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Single-Crystal Kerfless 2D Array Transducer for
Volumetric Medical Imaging: Theoretical Study

Jurij Tasinkiewicz

Abstract—The aim of this work is to present a theoretical
analysis of a 2D ultrasound transducer comprised of crossed arrays of
metal strips placed on both sides of thin piezoelectric layer (a). Such
a structure is capable of electronic beam-steering of generated
wavebeam both in elevation and azimuth. In this paper a semi-
analytical model of the considered transducer is developed. It is
based on generalization of the well-known BIS-expansion method.
Specifically, applying the electrostatic approximation, the electric
field components on the surface of the layer are expanded into fast
converging series of double periodic spatial harmonics with
corresponding amplitudes represented by the properly chosen
Legendre polynomials. The problem is reduced to numerical solving
of certain system of linear equations for unknown expansion
coefficients.

Keywords—Beamforming, transducer array, BIS-expansion.

[. INTRODUCTION

RECENTLY 3D ultrasound has become one of the most
promising imaging modality for clinical diagnosis
providing orientations and slices not available with traditional
2D ultrasound. It leads to more efficient and faster
examination, diagnostic and monitoring of therapeutic
procedures free of potential inaccuracies related to subjective
operator dependent treatment in contrast to 2D case, where the
sequence of 2D images is transformed by the operator in his
mind to obtain the impression of 3-D viewing. Therefore,
there has been a high demand for 2D transducer arrays for
medical ultrasonography. The systems using fully sampled 2D
transducer arrays capable of electronic scanning can provide
3D images of a volume of interest in real-time. But such 2D
probes are not easily accessible because their fabrication is
still a challenging task. Specifically, to handle typical 2D array
consisting of 256x256 elemental transducers, as many as
65536 signal channels are required which introduces
considerable technological difficulties, especially at high
frequencies (above 3-5 MHz). To overcome these problems
recently in the literature conceptually different 2-D transducer
array architecture has been considered. Specifically, a 2D
structure of an edge-connected, crossed-electrode array was
considered in [1], [2]. The electrode patterns arranged on both
sides of piezoelectric layer is illustrated in Fig. 1. The
proposed single-crystal transducer is capable of control NxN
elements with 2N signal channels, which in case of 256x256
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matrix transducers allows the number of connecting wiring to
be reduced from above mentioned 65536 to only 512. This
simplifies design and fabrication of such 2D transducer probes
and external electronics considerably.
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Fig. 1 Single-crystal kerfless 2D array transducer

However no profound theoretical analysis of the considered
crossed-electrode array has been carried out so far. In [1] the
problem was superficially approached in the signal processing
framework without thorough research. The 2D array, shown in
Fig. 1 is capable of electronic beam steering of generated
wave both in elevation and azimuth and can, potentially, be
well suited to be used in medical 3D ultrasound imaging
systems. The wave beam control is achieved by addressable
driving of the 2D matrix transducer through proper voltage
supply of electrodes on the opposite faces of the piezoelectric
layer. Assuming time-harmonic signals , with frequencies

differing by Q, applied to i™ upper and ;™ bottom strips
located on the opposite surfaces of piezoelectric layer the
electric field and the resulting inducted normal stress will be
localized near the (i,/)™ cell (especially for such piezoelectric
materials like the PZT-5H [2] PVDF [3] or PMN-PT [4]). This
yields the tool for selective (addressable) excitation of given
cells: only this cell will vibrate which resides between strips
driven by the signals and  with frequencies differing by Q.
Thus, applying different amplitudes and phase-shifts to ,

or frequencies difference Q, one obtains quite flexible tool for
controlling vibrations of cells and the induced stress
distribution over entire matrix transducer. The shape of
vibrations require detailed analysis of the electric field
distribution in the layer. The main objective of this work is to
present a theoretical analysis of a 2D ultrasound transducer
comprised of crossed arrays of metal electrodes deposited on
both sides of thin piezoelectric layer as illustrated in Fig. 1.
Specifically, a semi-analytical method of analysis of the
considered transducer is proposed. It is based on
generalization of the so-called ‘BIS-expansion’ method [5]
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which was earlier exploited with great success in the theory of
interdigital transducers of surface acoustic waves [6], theory
of elastic wave scattering by cracks and certain advanced
electrostatic problems [7].

