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Single-qubit quantum gates using magneto-optic
Kerr effect
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Abstract—We propose the use of magneto-optic Kerr effect
(MOKE) to realize single-qubit quantum gates. We consider longitu-
dinal and polar MOKE in reflection geometry in which the magnetic
field is parallel to both the plane of incidence and surface of the
film. MOKE couples incident TE and TM polarized photons and the
Hamiltonian that represents this interaction is isomorphic to that of
a canonical two-level quantum system. By varying the phase and
amplitude of the magnetic field, we can realize Hadamard, NOT,
and arbitrary phase-shift single-qubit quantum gates. The principal
advantage is operation with magnetically non-transparent materials.
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I. INTRODUCTION

Quantum computation jump started with Peter Shor’s dis-
covery of an algorithm to factor long composite numbers into
its factors [1]. Although the algorithm has been experimentally
tested only for small numbers, theoretical and experimental
advances in the field of quantum computation have been rather
spectacular. Implementing quantum computing algorithms re-
quires physical realization of quantum gates that manipulates
qubits. It is known that single-qubit gates plus at least one gate
that acts non-trivially on a qubit (eg., a CNOT gate) can realize
n−qubit operations thus forming a set of universal quantum
gates [2–4].

A single-qubit gate can be realized as a unitary transforma-
tion of the state of a two-level quantum system. Since quantum
mechanical effects are easy to observe in single-photons,
photonic technology has emerged as a strong candidate to
implement quantum computers [5]. Photonic technology to
implement quantum logic can be entirely linear (KLM protocol
[6, 7]) or involve nonlinear elements [7]. Nonlinear electro-
optic effects such as Pockel’s and Kerr effects are used to re-
alize quantum gates. Time-bin and frequency-coding schemes,
first developed for quantum key distribution [8–10], have also
been used to implement quantum gates. The last two schemes
use electro-optic modulators to realize quantum gates.

Magneto-optic Kerr effect (MOKE) is widely used to de-
termine the domains of magnetic materials. Unlike Faraday
effect, which can only be observed in magnetically trans-
parent media, MOKE can be observed in materials that are
magnetically non-transparent. Depending on the orientation of
magnetic field, MOKE can be classified in polar, longitudinal,
and transverse configurations. However in most materials
magnitude of MOKE is quite low and needs to be enhanced
by employing a stack of dielectric layers [11–13].
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In this paper, we propose the use of MOKE to realize
single-qubit quantum gates–Hadamard, NOT, and phase-shift.
We consider longitudinal MOKE in reflection geometry. The
bias magnetic field is parallel to both the plane of incidence
of light wave and surface of the film. In the absence of the
magnetic field incident photons undergo ordinary reflection.
Application of the bias field changes polarization of the
incident photon and imparts a phase-shift. Specifically, an
incident transverse electric (TE) polarized photon acquires a
transverse magnetic (TM) polarization upon reflection. The
quantum Hamiltonian describing the interaction of quantized
light wave (photon) and the applied magnetic field is of the
form: γ |ω0;TE〉 〈ω0;TM|+ γ∗

|ω0;TM〉 〈ω0;TE|, where γ is
the coupling coefficient which includes both Fresnel reflection
and MOKE. Here |ω0;TE〉 and |ω0;TM〉 represent TE and TM
polarized photon states respectively. The coefficient γ depends
on the applied magnetic field. By varying the phase and
amplitude of γ, we can realize various single-qubit quantum
gates. The advantages of the proposed scheme are:

• easy realization of gates using metallic and magnetic
materials,

• ease of integration as the gates can be realized in multi-
layer thin film structures, and

• efficient operation in the C-band (1550nm) making it
suitable for photonic communications.

The rest of the paper is organized as follows. In section II,
we derive the Hamiltonian for MOKE interactions in a slab
waveguide. While we assume a single-layer film in discussing
the Hamiltonian, our results can be easily extended to multi-
layer thin film structures. In section III, we show how MOKE
can be used to realize single-qubit gates. Finally, we conclude
by summarizing our results.

