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Single-Camera Basketball Tracker through Pose and
Semantic Feature Fusion

Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract—Tracking sports players is a widely challenging
scenario, specially in single-feed videos recorded in tight courts,
where cluttering and occlusions cannot be avoided. This paper
presents an analysis of several geometric and semantic visual features
to detect and track basketball players. An ablation study is carried
out and then used to remark that a robust tracker can be built with
Deep Learning features, without the need of extracting contextual
ones, such as proximity or color similarity, nor applying camera
stabilization techniques. The presented tracker consists of: (1) a
detection step, which uses a pretrained deep learning model to
estimate the players pose, followed by (2) a tracking step, which
leverages pose and semantic information from the output of a
convolutional layer in a VGG network. Its performance is analyzed
in terms of MOTA over a basketball dataset with more than 10k
instances.

Keywords—Basketball, deep learning, feature extraction,
single-camera, tracking.

I. INTRODUCTION

BASKETBALL professional European courts are 28

meters large and 14 meters wide, and 10 players (plus

3 referees) interact on it following complex patterns that help

them accomplishing their goal, which can be either scoring or

preventing the other team to score. These tactical plays include

several kinds of movement, which might involve players

moving together and close to each other, thus generating space

and advantages. Given this scenario, and being aware that there

is not an established multi-camera array set in these courts

for tracking purposes (because of its cost and the low height

of stadiums), broadcasting cameras are the main source of

basketball video content. Usually, these cameras are set in the

middle of the court in the horizontal axis, and camera operators

just perform some panning or zooming during the game right

at the same spot. Given this video feed, a tracking-by-detection

algorithm is adopted: first, potential players are detected, and

then, features are extracted and compared, quantifying how

much do players in different frames resemble. Then, players

are tracked by obtaining a matrix with all similarities and

minimizing the total cost of assignments. Several kind of

features for establishing the similarities are evaluated: Given

this video feed, several choices can be made in order to build

a multi-tracker:

• A simultaneous tracking-by-detection algorithm can be

designed: First, potential players have to be detected, and
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then, features are extracted and compared, quantifying

how much do players in different frames resemble. By

obtaining a matrix with all similarities and minimizing

the total cost of assignments, players can be tracked.

• An optical flow method might be used instead, by

computing displacement vectors for every pixel/object. In

this way and combining with a (possibly spatio-temporal)

segmentation method, players can be localized and their

movements estimated.

In this article, a tracker based on detections is presented,

and several kind of features are tested:

• Geometrical features, which might involve relative

distances (in screen-coordinates and expressed in pixels)

between detected objects.

• Visual features, which may quantify how different boxes

look alike by comparing RGB similarity metrics in

different small neighborhood patches.

• Deep learning features, which can be obtained by

post-processing the output of a convolutional layer in a

Deep Neural Network.

Besides, the combination with classical Computer Vision

techniques might help improving the trackers’ overall

performance. For instance, homography estimation can

compute transformations within consecutive frames, thus

leading to stabilized camera sequences, where distances among

frames are considerably reduced. Besides, we show that the

combination with classical Computer Vision techniques helps

improving the trackers’ overall performance. In particular,

camera stabilization based on homography estimation leads

to camera motion compensated sequences where distances of

corresponding players in consecutive frames are considerably

reduced.

The aim of this paper is to prove that deep learning features

can be extracted and compared with ease, obtaining better

results than classical features. For this reason, an ablation

study for different tests in a given scenario is included.

The remaining article is distributed as follows: in Section

II related works are described. Later on, in Section III, the

presented methods are detailed, involving the main modules

of player and pose detection, feature extraction and matching;

moreover, camera stabilization techniques and pose models

are considered. Results are shown and discussed in Section

IV, and conclusions are extracted in final Section V.

