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Abstract—This paper presents an Extended Kaman Filter 

implementation of a single-camera Visual Simultaneous Localization 
and Mapping algorithm, a novel algorithm for simultaneous 
localization and mapping problem widely studied in mobile robotics 
field. The algorithm is vision and odometry-based, The odometry 
data is incremental, and therefore it will accumulate error over time, 
since the robot may slip or may be lifted, consequently if the 
odometry is used alone we can not accurately estimate the robot 
position, in this paper we show that a combination of odometry and 
visual landmark via the extended Kalman filter can improve the robot 
position estimate. We use a Pioneer II robot and motorized pan tilt 
camera models to implement the algorithm. 
 

Keywords—Mobile Robot, Navigation, vSLAM, EKF, 
monocular. 

I. INTRODUCTION 
IMULTANEOUS Localization And Mapping (SLAM) is 
one of the most fundamental, yet most challenging 

problems in mobile robotics. To achieve full autonomy a robot 
must possess the ability to explore its environment without 
user intervention, build a reliable map, and localize itself in 
the map. In particular, if global positioning sensor (GPS) data 
and external beacons are unavailable, the robot must 
somehow, by itself, determine what are appropriate reference 
points, on which to use as reference to localize itself. 

Successful implementations of SLAM have generally been 
achieved with laser, sonar or stereo vision range sensors and 
built maps for controlled robots moving in 2D or 3D real 
environment [1], [2], [3]. Solving the SLAM problem with 
vision as the only external sensor is now the goal of much of 
the effort in the area. Monocular vision is especially 
interesting as it offers a highly affordable solution in terms 
hardware. Recent research has proved that real-time Visual 
Simultaneous Localization and Mapping (vSLAM) can be 
achieved using monocular vision as sensory input and using 
only weak motion modeling [5], [6], indicating not only that 
vision will become increasingly important as a cheap, compact 
and flexible tool for robot navigation but that visual SLAM 
will be able to play a role in other domains in which automatic 
localization is required. 
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 In this work we present an extended Kaman Filtere (EKF) 
implementation of vSLAM algorithm using motorized pan tilt 
camera mounted on Pioneer II robot. We have developed a 
complete model of both robot and camera in their environment 
(global frame). 

The paper is organized as follows. Next section states the 
problem solved by vSLAM. The third section gives the 
complete model of the robot and the motorize pan tilt camera 
in a global frame. Section IV gives an overview of the EKF-
vSLAM algorithm and describes its execution procedure. 
Section V consists of simulations that illustrate the 
performance of EKF-vSLAM. Finally, in Section VI we draw 
some conclusions, some final remarks and perspectives. 

II. PROBLEM FORMULATION  
Consider a mobile robot that must localize itself in a 

previously unknown environment. The objective is to choose a 
sensor configuration and an algorithm to process the sensor 
data, which accurately and robustly accomplish the 
localization in real-world environments.  

Assume it is not accepted to alter the environment by 
installing beacons or other external equipment. That is, the 
design choices only apply to the robot itself, and the robot 
must determine its location based only on data collected by the 
selected onboard sensors. 

Also, realize that since the environment is unknown, the 
robots must also map the environment. Now, suppose the 
mobile robot is equipped with an odometry sensor providing 
velocity data, and a single camera providing images of the 
environment. The odometry sensor may consist of standard 
wheel encoders attached to the driving wheels of a differential 
drive system.   

The objective of the vSLAM system is to fuse image and 
odometry data in a way that enables robust map-building and 
localization. Being “robust” is key since the sensor data 
acquired from the mobile robot (odometry and images) 
contains plenty of difficult-to-model noise. The odometry data 
is incremental, and therefore it will accumulate error over 
time. Understand first of all that the odometry sensor can 
never be perfectly calibrated. But, since the robot may slip or 
may be lifted, the odometry is also exposed to discrete events 
of dramatic errors.  

III. ROBOT CAMERA MODELS 

A.  Cinematic Model  
The configuration of a rigid mobile robot is commonly 

described by six variables, its three-dimensional cartesian 
coordinates and its three Euler angles (roll, pitch, yaw), 
relative to an external coordinate frame. The material 
presented in this paper is largely restricted to mobile robots 
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operating in planar environments, whose kinematic state, or 
pose, is summarized by three variables. This is illustrated in 
Fig. 1. The robot’s pose comprises its two-dimensional planar 
coordinates relative to an external coordinate frame, along 
with its angular orientation. The following vector describes the 
pose of the robot: 

                              ( )TyxR θ=                                         (1) 

 
 
 

 
 
 
 
 
 
 

Fig. 1 Robot configuration 
 

The non-holonomic constraint is given by the following 
equation: 

                              0)cos()sin( =− θθ yx &&                               (2) 