II. MOKE

Magneto-Optic Kerr effect (MOKE) results in modification
of the state of polarization of the incident beam of light when
reflecting off a metallic or magnetic material. MOKE is usually
classified into three types based on the orientation of the
magnetization vector with respect to the plane of incidence
and surface of the film: polar, longitudinal, and transverse.
These configurations and associated coordinate references are
shown in Fig.1. The direction of propagation is assumed to be
along the z-axis, while the film is in the x− y plane. For our
purpose, we assume that the film is infinite in extent along x
and y directions. We also assume that the second medium is
sufficiently thick so as to simplify the interaction Hamiltonian.

The incident beam of light of angular frequency, ω0 rad/s,
in general consists of transverse electric (TE) and transverse
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magnetic (TM) components. Classically the electric field can
be written as a vector (called Jones vector): [e+p e+s ], where
p denotes TM and s denotes TE mode respectively, and +
denotes wave traveling along positive z direction as shown in
Fig.2. The reflected fields are related to incident fields as

[
e−p
e−s

]
=

(
rpp rps
rsp rss

)[
e+p
e+s

]
, (1)

where rpp and rss are Fresnel reflection coefficients of TM and
TE modes respectively. The coefficients rps and rsp include
MOKE which determines the coupling of TM and TE modes.

Fig. 1. Polar, longitudinal, and transverse MOKE configurations. M0 is the
saturation magnetization.

To extend the above formalism to single photon MOKE,
we consider quantized optical modes interacting with the
magnetization vector. We should consider both guided and
evanescent modes at an interface for complete representation
of reflected optical fields which restricts the values of the
propagation constant of incident and reflected fields. The
incident field in the absence of any interaction is described
by the Hamiltonian:

H0 =
∑
k

�ωk

(
a†ip,kaip,k + a†is,kais,k

)
, (2)

where we have neglected the terms corresponding to zero-
point energy. The summation in (2) runs over different values
of propagation vector k. The interaction between optical field
and the magnetization of the film, which constitutes MOKE,
can be modeled by the effective permittivity tensor [14]:

ε = ε0

⎡
⎣

εr jQMz −jQMy

−jQMz εr jQMx

jQMy −jQMx εr

⎤
⎦ , (3)

where M = x̂Mx + ŷMy + ẑMz is the magnetization vector
and εr is the permittivity of the film. In the absence of MOKE,
the film is assumed to be isotropic. The non-zero components
of M are determined by the type of configuration (polar,
longitudinal, and transverse). Since transverse configuration
(non-zero My) does not symmetrically couple TE and TM
polarizations, we ignore this configuration in further analysis.

For the longitudinal MOKE configuration (M = x̂M0),
interaction Hamiltonian takes the form:

HI = jQM0E
∗

yEz − jQM0E
∗

zEy, (4)

which provides coupling between TE and TM modes. It is
important to note that for normal incidence in which the
electric field lies along x−axis, the interaction Hamiltonian
is zero which we expect for longitudinal MOKE. For polar
MOKE, the interaction Hamiltonian takes the form:

HI = jQM0E
∗

yEx − jQM0E
∗

xEy, (5)

which again couples the TE and TM modes. However, due
to the different field components in (4) and (5), the signs
of reflection coefficients rsp and rps are different. In the
following, we consider only longitudinal MOKE. Our results
can be modified easily for polar MOKE.

To go over to the quantum domain, we replace the classical
field components Ey and Ez by their quantum counterparts
as and ap respectively, to obtain the quantum interaction
Hamiltonian:

HI =
∑
k

(
γa†sap − γ∗a†pas

)
. (6)

where γ is the coupling constant. The first term represents
the creation of a TE polarized photon of angular frequency
ω0 from a TM polarized photon of the same frequency.
Similarly, the second term represents the destruction of a TE
polarized photon to yield a TM polarized photon. Thus, the
Hamiltonian in (6) represents a canonical two-level quantum
system with TM and TE photons considered as “ground” and
“excited” states respectively. We recast the Hamiltonian (6) in
Schrödinger picture as

HI = j� (γ |s〉 〈p|+ γ∗
|p〉 〈s|) , (7)

where we have denoted the TM and TE modes by |p〉 and |s〉
respectively. In the next section, we make use of the above
Hamiltonian to implement single-qubit gates.