II. RELATED WORK

Multi-object tracking in video has been and still is a very

active research area in computer vision. One of the most used
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tracking strategies is the so-called tracking by detection, which

involves a previous or simultaneous detection step [12], [15],

[9], [6], [5]. Some of these works use a CNN-based detector

with a tracking step [15], [6], while others are based on global

optimization methods. Among them, a joint segmentation and

tracking of multiple targets is proposed in [12], while in [9] a

full-body detector and a head detector are combined to boost

the performance. The authors in [5] combine Convolutional

Neural Networks (CNNs) and a Temporal-Flow-Fields-based

method. Another family of tracking methods which achieve

a good compromise between accuracy and speed is based on

Discriminant Correlation Filters (DCF). They are based on a

first stage where features are extracted and then correlation

filters are used. Initially, hand-crafted features like HoG were

used and later on different proposals use deep learning features

extracted with pretrained networks (e.g. [13]). The results

are improved when learning the feature extraction network

in an end-to-end fashion for tracking purposes [21]. The

latest trend is to train deep learning based tracking methods

in an unsupervised manner [22], [23]. On the other hand,

pose tracking refers in the literature to the task of estimating

anatomical human keypoints and assigning unique labels for

each keypoint across the frames of a video [11], [10].

This paper addresses the problem of tracking basketball

players in broadcast videos. This is a challenging scenario

where multiple occlusions are present, the resolution of the

players is small and there is a high similarity between

the different instances to track, specially within the same

team members. For a deeper review of players detection

and tracking in sports the interested reader is referred to

the recent survey [20]. The authors of [18] also consider

basketball scenarios seen from a broadcast camera and they

deal with player identification. For that, they propose to use

CNN features extracted at multiple scales and encoded in a

Fisher vector.

III. PROPOSED METHOD AND ASSESSMENT

In this section, the implemented tracking-by-detection

method is detailed. The associated generic pipeline can be

seen in Fig. 1 and it follows the subsequent stages:

A. For each frame, the basketball court is detected, with

the purpose of not taking fans and bench players

into account in the following steps. Also, a camera

stabilization step may be included, and a discussion

about its need in order to perform multi-tracking by

reducing distances of objects within frames is provided.

B. Players are detected, together with their pose using a

pretrained pose model, and bounding boxes are placed

around all of them.

C. Features are extracted from these bounding boxes in

combination with pose information. Several choices are

analyzed in terms of features to be extracted.

D. By comparing features of all players in three

consecutive frames (indicated by Frame N, N-1 and N-2,

respectively, in Fig. 1) and using a customized version

of the Hungarian algorithm, tracking associations are

performed.

A. Pre-Processing

1) Court Detection: Although court detection is not the

main contribution of this research, the identification of visible

court boundaries in the image is basic in order to filter out

those candidates that are not taking part of the game actively

(such as bench players or referees). It has to be mentioned

that the basic filtering to be performed is thought for the vast

majority of European courts, where court surroundings usually

share the same color, and fans sit far from team benches.

Knowing that in the broadcasting images the court results in

a trapezoid with some visible boundaries, line segments are

detected by using a fast parameter-less method based on the

a contrario theory [7] (code available in [8]). Right after,

segments with the same orientation and intersection at the

boundaries of the image, as seen in Fig. 2, are joint and

considered as part of the same line; the dominant orientation

will be considered as the one with the longest visible parts

(proportional to the sum of individual segments’ length).

However, given that basketball courts have many parallel lines

(such as sidelines, corner three line, paint sides,...), several

line candidates have to be tested in order to find the real court

surroundings. Moreover, two dominant orientations are taken

into account: (1) the ones belonging to sidelines (intersections

at both left-right image boundaries), and (2) the one belonging

to the visible baseline (both baselines cannot be seen at the

same time if the camera shot is an average one). Given the

non-complex scenario of European courts, color filtering is

used in the HSV colorspace by checking contributions all over

the image; in the case of Fig. 2, court surroundings are blue

and the court itself is a bright brown tonality. For a given

dominant orientation, the subsquent steps are followed:

1) First, a line candidate with the dominant orientation is

set at the top (in the case of sideline candidates)/left side

(baseline candidates) of the image.