I1. GOVERNING EQUATIONS

Consider a piezoelectric plate with its surfaces defined with
x3 = t+h in Cartesian coordinate system x;, i=1,2,3. Without
loss of generality, the further analysis concerns the PZT-5H
piezoelectric layer. On the upper surface of the plate an
infinite x,-periodic system of conducting strips infinitely long
in the x, -direction is deposited. Similarly, on the bottom
surface of the layer an infinite x,-periodic system of infinitely
long strips in the x,-direction is deposited as illustrated in Fig.
1. Without loss of generality the same strip period is assumed
on both surfaces denoted here as A and the strip width is w.

The linear response of a dynamically excited piezoelectric
plate is governed by the following set of differential equations:
the stress equation of motion:

T;;; = piyy, (€))
and the electrostatic charge conservation equation:
D;; =0, 2

where the summation conversion for repeated indices is
employed and the index preceded by a comma means
differentiation with respect to spatial variable, whereas the dot
above the variable means time differentiation. In (1) and (2) 7,
u, D denote the stress tensor, mechanical displacement and
electric displacement vectors, respectively, p — mass density of
the media.

The corresponding constitutive relations for piezoelectric
media are as follows:

_ .E
Ty = Cijlekl — epijEx

3)
- sp (
Di = eiijjk + EUE]

where cfy; — the elastic constants measured at constant

electric field E; e;j- the piezoelectric constants; eisj — the
dielectric constants measured under constant strain S.
The strain-displacement and electric-field-potential

relations are as follows:

1
Sij = 5 (wij +u50) 4)
Ei=—¢;

where ¢ is the electrostatic potential. Substituting (4) into (3)
and the resulting equations into (1) and (2) one obtains:

E — ..
CijriUi,it T exij @ik = PU;

s _
ekijUjik — € P =0

(5)

The time-harmonic wave field being a function of e /@t
where w is angular frequency is assumed. The time derivative
in (5) is therefore: pii; = —pa)zu}-. The solution for filed
components in the piezoelectric layer under crossed periodic
arrays of conducting strips is sought in the form of the
following Bloch series [8]:

— 0] —Jjkpmx — —jknmx
u; = Z Unmlpnme JHnm3 '¢ - (pnmlpnme Jinm*3
nm nm

,(6)

lpnm =e —j(rnx1+smx2)

where W,,,,, are the planar spatial harmonics defined in the
plane x; = 0 parallel to strip systems. In (6):

m=r+nK, s,=s+mK, &, =+r%+Ss%, @)

and K = 2m/A is a wavenumber of the strip arrays; r € (0,K)
and s € (0, K) are arbitrary spatial spectrum variables reduced
to one Brillouin zone for the uniqueness of representation.
Similarly, &,,, is a wavenumber defined in the plane x; = 0
along the axis rotated by angle 9,,, = tan~1(s,,/r,) with to
x;, xp axes. In (6) u,(ll,)n,gbnm the mode amplitudes for
mechanical displacement components and electrostatic
potential.

Since the spatial harmonics are orthogonal, substituting (6)
into (5) and taking into account that:

J J J ”
axl - ]rn' axz - Jsml ax3 - ] nm
S
dx? n dx2 m dx2 nm
0% 0 0%
0x,0x, = "TeSm 0x,0x3 = “Taknm, 0x,0x3 = ~Smknm

the corresponding Christoffel equations for each spatial
harmonic with (n,m) indices can be deduced:

1
Ri1 Rz Rz Ry Unm
2
Ry1 Ry Rys Ry Unm
3
R3; R3; Rss Ry Unm

(pnm

where the coefficients of the matrix are given below for
particular case of PZT-5H material:
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Ryy = cfitid + ¢S + Ciakiim — pw®
Riz = (cfz + C66)TuSm
Ry3 = (5{33 + szt)rnknm
Ryy = (e15 + e3)Tknm
Ryz = céeti + C5aSm + Ciakim — pw?
Ry3 = (Cf3 + szl)smknm )
Ryy = (e15 + €31)sknm
Rs3 = cis (i + sin) + c33knm — pw?
Ryy = e5 (7 + sh) + esskim
Ryy = —€1 (% + s7) — €53kim
Rj=Ry i,j=1.4
where the material constants are represented in contracted
form to shorten notation. It should be noted, that PZT-5H
piezoelectric material is characterized by the following
nonzero material constants:
-elastic stiffness cfy, ¢k, ¢k, ck,, ck;, cE,, ¢k, c& = cE; and
ck; = cki (chy = cf)
- piezoelectric constants e;s, €34, €33 and €3, = €31, €24 = €15
- dielectric constants €35, €35 and €5, = €5,.
The system of equations (8) has nontrivial solution only if
its determinant is equal to zero:

|R;j(n,m)| = 0. (10)

In general case determinant of the matrix R; can be
expanded yielding an 8"-degree polynomial with respect to
knm:

|Rij(n,m)| =agk8, + -+ ajkym +a, =0,

and the polynomial coefficients are the functions of the wave-
number components and material constants. Solving the above
equations yields eight roots in general case ky, = ke 7' =
1..8. In the considered case of lossless material and the
orientation of the layer with respect to the x3;-axis (poling
direction along the x;-axis) the resulting polynomial is even
function of k,, (a; =0,j = 1,3,5,7) with real coefficients.
Therefore there are four pairs of roots which are either real or
complex conjugate (in general case) representing propagating
or evanescent modes in opposite directions in the layer, that is
the roots satisfy the relation:

knm(zr) = —knmer-1, 7 =1..4

Denoting the roots Ky, = Kumr, 7 =1...8,and inserting
them in (8) the modes amplitudes U,(f,zlr and @, can be
obtained which correspond to the partial waves. The general

solution for (n,m)™ spatial harmonic that satisfies the wave
equations is a superposition of 8 partial waves:

8
u®m,m) = Z (Cromr U‘r(ll;zl‘r)anme_jknmrx?’
r=1 (11

8
p(n,m) = Z (Cnmr(pnmr) Yyme ~Jknmrits

r=1

Accounting for that in the considered case the roots come in
pairs, (11) can be redefined as follows:

4
u® (n,m) = Z (Cr%mr Ur(tir?1ir)l’pnme tiknmrxs
r=1 (12)

4
pn,m) = Z (CrJL_rmr (p;t_rmr)l'pnme tiknmrts

r=1

In (12) summation is over » and the partial waves with +
signs are summed up for each value of r=1...4. It should be
noted that in (12) there are 8 unknown constants C3,,,. for each
(n,m)™ spatial harmonic which have to be determined from
mechanical and electric boundary conditions considered
below.

III. MECHANICAL BOUNDARY CONDITIONS

In the case of thin strips deposited on the surface of
piezoelectric layer, mechanical boundary conditions may be
assumed uniform. Specifically, the traction-free condition on
the surfaces of the layer have to be satisfied:

T3 =0, x3 =th, (13)

where 2/ is the layer thickness and Tj; is the normal stress
components defined by the constitutive equations (3).
Substituting (12) into the first equation in (3) and using Eq.
(13) and orthogonally of spatial harmonics the system of linear
equations for unknown coefficients CZ,,,- can be deduced:

TuC =0, k=1.61=1.8 (14)
where the vector of unknown coefficients €, is defined for
(n,m)™ spatial harmonic as follows:

(C) = (Cimr Crme)™, r=1..4, (15)

and the elements of matrix Ty, are given by the following
expressions:
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Ty = (C‘lb—“l-(rnu‘r(lir)l: - knm‘rU‘r(llr)l:) + 15T Priny ) €7 Fnmrh
Tl,r+4 = (Cfél-(rn Ur(l?;r)l; + kanUr(I;r)l;) + e157'n‘l’ﬁmr)e_jk"mrh
Tor = (cEi(smUnmr = KnmrUsins ) + €155m @yt )€
7sz,r+4 = (sz;(SmUr(lfr)l; + kanU‘r(lfr)l;) + 9155m‘Pﬁmr)e_jk”mrh