III. IMPLEMENTING SINGLE-QUBIT GATES

In this section we implement single-qubit gates by associ-
ating TM and TE polarized photons, |p〉 and |s〉 with logical
qubits |0〉 and |1〉. We start by noting that the incident photon
can be expressed as a qubit,

|ψ(t)〉 = A(t) |p〉+B(t) |s〉 , |A(t)|2 + |B(t)|2 = 1, ∀t,

which evolves according to Schrödinger’s equation

j�
∂

∂t
|ψ(t)〉 = HI |ψ(t)〉 .

Substituting for HI from (7), and solving the resulting equa-
tions, we have

A(t) = C cos(κt) +D sin(κt) (8a)

B(t) = e−jφ [C sin(κt)−D cos(κt)] , (8b)

where C and D are constants that depend on initial con-
ditions and γ = κejφ, κ being a real constant1. The phase
φ also comes from the phase of the SW when mz(t) =
Re (m0z(x) exp (j[Ωt− kSW · r+ φ])). Various single-qubit
gates (transformations) can be implemented by changing the
coupling coefficient κ and phase φ. An initial TM polarized

1We have absorbed j� in defining γ.
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photon (with A(0) = 1 and B(0) = 0) of angular frequency
ω0 rad/s, represented by the ket |p〉 transforms into the state,

|p〉 → cos(κT ) |p〉+ e−jφ sin(κT ) |s〉 ≡ |+〉 , (9)

at time t = T . Similarly, an initial TE polarized mode (with
A(0) = 0 and B(0) = 1) transforms into the state,

|s〉 → −ejφ sin(κT ) |p〉+ cos(κT ) |s〉 ≡ |−〉 , (10)

A. Hadamard gate

The Hadamard gate is defined by the following transforma-
tions on the qubits |0〉 and |1〉:

UH |0〉 =
1
√

2
(|0〉+ |1〉) (11a)

UH |1〉 =
1
√

2
(|0〉 − |1〉) . (11b)

We can realize single-qubit Hadamard gate by letting the
coupling constant κT = π/4 and phase φ = 0 in (9) and (10)
and redefining the global phase:

UH |p〉 =
1
√

2
(|p〉+ |s〉) (12a)

UH |s〉 = ejπ
1
√

2
(|p〉 − |s〉) . (12b)

B. Phase-shift gate

A phase-shift gate imparts a phase difference of φ between
|0〉 and |1〉 as in

UP (φ) (c0 |0〉+ c1 |1〉) = c0 |0〉+ ejφc1 |1〉 . (13)

We can implement phase-shift gate by applying a spin wave
with phase φ (See (9) and (10)).

C. NOT or inverter

Often it is required to perform the transformations, |0〉 →
|1〉 and |1〉 → |0〉. We can perform these transformations by
letting κT = π/2 (the phase φ is not relevant). However,
this requires higher microwave power which leads to multiple
TE↔TM interactions. We can avoid the nonlinear effects by
first transforming |ω0 − Ω〉 into |+〉 with κT = π/4 and φ =
φ1 (See 9) and then transform |+〉 into

1

2

(
1− ej(φ2−φ1)

)
|p〉+

1

2

(
ej−φ2 + ej−φ1

)
|s〉 . (14)

We then choose |φ2 − φ1| = 0 to obtain the transformation
|p〉 → |s〉. The various implementations are summarized in
Fig. 2.

Fig. 2. Implementing single-qubit quantum gates using MOKE. LD: Laser
diode, PD: photodetector, M: mirror. In the NOT gate, the two VCO’s are
synchronized with each other. It is also possible to simply split the VCO
signal of frequency Ω to feed both the waveguides. The coupling constant
κT is taken to be π/4.

