m− 1) ≤ m
2 (2c + 5m− 1) and it follows that

c ≤ m+1
2 . �

By referring to [9], [1] and [2], we recall that a skolem
sequence of order n exists if and only if n ≡ 0, 1
(mod 4). When n = 1, we take (1, 1). When n = 4,
take (1, 1, 3, 4, 2, 3, 2, 4) and if we rewrite in ordered pairs,
we have (1, 2), (5, 7), (3, 6), (4, 8). When n = 5, take
(2, 4, 2, 3, 5, 4, 3, 1, 1, 5). When n > 5, we use the construction
of order paired as follows:

n = 4s :

⎧
⎪⎪⎨

⎪⎪⎩

(4s− r + 1, 8s− r + 1), r = 1, . . . , 2s;
(r, 4s− r − 1), r = 1, . . . , s− 2;
(s + r + 1, 3s− r), r = 1, . . . , s− 2;
(s− 1, 3s), (s, s + 1), (2s, 4s− 1), (2s + 1, 6s)

n = 4s+1 :

⎧
⎪⎪⎨

⎪⎪⎩

(4s + r − 1, 8s− r + 3), r = 1, . . . , 2s;
(r, 4s− r + 1), r = 1, . . . , s;
(s + r + 2, 3s− r + 1), r = 1, . . . , s− 2;
(s + 1, s + 2), (2s + 1, 6s + 2), (2s + 2, 4s + 1)

The following result is clear by the construction of Skolem
sequences above.

Theorem 2: There exists an 1-Erdösian of m·P2 when m ≡
0, 1 (mod 4).

Example 1: When n = 4, we have the following skolem
sequences in ordered pair:

(1, 2), (5, 7), (3, 6), (4, 8).

By adding n to all the value in the ordered pairs above and
writing the difference of the ordered pair in the first position
of triples, we have the set of triples

{(1, 5, 6), (2, 9, 11), (3, 7, 10), (4, 8, 12)}.

The first two values in the triples will be the vertex labels for
each path P2 and hence we get an 1-Erdösian for 4 ·P2 easily
by using Skolem sequences. �

We can use the similar argument to construct a c-Erdösian
of m · P2 if there exists a Langford sequence of order m and
defect c. For example, given a Langford sequence of order
5 and defect 3, L = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6), we obtain the
triples as follows:

{(3, 10, 13), (4, 12, 16), (5, 9, 14), (6, 11, 17), (7, 8, 15)}.

Hence, the first two values in the triples will be the vertex
labels and the last values will be the edge label for each path
P2.

We note that the c-Erdösian of m ·P2 exists if there exists a
Langford sequence of order m and defect c. From the Theorem
1, we have the following:

Theorem 3: There exists a c-Erdösian of m · P2 if

(i) m ≥ 2c− 1, and
(ii) m ≡ 0,1 (mod 4) and c is odd, or m ≡ 2,3 (mod 4) and

c is even.
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III. ERDOSIAN LABELLINGS OF m PATHS P3

In this section, we shall consider the paths with three
vertices.

Proposition 3: If m · P3 is c-Erdösian, then c ≤ 2m+1
2 .

Proof. Let D3
i be the set of vertex and edge labels for i-th

path with 3 vertices where D3
i = {ai, bi, ci, ai + bi, bi + ci},

i = 1, 2, . . . , m. Note that D3
1 ∪ · · · ∪D3

m = {c, c+1, . . . , c+
5m − 1} and sum of the first two vertex labels ai + bi ≥
c+(c+1)+ · · ·+[c+(2m−1)] = m(2c+2m−1). Similarly,
we have the other sum of the two vertex labels is bi + ci ≥
m(2c + 2m− 1) and it follows that

ai + 2bi + ci ≥ 2m(2c + 2m− 1).

The sum of the edge labels

(ai+bi)+(bi+ci) ≤ (c+3m)+· · ·+(c+5m−1) = m(2c+8m−1)

It follows that

2m(2c+2m−1) ≤ (c+3m)+· · ·+(c+5m−1) = m(2c+8m−1)

Therefore c ≤ 2m+1
2 . �

For the case m = 1, P3 is 1-Erdösian as given below:

2 1 4
3 5.