Tsy = (cfs(rUnmr + SmUnm) =

knmr(céss US%: + easQDrJ{mr)) e/knmrh
Tyria = (Cfs(rnUgr)l; + SmUr(lfzi;) +

knmr(C3Es Ur(jr)l; + eSSQDr:mr)) e Jlnmrh

Tar = (cEa(haUsony = Knmr Uity ) + €15Tn @ity )&~/ enmrh

7A14,r+4 = (C4E4(rnU‘r(lir)l; + knmrUr(zigL;) + e1srn¢’rfmr)ejk"mrh
Ty = (szt(SmUr(jr)L: - kanUrgr)l:) + €15 Py @ I Hnmrh
Tsrea = (Cf‘l—(SmUr(T.;‘:’r)l; + knmrUﬁr)l;) + €155 Promr ) €7 Fnmr
Tor = (cBs(Usnr + SmUpmr) =

knmr(c’a’% UrE::BL: + 6’33(Pﬁrmr)) e~ Jknmrh
Torsa = (cfs (rnUr(Jr)z; + Smuﬁr)l;) +

3y B .
knmr(C3Ea Ur(m)lr + e33§0nmr)) e*/knmrh

The mechanical boundary conditions (13) yields 6
equations for 8 unknown constants. The lacking equations can
be obtained from the electric boundary conditions considered
below.

IV. ELECTRIC BOUNDARY CONDITIONS

For the considered 2D array transducer electric boundary
conditions are determined by the periodic strips deposited on
the opposite surfaces of the layer. To find the solution of the
problem the method of analysis based on the BIS-expansion
known from the theory of surface acoustic waves interdigital
transducers [5] or electrostatics of crossed periodic systems of
conducting strips [8] can be adopted with great success.

The boundary conditions on the upper (superscript +) and
bottom (superscript —) surfaces of the layer imposed on the
electric field components are:

Ef =0, Ef =0, onstrips,

16
ADF =0, (16)

between strips.

Stating that tangential electric field vanishes on strips and
between strips jump of normal electric induction equals to
zero. The electrostatic potential on the surfaces of the layer
can be expanded into the series of surface spatial harmonics
Y, as follows:

P ) = ) P, (7)
nm

where the surface mode amplitudes result directly from (12):

St + o+ L tjkpmrh - o= o—jknmrh

q)‘l’lm - Z (Cnmr (pnmr e I enmyr + Can (pnmr e Jnmr )
: (18)

S + o+ —jkpmrh - = +jknmrh

(pnm - Z (Can ‘pnmr e Jnmr + Can (pan € Jnmr )
r

Since electrostatic potential in the media outside the
piezoelectric layer should obey the Laplace equation and
should be continuous across the boundaries x; = +h, it can be
expressed in the following form satisfying Floquet’s theorem:

0o = Z Ph W, elEmlCa=h) x> p
nm ‘ (19)
0 = z P W elumlGs )y < _p

nm

where the wavenumber &,,,,is defined in (7).
The jump discontinuity induction of normal electric
induction AD5 is defined as follows:

ADY = D3(x3 = h+0) — Ds(x3 = h—0) = D§ — D3
AD3 = Ds(x; = ~h = 0) = D3(x3 = ~h +0) = D} — D5

where the normal electric induction in the layer Df can be
obtain from the constitutive equations (3). Specifically, for the
(n,m)"™ spatial harmonics amplitudes one obtains:

. 1+ 2)+\
Ddum = = ) Cimr(e32 (USRS + smUSE) F
r

)t S .t +jk h
knmr(eS3Unmr - 633(Pﬁmr) et/ nmr ’

(21)
Diym = _]Z Cr%mr(em(rnurggrif + Smur(l?‘r)u%) +
T

(3)+ S .t Fjk h
knmr(e33Unmr - 633(pﬁmr) eJimmr?,

In the media outside the layer the amplitudes of the (n,m)™
spatial harmonics of the normal electric induction are:

Ditn = —eu(05"), = tewlEuml@in,  (22)

where the definition of electrostatic potential outside the layer
(19) was used. Substituting (21) and (22) into (20), the jump
of the normal electric induction (amplitudes of the (n,m)"
harmonics) across the boundaries can be obtained
immediately:

. + 4\ —
ADun = =1 ). Cimr (e (USHE + snUSE) F
T

U(S)i +jknmrh

knmreszUpmr (63§3knmr $].&_Mlgnml)(p%mr)e ,

m+ @ (24

ADzym = _]Z Cr%mr(em(rnunmrT + SmUnm;) +
T

3)x . ¥j
knmre33 U1(m)lr i (€§3 knmr i J€m |Enm|)(p‘r%mr)e+]knmrh-

,(20)
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The components of tangential electric field in the plane of
strips ElJ—r,E;—r results directly from the electrostatic potential
definition, (17). Specifically, for amplitudes of the (n,m)"
harmonics one obtains:

Eil—nm = _jrn(ﬁ%m! E%—nm = _jsm{br_ll—m (25)

For further analysis it is convenient to consider the
tangential field component in the planes of strips x; = +h:

EE(n,m) = —j&um@ime I, (26)
where

Xy = TCOS O, X = TSINOpy, &2 =172 + 52,

and the angle 9, = tan~'(s,,/r,). Taking into account the
above definitions of 7, &,,, and 9, one can easily check by
inspection that:
e—jfnmf = q”nm-
Furthermore, to apply the BIS-expansion approximation the
relation between the tangential electric field and the jump of
normal electric induction in the planes of strips should be
deduced first. For this purpose it is convenient to express the
unknown coefficient CZ,,, in terms of 2 unknown constants to
be determined from the electric boundary conditions.
Specifically, by rearrangement of terms the system of
equations (14) can be rewritten in the form:

TemCm = By, km=1..6, (27)

where Ty, = Tk,m” and C,, = C,,, that is:

(é) = (Crtm.r+1 Cﬁm,r+1)T; r=1..3. (28)

The elements of vector B are defined as follows:
By =TwA;, k=1..6,i=12, (29)

where Tj; = Ty;. In (29) the new vector comprised of 2
unknown constants is defined for each spatial harmonic (n,m):

(4) = (Chm1 Crm)™. (30)

Hence, the unknown coefficients € can be expressed in
terms of only 2 unknown constants 4; defined in (30):

(€)= (T7'T)(A) = @(A). 31)

In what follows, it is convenient to rewrite (31) in slightly
different form:

(€) = @), (32)

which allows all the unknown constants CZ,,,. to be found in
terms of C- .. It should be noted that:

&11 = 1, alz = O, CALZI = 0, &22 = 1,

k=1..6, i=12 (33)

Q42,0 = Akis
and

(@ = (T7'7). (34)

Therefore only 2 coefficients (C,,) defined in (30) remain
unknown which have to be determined from the electric
boundary conditions. Using the unknown variables defined in
(30) (the subscripts n,m show that the variables are defined for
each spatial harmonic), the mode amplitudes of the electric
potential in the planes x; = +h defined in (18) can be
rewritten as follows:

(‘fi’r_m) - (LF'I Lzﬁn) (Ai"”). (35)

In the above equation the matrix form is used to shorten
notation, where the elements of matrix L are:

it _ E Alit + tjk h Ali— - +jk h
an - (anmr(pnmre Jnmr® 4 Anmr Pnmr € JHnmr ),(36)

where the elements of matrix @ are defined in (33) for each
spatial harmonic, which is denoted by the n,m subscripts.
Similarly, the mode amplitudes of the (s,7)™ spatial harmonic
of the tangential electric field E ;—rnm can be written as follows:

<E§nm> . (L}Jn L%%) (A%m>_ 37)

Eqym L L) \A%,

Finally, for the jump of normal electric induction defined in
(24) can be rewritten in the following form:

+ M1+ MZ+ Al
(aozm) =0 ) Gin) o
3nm Mnm Mnm Anm

where the matrix M is defined below:
M = Dkt (ess (U + SnUint) =

T

3 . .
knmre33Ur(m)uT + (E§q3knmr +]EM|€nm|)(p7%mr)ei]knmrh

i (1) (2 (39)
) Bl (esa (U + smUSr) +
-
Knmr€33Unimy = (€35 Knmr  ju | Enm D @iy e T /e
From (37) and (38) the relationship between the tangential

electric field and normal electric induction on the surfaces of
piezoelectric layer can be obtained immediately:

(Eé’) = &um(G) (AD3), (40)

1686



International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:8, No:11, 2014

where (Eg) = (Egnm Ef_nm)Ta (ADS) = (AD;—nm AD's‘_nm) and

@) =W (41

In (41) the elements of corresponding matrices L and M are
defined in (36) and (39), respectively.

V.BIS-EXPANSION APPROXIMATION

To satisfy the electric boundary conditions (16) and find the
unknowns 4;, =1,2 in (30) the BIS-expansion method is used
[8]. For this purpose, the electric field and normal electric
induction on the plane x; = h can be expanded into the series:

B =] ) ol SuiPat()¥m,

Inm
Efy =] ) Q" SuPui( W, 42)
Inm
ADS = ) B Pat(8) ¥,
Lnm

where A = cos(nrw/A), P, (+) - is the Legendre polynomials;
S, =0for v<O0 and S, =1 otherwise; w - is the strip's
width. The above expansions yield the electric field satisfying
boundary conditions and the edge condition. Specifically, £;
and D; components are inverse square-root singular functions
at the strip edges. As regard the E, components, it is not
singular but its spatial derivative with respect to x; has inverse
square-root singularity at the strip edges as well. Therefore, in
(42) the corresponding series expansion of E; is defined. In a
similar manner on the plane x; = —h electric field
components can be expanded in the series as follows:

B =] ) VPSPt 0¥,

U'nm
Eil, =] Z Vﬁ St/ Pyt (8) P, (43)
U'nm
AD; = Z 0 Pyt (B) W,
U'nm

Using (25) it can be shown that the following relationships
between coefficients exist:
a" = —jsmal®, Vi =—jtyp, (44)
The unknown coefficients aj", B[™ and y;i, n;; can be
evaluated using the relationship between tangential electric
field and normal electric induction on the upper and bottom
boundaries given by (40). It should be noted, that the (1,m)™
tangential electric field can be expressed as follows:

3 3
Eg-nm =% Elnm ’ E{nm = snm Esnm, (45)
Th

m

where the (42) and (42) were used. Consequently, the

expansions for tangential field components can be written as
follows:

¢
Eg =] Z %“fn n—an—l(A)l’an:

Lnm

;
EF =) ) T St Pt (¥,

U'nm

(46)

To proceed further, let’s consider the matrix G in (41) for
large indexes (n,m) corresponding to imaginary £, and the
spatial harmonics being well-localized at a given surface of
piezoelectric layer which represent the evanescent modes. In
this case the following approximation of the matrix G for
sufficiently large indices (n,m) holds [8]:

0 -—
€

1
— 0
Ef, €& \ ADS,
énm , S 3nm
_ = jS ( g ) 47
(Efnm> g nm\ 1 AD3y “7)
where S, = S, Sm; €5 and e, can be obtained from (41) and
(36), (39) upon substituting the approximation K, =
—j|Pnm | Which can be applied for sufficiently large (n,m):
€k = (e33 + €y) — a3 €33 +]e31(a1 Sptay Sm) (48)
In (48) the corresponding constants 0:;—r results from the
asymptotic analysis of the corresponding relations between
partial wave amplitudes U,(I%i; and @, :

af = lim_ (Z Uit/ Z wnmr> (49)

and can be only obtained numerically for specified material
constants of the piezoelectric layer.