2) Then, two parallel lines are set at a ±25 pixel distance

with respect to the line candidate.

3) Later on, and taking only the pixels comprised between

the candidate line and the two parallel ones, the number

of pixels that satisfy color conditions is computed for

both sides independently. This is, if the candidate line

is a potential sideline, the number of pixels is computed

above and under it; instead, if the candidate line is a

potential baseline, the number of pixels is computed at

its left and its right. In the case of Fig. 2, pixels with

a Hue value between 120 and 150 degrees are the ones

satisfying filter conditions.

4) The line candidate is moved 12 pixels towards the

bottom (sidelines)/right side (baseline) of the image.

The same procedure being followed in Steps 2 and 3

is applied again.

5) Once examined all possible cases, the line

candidate with the maximum difference between

above-below/left-right sides is set as the court limit.

As it can be seen in the given example, the best court

delimiters are the lines that stay right in the limit

between brown-blue regions.
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Fig. 1 Generic Pipeline: for each frame, players are detected (through pose models) and tracked (via feature extraction and matching)

Fig. 2 Court detection: (a) Different segments with the same orientation and
intersections are joint; (b) Final segmentation result

2) Camera Stabilization: In order to ease the tracking of

the players, an additional camera stabilization step to remove

the camera motion can be incorporated. Taking into account

that its inclusion represents extra computations, in this paper,

an ablation study is provided to discuss the extend of its

advantages. When enclosed, the camera stabilization method

and implementation in [17] is used. It estimates a set of

homographies, each of which associated to a frame of the

video and allowing to stabilize it. Table V in Section IV

presents the quantitative results including it.

B. Player Detection

As mentioned in Section I, the presented tracker is based on

multiple detections in each individual frame. More concretely,

the implemented method relies on pose models techniques

[14], [24], [2] stemming from an implementation of the latter

[3]. Basically, this method is a bottom-up approach that uses

a Convolutional Neural Network to: (1) detect anatomical

keypoints, (2) build limbs by joining keypoints, and (3) merge

limbs in the visible person skeleton. Given a basketball frame,

the output of the main inference pose function is a 25×3 vector

for each player, with the position (in screen coordinates) of 25

keypoints, which belong to the main biometric human-body

parts, together with a confidence score. Note that there might

be situations where specific parts might not be detected,

resulting in unknown information in the corresponding entry

of the pose vector of the whole skeleton. In addition, 26

heatmaps are returned, indicating the confidence of each part

being at each particular pixel. By checking all the parts’

positions and taking the minima-maxima XY coordinates for

each detected player, bounding boxes are placed around the

respective players.

C. Feature Extraction

Once bounding boxes are obtained, their comparison must

be performed in order to assign individual tracks for each

box in time. With the purpose of quantifying this process,

different approaches can be used whilst extracting features.

In this subsection, all tested features used a posteriori are

explained. For the remaining part of this subsection, Bt1 and

Bt2 are considered as two different bounding boxes, detected

at t1 and t2 respectively.

1) Geometrical Features: This classical approach can be

used to measure distances or overlapping between bounding

boxes of different frames. If the number of frames per second

the video feed is not low, it can be assumed that player

movements between adjacent frames will not be large; for

this reason, players can be potentially found at a similar

position in screen coordinates in short time intervals, so the

distance between bounding boxes’ centroids can be used as a

metric. That is, given xBt1
and xBt2

as the centroids of two

bounding boxes, the normalized distance between centroids

can be expressed as

Cd(Bt1 , Bt2) =
1√

w2 + h2
‖xBt1

− xB2
‖, (1)
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where w and h are the width and the height of the frame

domain. Another similar metric that could be used is the

intersection over union between boxes, but due to the fact

that basketball courts are usually cluttered and players move

fast and randomly, it is not useful for this paper’s purposes.