Skolem sequences can also be used to construct m · P3

if m ≡ 0, 1 (mod 4). However the way of constructing
the paths with 3 vertices is not that direct as given in the
m · P2. We use the skolem sequence and the property of
c-Erdösian triangle labelling for m triangles for construction.
We continue this section by introducing the definition of the
c-Erdösian triangle labelling for m-triangles:

Let GTm = (Vm, Em) be the finite (disconnected) graph
with vertex set V of size |V | = 3m and edge set Em of size
|Em| = 3m, consisting of m disjoint triangles K3, that is we
let GTm = m ·K3. A total labelling of the graph GTm is a
positive integer valued function f : Vm∪Em → N. In [3], we
say that f is a c-Erdösian triangle labelling if it is c−magic
and if it has the following property: For any edge xy ∈ Em,
with x, y ∈ Vm we have

f(x) + f(y) = f(xy).

For convenience, we say that GTm is c-Erdösian if it satisfies
the conditions above.

Proposition 4: If the sum of the vertex labels over any one
triangle is a constant, then

ai + bi + ci = 2c + 6m− 1 for all i = 1, 2, . . . , m. (1)

Proof. The constant in (1) is obtained by summing over all
labels,

c + (c + 1) + · · ·+ (c + 6m− 1) = 6mc + 3m(6m− 1)
= 3m(2c + 6m− 1)

and then dividing this expression by 3m, since there are m
triangles and each triangle has total sum of labels 3(ai + bi +
ci). �

However, not all the GTm is c-Erdösian with constant vertex
labels over the m triangles. The following is an example which
the sum of the vertex labels over each triangle which is all
distinct.

1 2 15
3 16 17,

4 5 23
9 27 28,

6 7 18
13 24 25,

8 12 14
20 22 26,

10 11 19
21 29 30.

The results below are straightforward by the Proposition 4.
Proposition 5: There exists an 1-Erdösian of m · P3 when

m ≡ 0, 1 (mod 4).

Theorem 4: For any 1 ≤ c ≤ m+1
2 , there exists an c-

Erdösian of m · P3 when
(i) m ≡ 0, 1 (mod 4) and c is odd, or

(ii) m ≡ 2, 3 (mod 4) and c is even.

Example 2: Given a Langford sequence in triples for m = 3
and c = 2 as follow: {(2, 7, 9), (3, 5, 8), (4, 6, 10)}.
The first two integers in each triple of are the vertex labels
of a triangle and the third vertex label of the triangle can be
obtained by using Proposition 4. So the 2-Erdösian of GT3 is
clear from the following 2-by-3 arrays:

2 7 12
9 14 19,

3 5 13
8 16 18,

4 6 11
10 15 17.

By deleting the largest edge label in each triangle, we have
the following 2-Erdösian of 3 · P3:

7 2 12
9 14,

5 3 13
8 16,

6 4 11
10 15.

�

Hooked Langford sequences can also be used to construct
m · P3 as shown in the next example.

Example 3: From the hooked Langford sequences for the
case m = 5 and c = 2, we can rewrite in triples as

{(2, 7, 9), (3, 12, 15), (4, 10, 14), (5, 8, 13), (6, 11, 17)}.
Since ci = 2(2) + 6(5)− 1− ai − bi = 33− ai − bi, we have
the following 2-Erdösian arrays of 5 triangles:

2 7 24
9 26 31,

3 12 18
15 21 30,

4 10 19
14 23 29,

5 8 20
13 25 28,

6 11 16
17 22 27.

Hence, the 2-Erdösian of 5 · P3 are listed below:

7 2 24
9 26,

12 3 18
15 21,

10 4 19
14 23,

8 5 20
13 25,

11 6 16
17 22. �
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By using the hooked Langford sequence, we can construct
m · P3 which is c-Erdösian under certain conditions given by
Theorem 1 as follows:

Theorem 5: A c-Erdösian of m · P3 exists if
(i) m(m− 2c + 1) + 2 ≥ 0, and

(ii) m ≡ 2,3 (mod 4) and c is odd, or m ≡ 1,2 (mod 4) and
c is even.
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