For certain large indices n>N and m>M for which (47)
holds, the following relationships between a7*, B/™ and y;’,
1, results immediately:

Bm $nm + m n $nm

= —€55,_1Q ;=
1 T coOn—I%1 » 771 S

€aSm_y¥l, (50)
which is a generalization of the so-called a BIS-expansion
approximation [8]. Taking into account (50) and substituting
the spatial harmonics with indices (n<N, m<M) from (42),
(43) and (46) into (40) the following conditions for unknown
coefficients a7, =N < I < N and y};, =M <1I' < M for any
n, m separately within these domains:
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o [] S - 6116:0] Sn-1Pni(8) +
[$nml
n r‘ﬂ —
Y Grz (S_> €oSm—t/ Py (8) =0,
" (51)
S.
_a;n621 (r_m> E;Sn—lpn—l(A) +
n
144 [j Som_ + Gzze;] Syt Pom_yr(8) = 0.
[$nml

Applying (n, m) outside the chosen domains results in a
trivial solution for the additionally included unknowns [8].
Strips potentials can now be evaluated by integration of the
tangential electric field, their integration being performed for
each spatial harmonic separately. For a strip placed at x,=0 (on
the upper surface) x,=0 (at the bottom surface) they are:

Sp—1Pp (A
V+:_fEf.dx1:almZn n.lnl():V(r)
5 S]Tnp ® , (52)
V‘=—J-E2‘dx2=yﬁ—m molml 2=
JSm

(the bottom strips assumed grounded). The corresponding
summation over n and m in (52) can be evaluated explicitly
using the Dougall identity [9]:
K .
(~D'af"P_ /i (=8) = 6o eI sinmr /K

(—1)l,ylr}P_lr_S/K(—A) =0

(53)

for any (n,m) accounted for in (51). In (53) where §;; - is the
Kronecker delta. Therefore, (51), (53) yields the closed system
of linear equations for unknown expansion coefficients
alm,yl',‘ . Specifically, there are (2N+1)(2M+1) equations
altogether and the same number of unknowns a;", yl'} , where
—N <I<Nand —M < !I' £ M is assumed. Once the system
of equations for ai™,y;s, is solved, the unknown constants
AL i =12 defined in (30) can be obtained from (37)
accounting for (46), which explicitly yields for (n,m)™ spatial
harmonics:

_ _ 1 m
(A‘}lm) _ (L};n Lg;n) 1 TnZza’z Sn—1Pn_i(B) 54)

A%lm L}I;n L%l;n — %le }/lr} Sm_lIPm_ll(A)

Solving (54) yields the constants Al,,,i=1,2 and
therefore, all unknown constants CZ,. for each spatial
harmonics from (32). This completes the solution of the
problem in general case, when arbitrary potentials of the strips
are specified.

(b)

Fig. 2 Magnitude of the normal electric field in the A X A domain of
the layer at the plane x; = 0 for different thickness (a) h/A =
0.1 and (b) h/A = 0.5; the strip’s widthw/A = 0.5

Some numerical examples are shown in Fig. 2. Specifically,
normal component of the electrostatic field in the layer middle
plane x; = 0 is shown in relative scale for fixed strip’s width
w/A = 0.5 and different thickness of the layer.

The example corresponds to the case when a single cell of
the transducer is excited by uniform voltage applied to one
upper strip and all bottom strips grounded. As is seen from
Fig. 2, the electric field distribution at the middle plane of the
layer significantly departs from uniform and spans somewhat
outside the cell covered by the supplied strips.

VI. CONCLUSION

Summarizing, the extension of the BIS-expansion method,
originally developed for electrostatic analysis of 1-D periodic
planar systems of strips, was presented for modeling of 2-D
periodic structure comprised of crossed arrays of strips placed
on the opposite surfaces of the dielectric piezoelectric layer. It
is an example of novel 2-D array transducer architecture with
potential application in 3-D ultrasound imaging. Without loss
of generality the same strip width an period on the opposite
surfaces was assumed. The method can be generalized for
different strip period and width straightforwardly. Numerical
examples show the resulting nonuniform electrostatic field
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induced in the area of a single matrix cell excited by a uniform
voltage applied to one upper strip and all bottom strips
grounded.
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