2) Visual Features: Distances might help distinguish basic

correspondences, but this simple metric does not take into

account key aspects, such as the jersey color (which team

do players belong) or their skin tone. For this reason, a

color similarity could be implemented in order to deal with

these situations. Moreover, in this specific case, knowing that

body positions are already obtained, fair comparisons can be

performed, where the color surroundings of each part will be

only compared to the neighborhood of the same part in another

bounding box. Nevertheless, it has to be taken into account that

only the pairs of anatomical keypoints present or detected in

both Bt1 and Bt2 (denoted here as pk
1 and pk

2 , respectively)

will be used for the computation. The color and texture of a

keypoint can be computed by centering a neighborhood around

it. That is, let E be a squared neighborhood of 3×3 pixels

centered at 0 ∈ R2. Then,

Cc(Bt1 , Bt2)=
1

255|S| |E|
∑

k∈S

∑

y∈E
‖It1(pk

1 +y)− It2(p
k
2 +y)‖

(2)

where S denotes the set of mentioned pairs of corresponding

keypoints detected in both frames.

3) Deep Learning Features: Deep Learning (DL) is a

broadly used machine learning technique with many possible

applications, such as classification, segmentation or prediction.

The basis of any DL model is a deep neural network formed

by many layers. These networks serve to predict values from a

given input. Convolutional Neural Networks (CNN) are special

cases in which weights at every layer are shared spatially

across an image. This has the effect of reducing the number of

parameters needed for a layer and gaining a certain robustness

to translation in the image. Then, a CNN architecture is

composed by several kinds of layers, being convolutional

layers the most important ones, but also including non-linear

activation functions, biases, etc. This type of layers computes

the response of several filters by convolving with different

image patches. The associated weights to these filters, and

also the ones associated to the non-linear activation functions,

are learnt during the training process (in a supervised or

unsupervised way) in order to achieve maximum accuracy

for the concrete aimed task. It is well known that the first

convolutional layers will produce higher responses to low-level

features such as edges while posterior layers correlate with

mid-, high- and global-level features associated to more

semantic attributes. Bearing in mind that training a model

from scratch is expensive, researchers use pretrained models

and their corresponding weights for their purposes, such as by

fine-tuning the model (for instance by feeding the model with

new data and changing or adapting the previously obtained

weights accordingly).

In the presented experiments, the popular VGG-19 network

[19] is used for feature extraction, initialized with weights

trained with ImageNet dataset [4]. The original model was

trained for image classification, and its architecture consists

of 5 blocks with at least 2 convolutional layers, and 2

fully-connected layers at the end that will output a class

probability vector for each image. The network takes as input

a 224 × 224 × 3 image, and the output size of the second

convolutional layer of each block is shown in Table I.

TABLE I
OUTPUT SIZE OF VGG-19 CONVOLUTIONAL LAYERS

Width Height No Filters
b2c2 112 112 128
b3c2 56 56 256
b4c2 28 28 512
b5c2 14 14 512

In the first column, b stands for block number and c stands for the
convolutional layer number inside that block.

Fig. 3 Player and Pose Detection: (a) random patch of an image containing
a player, (b) detected pose through pretrained models, (c) black: bounding

box fitting in player boundaries, pink: bounding box with default 224× 224
pixels resolution, (d) reshaped bounding box to be fed into VGG-19

In order to feed the network with an appropriate sized

image, a basic procedure is followed as seen in Fig. 3:

considering that player boxes are usually higher than wider

and having the center of the bounding box, its height HBt

is checked. Then, a squared image of HBt
× HBt

× 3 is
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generated around the center of the bounding box; finally, this

image is resized to the desired width and height (224 and 224,

respectively). In this way, the aspect ratio of the bounding box

content does not change. However, extracting deep learning

features from the whole bounding box introduces noise to the

feature vector, as part of it belongs to the background (e.g.

court). Therefore, feature are only extracted in those pixels

that belong to detected body parts, resulting in a quantized 1D

vector with length equal to the number of filters. As detailed

below, part positions have to be downscaled to the output

size of the convolutional layer Moreover, all feature vectors

must be normalized with L2 norm. An example using the 10th

convolutional layer of VGG-19 is shown in Figure 4, where a

1× (25× 512) vector is obtained.