There is no translation following yr axis of the robot local 
frame (Fig. 1), after sampling we obtain: 
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Where T is the sampling period, vk andω k, are the translation 
and the rotation velocity of the robot respectively at sample k. 
We will denote the measured velocity vector at sample k by 

( )T
kkk wvu =  , therefore equation (3) can be noted:  

                                   Rk+1 = c(Rk ,uk )                                   (4) 

The above model states the cinematic for an ideal, noise-free 
robot. In reality, robot motion is subject to noise, slip or 
lift. The actual velocities differ from the measured ones by 
odometry sensor [7]. We will model this difference by a 
random variable with finite variance. More precisely, let us 
assume the actual velocities are given by: 
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The true velocity equals the measured velocity plus some 
small, additive error (noise) [7]. The Fig. 2 shows a simulation 
of the real robot trajectory and the trajectory measured by 
odometry sensor. 

 
Fig. 2 Robot motion 

B. Observation Model 
The observation model is a key point for SLAM 

implementation [5] [6] [7], as reported in the problem 
formulation, the robot must choose appropriate reference or 
landmark in the environment to localize itself; these landmark 
must be stable and invariant. Since we use image as primary 
sensor, these landmark must be extracted, like corner, edges or 
regions, in the literature we can found a several technique to 
extract robust landmark from image, for example Harris 
corner detector algorithm is commonly used [6] (Fig. 3).  

 
Fig. 3 Harris corner detection 

In this paragraph we represent the robot and the camera in 
their environment or global frame. The camera is mounted on 
the front of the robot (Fig. 4), and it is motorized in pan and 
tilt axes (Fig. 5). 

 
Fig. 4 Pioneer II Robot and PTZ camera 
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We will project the landmarks represented in the global 
frame, on the image frame, through projections between 
successive frames (global, robot, Pan, Tilt, Camera, and 
image) (Fig. 6). 

 
Fig. 5 The PTZ camera and pan /tilt rotation 

 
Fig. 6 Successive frames 

 
The successive projections matrixes are given as follow: 

a) Global to Robot Projection 
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b) Robot to Pan Projection 
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Were P is the pan angle and x pr ,z pr  are the translations 
between robot and pan frames (Fig. 5). 

c) Pan to tilt projection: 
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Were T is the tilt angle and xTP ,zTP  are the translations between 
pan and tilt frames (Fig. 5). 
 
 
 

 d) Tilt to Camera Projection 
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xCT ,yCT ,zCT  are the translations between camera and tilt frames 
(Fig. 5). 
 
The projection from global coordinate to camera coordinate 
can be found as follow: 
 

                         1)( −= TCPTRPGRCG MMMMM                              (6) 
 
Let us not the landmarks global and camera coordinate 
respectively by:  
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e) Camera to Image projection: 

Let us note the image coordinate by: I = u v( )T  
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                                     (8) 

Wereα u ,α v , u0  and v0  are the intrinsic characteristics of the 
camera. 
 
Replacing equations (6) and (7) in equation (8) we obtain: 
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M ij  are parameters depending on the robot configuration, Pan 
and Tilt angles. 

Finally, we obtain a model representing the image 
coordinate of a landmark according to its 3D coordinates and 
the robot configuration. This model is called the direct 
observation model and will be noted: 

                               ),( gLRhI =                                     (10) 

In reality the observation is subject to noise. The real 
measurement model is given in the following model: 
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C. Inverse Observation Model 
Regarding the dynamic nature of the SLAM algorithm, new 

observed landmark must be initialized prior to be added to the 
state vector [7]. The initialization process is in fact the best 
estimation of the new landmark position, and it is a 
fundamental point to SLAM implementation. 

The observation model stated in (10) gives two equations 
for three dimension variable gL . Using one image will not 
solve the system, so we need two images for the same 
landmark to solve the system.  

Let I1 = (u1 ,v1 )T , I 2 = (u2 ,v 2 )T be the images coordinates of a 
landmark, respectively in the first and second image, taken 
from two different robot pose respectively R, ′ R . If these two 
coordinate are associated correctly then we can write the 
following equation system. 
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The above equation system can be transformed to the 
following linear system:  

                                E.Lg = b                                     (13) 
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The 3D coordinates of a new landmark are initialized by 
solving (13) using Least Square technique. We obtain the best 
estimation of new landmark position as follow: 

                 Lg = (E T E)−1 .E T .b                                 (14) 
We note:  

        Lg =h −1(R,I1, ′ R ,I 2 )                                (15) 
 

The following figure shows a simulation environment 
developed using models (3) (10) and (15). 