IV. COHERENT STATE QUANTUM GATES

As an alternative to encoding qubits as single-photons, it
is possible to encode them as coherent states. This is called
continuous variable encoding. In this section, we show that
quantum gates can be implemented by letting coherent states
of light interact with SWs. From the transformations (9) and
(10) we propose the form of the temporal evolution of the
operators ap and as:

ap(t = T ) =
1
√

2

(
ejφas(0) + ap(0)

)
, (15a)

as(t = T ) =
1
√

2

(
as(0)− ejφap(0)

)
, (15b)

where φ is the phase of the SW component mz(t). An initial
TM polarized coherent state, |α〉TM of frequency ω0 rad/s and
average photon number |α|2 can be expressed as,

|α; 0〉TM = e(αa
†

p
−α∗ap)

|0〉 ,

where |0〉 is the vacuum state of the TM mode. Substituting for
a†p and as and using the fact that TM and TE modes commute
with each other, we can show that at t = T , the state |α〉TM
transforms into

|α〉TM → |cos(κT )α〉TM ⊗

∣∣e−jφ sin(κT )α
〉

TE
(16)

where ⊗ denotes direct tensor product. The average photon
number in the TM and TE modes is cos2(κT )|α|2 and
sin2(κT )|α|2 respectively. The average photon number in the
TM and TE modes can be controlled by changing the coupling
constant κT .

It is easy to see that the transformation (16) can implement
Hadamard and phase-shift gates. To implement the former,
we choose κT = π/4 and φ = 0. Phase-shift gate can
be implemented by modulating the coherent state |α〉TM by
applying the magnetic field with a phase φ. Since coherent
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states are much easier to generate and detect than single-
photons, encoding qubits as phase of a coherent state offers
attractive and cost-effective alternative to single-photon qubit
gates.

V. CONCLUSIONS

We described the use of magneto-optic Kerr effect (MOKE)
to implement various single-qubit quantum gates. A TM
polarized photon of frequency ω0 scatters off from a film and
results in a superposition of TM and TE polarized photon:
cos(κT ) |p〉 + ejφ sin(κT ) |s〉. Single-qubit gates–Hadamard
and phase-shift–can be implemented by appropriate choices
of κT and φ. We also showed that MOKE can be used to
realize continuous variable encoding of qubits.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Foundations of Computer Science, 1994 Proceedings., 35th
Annual Symposium on, 1994, pp. 124 –134.

[2] D. P. DiVincenzo, “Two-bit gates are universal for quantum computa-
tion,” Phys. Rev. A, vol. 51, no. 2, pp. 1015–1022, Feb 1995.

[3] L. Seth, “Almost any quantum logic gate is universal,” Phys. Rev. Lett.,
vol. 75, no. 2, pp. 346–349, Jul 1995.

[4] P. Kaye, R. Laflamme, and M. Mosca, An introduction to quantum
computing. Oxford University Press, 2007.

[5] J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum
technologies,” Nature, pp. 687–695, 2009.

[6] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” Nature, vol. 409, p. 46, 2001.

[7] P. Kok et al., “Linear optical quantum computing with photonic qubits,”
Reviews of Modern Physics, vol. 79, no. 135, 2007.

[8] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptogra-
phy,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, 2002.

[9] J. M. Merolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes,
“Phase modulation transmission system for quantum cryptography,”
Optics Letters, vol. 24, no. 2, pp. 104–106, 1999.

[10] P. Kumar and A. Prabhakar, “Evolution of quantum states of light in an
electro-optic phase modulator,” IEEE Journ. of Quant. Electron., vol. 45,
no. 2, 2009.

[11] C. C. Robinson, “Longitudinal magneto-Optic scattering from thin solid
films,” J. Opt. Soc. Am, vol. 53, p. 681, 1963.

[12] R. P. Hunt, “Magneto-Optic scattering from thin solid films,” J. of Appl.
Phys., vol. 38, no. 4, pp. 1652–1671, 1967.

[13] M. Gaugitsch and H. Hauser, “Magneto-Optical light modulator-Part II,”
J. of Lightwave Tech., vol. 17, no. 12, 1999.

[14] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media,
2nd ed. Butterworth-Heinemann, 1984.