Once all boxes have their corresponding feature vectors,

the metric defined in [22] is used to quantify differences;

in particular, the similarity between two feature vectors f
yt1

t1,k

and f
yt2

t2,k
, belonging to bounding boxes detected in t1 and t2

respectively, can be defined as:

Sim(f
yt1

t1,k
, fyt2

t2,k
) =

exp(f
yt1

t1,k
ḟyt2

t2,k
)

∑
exp(f

yt1

t1,k
ḟyt2

t2,k
)

(3)

where k corresponds to the particular body part and yt1 and

yt2 to the pixel position inside the neighborhood being placed

around the keypoint. Therefore, the total cost taking all parts

into account is defined as:

CDL(Bt1 , Bt2)=
1

|S|
∑

k∈S

max
yt1∈E
yt2∈E′

(Sim(f
yt1

t1,k
, fyt2

t2,k
)) (4)

where S corresponds, once again, to the set of detected parts

in both frames, and E and E ′ correspond to the set of pixels in

the neighborhood placed around each keypoint. Nevertheless,

two important remarks have to be pointed out:

1) Some of the Open Pose detected parts have low

confidence. Given that, generally, there are more than 14

detected parts per player, all parts with lower confidence

than 0.3 are discarded and not taken into account when

extracting features. Hence, the subset S in 2 and 4

considers all detected parts in both bounding boxes that

satisfy the mentioned confidence threshold.

2) Convolutional layer outputs (as implemented in the

VGG-19) decrease the spatial resolution of the input.

Since non-integer positions are found when downscaling

parts’ locations (in the input image) to the corresponding

resolution of the layer of interest, the features of the

2×2 closest pixels at that layer are contemplated. Then,

the cost will be considered as the most similar feature

vector to the 2 × 2 target one given. In Tables IV and

V a discussion on the effect of the approximate correct

location is included.

D. Matching

Having quantified all bounding boxes in terms of features,

a cost matrix containing the similarity between pairs of

bounding boxes is computed by combining the different

extraction results. The suitability of the different types of

features is evaluated by combining with appropriate weights

them before building this matrix; in the presented experiments,

the following weighted sum of different costs has been applied:

C(Bt1 , Bt2) = αCFeat1(Bt1 , Bt2)+(1−α)CFeat2(Bt1 , Bt2)
(5)

where CFeat1 refers to Cd given by (1), CFeat2 refers either

to CDL in (4) or Cc in (2) and α ∈ [0, 1]. From this

matrix, unique matchings between boxes of adjacent frames

are computed by minimizing the overall cost assignment:

1) For each bounding box in time tN , the two minimum

association costs (and labels) among all the boxes in

tN−1 are stored in an AtN ,tN−1
matrix.

2) If there are repeated label associations, a decision has

to be made:

• If the cost of one of the repeated associations is

considerably smaller than the others (by +10%), this

same box is matched with the one in the previous

frame.

• If the cost of all the repeated associations is similar

(less than 10%), the box with the largest difference

between its first and second minimum costs is set

as the match.

• In both cases, for all boxes that have not been

assigned, the label of their second minimum cost

is checked too. If there is no existing association

with that specific label, a new match is set.

3) In order to provide the algorithm with some more

robustness, the same procedure described in steps 1 and

2 is repeated with boxes in tN and tN−2. This results

in an AtN ,tN−2
matrix.

4) For each single box, the minimum cost assignment for

each box is checked at both AtN ,tN−1
and AtN ,tN−2

,

keeping the minimum as the final match. In this way,

a 2-frame memory tolerance is introduced into the

algorithm, and players that might be lost for one frame

can be recovered in the following one.