 
Fig.8. simulation environment 

IV. OVERVIEW OF THE EKF-VSLAM ALGORITHM 
The EKF-vSLAM algorithm applies the EKF to the SLAM 

problem using vision as sensor. In doing so, EKF-vSLAM is 
subject to the Gaussian noise assumption as any EKF 
algorithm; EKF-vSLAM makes a Gaussian noise assumption 
for the robot motion and the observation model. In addition to 
estimating the robot pose R, the EKF-vSLAM algorithm also 
estimates the coordinates of all landmarks encountered along 
the way. This makes it necessary to include the landmark 
coordinates into the state vector. For convenience, let us call 
the state vector comprising robot pose and the map the 
combined state vector, and denote this vector yk . The 
combined vector is given by: 
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landmark in the map vector at time k. 
As the robot moves, the state vector changes according to 

the standard noise-free cinematic model (3)(4). In SLAM, this 
motion model is extended to the augmented state vector: 
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Only the first three elements are updated. Landmarks 
supposed fix, remain where they are. 

As usual in EKFs, the motion function g is approximated 
using a first degree Taylor expansion: 
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Were ),(, kkky uyG  is the Jacobian of g according to yk , and y k  is 
the mean of yk . 

The velocity errors measured by the odometry must be 
propagated in to state vector, let us note Gu,k (y k ,uk )  the 
Jacobian of g according to uk . 

The measurement model is deduced from (10), we are given 
the following measurement model: 
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           I k, j = h(yk ) = h(yk,i ) = h(Rk ,Li
g,k )                        (17) 

Were j is the index of an individual landmark observation in 
Ik, and i is the index of the observed landmark at time k. 
 
The observation function h is approximated using a first 
degree Taylor expansion: 
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Here H k
j  is the derivative of h with respect to the full state 

vector yk . Since h depends only on two elements of that state 
vector, the robot pose Rk and the location of the ith landmark
Li

g,k , we can write H k
j  as follow: 
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Here  hk
j  is the Jacobian of h at y k , calculated with  respect to 

the state variables Rk  and Li
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A. Description of the EKF-vSLAM Execution Procedure  
The execution procedure of the EKF-vSLAM can be 

divided into four major steps: 

1-The initialization  
In SLAM, the initial pose is taken to be to origin of the 

coordinate system. On the other hand the camera is motorized 
so we can use different pan/tilt angles to acquire different 
measures, applying the inverse observation model (15) we can 
initialize the first landmarks. As a result we obtain the first 
state vector y0 .  
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Were ( )TR 0000 =  and 0N  is the number of initial landmarks. 

2-The prediction  
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3-The update  
• For all extracted measures I k, j  
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1+= kk yhI       % measures prediction  

• Find  ikI ,
ˆ  which correspond to jkI ,  
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• Else 

o Save I k, j  in a buffer B I . 

• End if. 

• End for. 

• 11 ˆ ++ = kk yy , 11
ˆ

++ Σ=Σ kk  % update 

• From y k+1 , add R k+1 in the buffer B I , 1+kR  is the best robot 
position estimate in which I k, j  was saved. 

4- The map management 

• Look for correspondence between measures saved in B I  
• If correspondence is found 

o N k = N k +1   % add the new landmark 
o Use equation (15) to initialize the new landmark LNk

g,k   
o add LNk

g,k  to the state vector 
o approximate equation (15) to initialize the covariance of  

landmark LNk

g,k  
o add  the new covariance to the state covariance  

• End if 

• kk NN =+1    % number of landmark at time k+1 

V. SIMULATION AND RESULTS 
To illustrate the performance of EKF-vSLAM, we present 

the following results. First, consider (Fig. 9), which shows the 
result of vSLAM after the robot has travelled along the real 
trajectory. The vSLAM algorithm builds a map consisting of 
landmarks, which are marked as circles in the figure. The 
green path (odometry only) is obviously incorrect (Fig. 10) 
(Fig. 11). The vSLAM corrected path, on the other hand, is 
consistently following the reference path. The vSLAM path, 
which uses a combination of visual measurements and 
odometry, provides more accurate position determination for 
the robot (Fig. 10) (Fig. 12). 
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Fig. 9 EKF-vSLAM implementation 

 

 
Fig. 10 EKF-vSLAM and odometry path 

 

 
Fig. 11 Odometry quadratic error  

 

 
Fig. 12 EKF-vSLAM quadratic error  

VI.  CONCLUSION 
In this work we have developed a complete observation 

model of a motorized PTZ camera and a cinematic model of 
Pioneer II robot, and we have implemented monocular 
vSLAM in simulation, which is a novel vision and odometry-
based SLAM algorithm that enables low-cost and robust 
navigation in real environments. The EKF-vSLAM algorithm 
does not require any initial map, and the algorithm is typically 
good at correcting for slippage and odometry drift. 

A problem with the current implementation of vSLAM is 
the state vector size, which in large environments may become 
prohibitively large, and the algorithm requires memory that is 
quadratic in N, the number of landmarks in the map. Its update 
time is also quadratic in N. The quadratic update complexity 
stems from the matrix multiplications that take place at 
various locations in the EKF. 

Based on the previous encountered problems, we suggest 
for future work a solution to maintain a constant number of 
landmarks in the state vector. 
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