5) If there are still bounding boxes without assignations,

new labels are generated, considering these as new

players that appear on scene. Final labels are converted

into unique identifiers, which will be later used in order

to compute performance metrics.

IV. RESULTS

In this section, a detailed ablation of quantitative results is

provided and discussed, comparing all the above-mentioned

techniques and combinations. Besides, the content of the

gathered dataset is explained.

A. Dataset

A dataset of 22 European single-camera basketball

sequences has been used. Original videos have full-HD

resolution (1920 × 1080 pixels) and 25 frames per second,

but in order to provide fair comparisons, only 4 frames

are extracted per second. The included sequences involve

static offensive basketball motion, with several sets of

screens/isolations; moreover, different jersey colors and skin
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Fig. 4 Feature Extraction of all body parts using the 10th convolutional layer of a VGG-19 network

Fig. 5 Player Detections (green boxes) together with its ground truth (blue
boxes)

tonalities are included. However, the court is the same

European one for all situations, and there are no fast

break/transition plays, as in the case where all players run from

one side to the other, due to the fact that camera stabilization

techniques do not handle these situations. The average duration

of these sequences is 11.07 seconds, resulting in a total of 1019

frames. Ground truth data is attached in the given dataset,

containing bounding boxes over each player and all 3 referees

(taking the minimum visible X and Y coordinates of each

individual) in every single frame (when visible); this results

results in a total of 11339 boxes.

B. Quantitative Results

Although it is not part of this article’s contribution,

quantitative assessment of the detection method is shown

in Table II and it is compared to the performance of the

state-of-the-art YOLO network [16]; for a fair comparison,

only the person detections within the court boundaries are

kept in both cases. These detections can be seen in Fig. 5

with their corresponding ground truth boxes.

TABLE II
DETECTION RESULTS

Precision Recall F1-Score
Open Pose 0.9718 0.9243 0.9470

YOLO 0.8401 0.9426 0.8876

From now on, all quantitative tracking results will be

expressed in the Multiple Object Tracking Accuracy (MOTA)

metric, which is defined in [1] as:

MOTA = 1−
∑

t fpt +mt +mmt∑
t gt

,

where fpt, mt, mmt and gt denote, respectively, to false

positives, misses, missmatches and total number of ground

truth boxes over all the sequence.

Another meaningful tracking metric that has been computed

as well is the Multiple Object Tracking Precision (MOTP),

which can be defined as:

MOTP =

∑
i,t IoUi,t∑

t ct
,

where IoUi,t and
∑

t ct correspond to the intersection

over union between two boxes, and to the sum of correct

assignations through the sequence, respectively. The detected

bounding boxes for all the upcoming experiments are the same

ones (thus the intersection with Ground Truth bounding boxes

does not change neither), and knowing that the total number

of instances is large, the MOTP results barely changes in all

presented combinations of techniques: 0.6165± 0.0218.

Starting only with DL features (that is, α = 0 in (5) and

CFeat2 equal to CDL), Table III shows the maximum MOTA

metrics achieved after performing the extraction in the output

of convolutional layers. As mentioned, a pretrained VGG-19

architecture is used, taking as an output the result of each

second convolutional layer from the second to the fifth block.

The best MOTA results are obtained with the output of the

fourth block, corresponding to the 10th convolutional layer

of the overall architecture. For the remaining tests, all DL

features will be based on this layer, which has an output of

size 28× 28× 512.

TABLE III
MOTA RESULTS OBTAINED WITH α = 0 IN (5), CFeat2 EQUAL TO CDL

AND BY EXTRACTING FEATURES IN THE OUTPUT OF DIFFERENT

CONVOLUTIONAL LAYERS

Layer b2c2 b3c2 b4c2 b5c2
MOTA 0.5396 0.5972 0.6369 0.6321

Having tried all possible weights in 0.05 intervals, Table IV

shows the most significant MOTA results for a non-stabilized

video sequence. In this experiment, a comparison between

Geometrical and DL features is shown, with the performance

on their own as well as its best weighted combination. Besides,

as explained in Subsection III-C3, when extracting DL
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features, three different tests have been performed regarding

the neighborhood size. As it can be seen in Table IV, DL

features outperform Geometrical ones, specially in the case of

a 2x2 neighborhood. By combining them, and giving more

weight to the DL side, results are improved in all cases,

thus indicating that the two types of features complement

each other. In Table V the same experiments are shown, but

this time using a stabilizied video sequence. In this case, the

Geometrical performance outperforms Deep Learning, but as

it has been mentioned, these metrics will drastically drop if

the included dataset sequences contain fast camera movements

(or even large pannings).

From both Tables IV and V it can be deduced that

the best filter size when extracting DL pose features is a

2x2 neighborhood. A priori, one might think that a 3x3

neighborhood should work better, as it is already including

the 2x2 one, but a 3x3 spatial neighborhood in the output

of the 10th convolutional layer is equivalent to a 24 × 24
real neighborhood around the specific part in the image

domain. Accordingly, adding these extra positions will include

court pixels in all feature vectors, which might then produce

a higher response in court-court comparisons, resulting in

non-meaningful matches.

TABLE IV
NON-STABILIZED RESULTS OBTAINED FROM ONLY 4 VIDEO FRAMES PER

SECOND

Neighborhood α 1-α MOTA
— 1 0 0.5689
1x1 0 1 0.5923
1x1 0.3 0.7 0.6289
2x2 0 1 0.6369
2x2 0.2 0.8 0.6529
3x3 0 1 0.6171
3x3 0.3 0.7 0.6444

TABLE V
STABILIZED RESULTS, WITH THE SAME 4 VIDEO FRAMES PER SECOND

AND WEIGHTS AS IN TABLE IV

Neighborhood α 1-α MOTA
— 1 0 0.6506
2x2 0 1 0.6369
1x1 0.6 0.4 0.6752
2x2 0.55 0.45 0.6825
3x3 0.7 0.3 0.6781

Apart from comparing Geometrical and DL features through

Cd and the mentioned different CDL, the effect of Visual

features (color similarity Cc, explained in Subsection III-C2)

is checked too. In Table VI, the best weighted combinations in

terms of MOTA are shown for a non-stabilized and a stabilized

video sequence. In both cases, DL features outperform color

ones by a 3% margin. The combination of all Geometrical,

Visual, and DL features outperforms the rest of techniques

but just by a 0.2%, which comes at a cost of computation

expenses, so it is worth using only DL features.

In order to break down and evaluate the contribution in

MOTA of every single pose part, Table VII is displayed; these

TABLE VI
EFFECT OF VISUAL AND DEEP LEARNING FEATURES IN COMBINATION

WITH GEOMETRICAL ONES

Combination of Features MOTA
Geometrical + Visual 0.6233
Geometrical + VGG 0.6529

Geometrical + Visual [Stab] 0.6583
Geometrical + VGG [Stab] 0.6825

Geometrical + VGG + Visual [Stab] 0.6843

results have been obtained with a 2x2 neighborhood around

parts, and without combining with Geometrical features. As it

can be seen, there are basically three clusters:

1) Discriminative features, above a 0.35 MOTA, that

manage to track at a decent performance only with a

1 × 512 feature vector/player. These parts (shoulders,

chest and hip) belong to the main shape of human torso,

and it coincides with the jersey-skin boundary in the case

of players.

2) Features that stay within a MOTA of 0.20 and 0.35,

which are not tracking players properly but their

contribution might help the discriminative ones to get

higher performance metrics. These parts include skinned

pixels of basic articulations such as elbows, knees, and

ankles.

3) Concrete parts that have almost no details at a coarse

resolution, thus resulting in low MOTA performance.

Eyes could be an example: although people’s eyes have

many features that made them discriminative (such as

shape, color, pupil size, eyebrow’s length), players’ eyes

in the dataset images do not embrace more than a 5x5

pixel region, and all of them look the same shape and

brown or darkish. This results in poor tracking results

when checking only for these parts.

Given the mentioned clusters, 3 different tracking tests

have been performed taking only some parts into account,

in particular, taking all the body parts that had a MOTA

performance by itself higher than: (1) 0.35, (2) 0.20, (3) 0.10,

belonging to (1) 6, (2) 12 and (3) 20 parts, respectively. Results

are shown in Table VIII, where it can be seen that the second

and third cluster complement the top ones, while the bottom-5

parts actually contribute to a drop in MOTA. The drawback

of this clustering is that it requires some analysis that cannot

be performed in test time, and different video sequences (i.e
different sports) might lead to different part results.

A qualitative visual detection and tracking result (obtained

with the best combination of Geometrical + Deep Learning

features without camera stabilization) is displayed in Fig. 6,

where players are detected inside a bounding box, and its color

indicates their ID; as it can be seen, all 33 associations are

properly done except a missed player in the first frame and a

missmatch between frames 2 and 3 (orange-green boxes)

V. CONCLUSIONS

In this article, a single-camera multi-tracker for basketball

video sequences has been presented. Using a pretrained model

to detect pose and humans, an ablation study has been
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Fig. 6 Obtained tracking and pose results in three consecutive frames, where each bounding box color represents a unique ID

TABLE VII
INDIVIDUAL PART TRACKING PERFORMANCE, OBTAINED WITH α = 0 IN

(5) AND CFeat2 EQUAL TO CDL

Part MOTA
Chest 0.5349

L-Shoulder 0.4726
R-Shoulder 0.4707

R-Hip 0.3961
Mid-Hip 0.3956

L-Hip 0.3867
L-Knee 0.3156
R-Knee 0.3062
L-Elbow 0.2862
R-Elbow 0.2545
R-Ankle 0.2418
L-Ankle 0.2407
L-Toes 0.1935
R-Toes 0.1920
L-Ear 0.1348

L-Heel 0.1259
L-Wrist 0.1235
R-Heel 0.1126

L-Mid-Foot 0.1116
R-Wrist 0.1111

R-Mid-Foot 0.0964
L-Eye 0.0916
Nose 0.0771
R-Eye 0.0655
R-Ear 0.0677

TABLE VIII
CLUSTERING PART RESULTS (α = 0 AND CFeat2 = CDL)

Part MOTA No of Parts Total MOTA
>0.35 6 0.6105
>0.20 12 0.6412
>0.10 20 0.6423

all 25 0.6369

detailed in order to address the feature extraction process,

considering three types of features: Geometrical, Visual and

Deep Learning based. In particular, Deep Learning features

have been extracted by combining pose information with

the output of convolutional layers of a VGG-19 network,

reaching a maximum of 0.6843 MOTA performance. Several

conclusions can be extracted from the presented experiments:

• In the case of VGG-19, DL features extracted

from the 10th convolutional layer present the best

accuracy; moreover, placing a 2x2 neighborhood

around downscaled body parts improves the tracking

performance.

• Classical Computer Vision techniques such as camera

stabilization can help improving the Geometrical features

performance, but it might have related drawbacks, such

as the incapability of generalization to all kinds of camera

movements.

• DL features outperfom Visual ones when combining with

Geometrical information. The combination of all of them

does not imply a performance boost.

• When extracting pose features from convolutional layers,

those body parts that cannot be distinguishable at a

coarse resolution have a negative effect in the overall

performance.

Future work could involve the fine-tuning of a given network

in order to get specific weights for tracking purposes. This

training should be done in an unsupervised/self-supervised

way, and a bigger dataset will be used, including different

type of basketball courts and all kind of plays. Moreover, if

there is no need to label ground truth data, this new model

could be also trained with other sports’ data, thus potentially

creating a robust multi-sport tracker.
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