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Abstract—In this paper, a numerical solution based on sinc 

functions is used for finding the solution of boundary value problems 
which arise from the problems of calculus of variations. This 
approximation reduce the problems to an explicit system of algebraic 
equations. Some numerical examples are also given to illustrate the 
accuracy and applicability of the presented method. 
 
Keywords—Calculus of variation; Sinc functions; Galerkin; 

Numerical method 
 

I. INTRODUCTION 
INIMIZATION principles form one of the most wide-
ranging means of formulating mathematical models 

governing the equilibrium configurations of physical systems. 
Moreover, many popular numerical integration schemes such 
as the powerful finite element method are also founded upon a 
minimization paradigm. Classical solutions to minimization 
problems in the calculus of variations are prescribed by 
boundary value problems involving certain types of 
differential equations, known as the associated Euler–
Lagrange equations. The mathematical techniques that have 
been developed to handle such optimization problems are 
fundamental in many areas of mathematics, physics, 
engineering, and other applications. 
   The history of the calculus of variations is tightly interwoven 
with the history of mathematics. The field has drawn the 
attention of a remarkable range of mathematical luminaries, 
beginning with Newton, then initiated as a subject in its own 
right by the Bernoulli family. The first major developments 
appeared in the work of Euler, Lagrange and Laplace. In the 
nineteenth century, Hamilton, Dirichlet and Hilbert are but a 
few of the outstanding contributors. In modern times, the 
calculus of variations has continued to occupy center stage, 
witnessing major theoretical advances, along with wide-
ranging applications in physics, engineering and all branches 
of mathematics.  
   Several numerical methods for approximating the solution of 
problems in the calculus of variations are known. Galerkin 
method is used for solving variational problems in [1]. The 
Ritz method [2], usually based on the subspaces of 
kinematically admissible complete functions, is the most 
commonly used approach in direct methods of solving 
variational problems. Chen and Hsiao [3] introduced the 
Walsh series method to variational problems. Due to the nature  
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of the Walsh functions, the solution obtained was piecewise 
constant. Some orthogonal polynomials are applied on 
variational problems to find the continuous solutions for these 
problems [4-6]. A simple algorithm for solving variational 
problems via Bernstein orthonormal polynomials of degree six 
is proposed by Dixit et al. [7]. Razzaghi et al. [8] applied a 
direct method for solving variational problems using Legendre 
wavelets. Chebyshev finite difference method has been 
employed for solving some problems in calculus of variations 
in [9]. 
   In this paper, we solve variational problems using sinc-
Galerkin method. First, in Section 2, we will give some 
preliminary definitions and theorems in [10,11] that are 
employed to derive the formulations and analysis of the sinc-
Galerkin method in Section 3. Also in this section, we report 
our numerical results and demonstrate the efficiency and 
accuracy of the proposed numerical scheme by considering 
some numerical examples.  

II. STATEMENT OF THE PROBLEM 
The genaral form of a variational problem is finding 

extremum of the 
 

1 2

1 2 1 2
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n
b

n n
a

J u t u t u t

G t u t u t u t u t u t u t d t

=

′ ′ ′∫
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To find the extreme value of J , the boundary conditions of 
the admissible curves are known in the following form: 
 

( ) , 1, 2,..., ,i iu a i nγ= =                          (2) 

( ) , 1,2,..., .i iu b i nδ= =                           (3) 
 
The necessary condition for ( ), 1, 2,...,iu t i n= ,  to extremize 

)](),...,(),([ 21 tututuJ n is to satisfy the Euler-Lagrange 
equations that is obtained by applying the well known 
procedure in the calculus of variation [2], 

( ) 0, 1,2,...,
i i

G d G i n
u dt u

∂ ∂
− = =

′∂ ∂
                             (4) 

subject to the boundary conditions given by Eqs. (2)-(3). 
   In this paper, we consider the special form of the variational 
problem(1) as 

[ ( )] ( , ( ), ( )) ,
b

a

J u t G t u t u t dt′= ∫                                   (5) 

 with boundary conditions 
,)(,)( δγ == buau                                                (6) 
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and 

1 2 1 2 1 2[ ( ), ( )] ( , ( ), ( ), ( ), ( ))
b

a

J u t u t G t u t u t u t u t dt′ ′= ∫     (7) 

subject to boundary conditions 
 

,)(,)( 1111 δγ == buau                                          (8) 

.)(,)( 2222 δγ == buau                                        (9) 
 
Thus, for solving the variational problems (5), we consider the 
second order differential equation 
 

( ) 0,G d G
u dt u

∂ ∂
− =

′∂ ∂
                                                       (10) 

 
with the boundary condition (6). And also, for solving the 
variational problems (7), we find the solution of the system of 
second-order differential equations 
 

( ) 0, 1, 2,
i i

G d G i
u dt u

∂ ∂
− = =

′∂ ∂
                                (11) 

 
with the boundary conditions (8)-(9). Therefore, by applying 
sinc method for the Euler-Lagrange equations (10) and (11) we 
can obtain an approximate solution to the variational problems 
(5) and (7). 
 

III. SINC-GALERKIN METHOD 
 

In this section, we will review sinc function properties, sinc 
quadrature rule, and the sinc method. These are discussed 
thoroughly in [10] and [11]. For solving variational equation 
(5) and (7), these properties will be used extensively in 
section3. 
 
The sinc function. The sinc function is defined on the  whole 
real line, −∞ < z < ∞, by  
 

sin( ) ,
( )

1,

z
Sinc z z

π
π

⎧
⎪= ⎨
⎪⎩

     
0;
0.

z
z

≠
=

                                (12) 

For any 0h > , the translated sinc functions with evenly 
spaced nodes are given as 

),())(,(
h

jhzSinczhjS −
=      ,...2,1,0 ±±=j       (13) 

They are based in the infinite strip dD  in the complex plane 

}.
2

:{ π
≤<+== dvivuwDd                                 (14) 

To construct approximation on the interval [ , ]a bΓ =  we 
consider the conformal map 

).ln()(
zb
azz

−
−

=φ                                                           (15) 

The map φ  carries the eye-shaped region   

}.
2

)arg(:{ π
≤<

−
−

+== d
zb
aziyxzDE                (16) 

                                                                                      
For the sinc method, the basis functions on the [ , ]a bΓ =  for 

dz D∈ are derived from the composite translated sinc  
functions 

( )( ) ( , ) ( ) ( ).j
z jhS z S j h o z Sinc

h
φφ −

= =            (17) 

The function 

1( )
1

w

w
a bez w

e
φ− +

= =
+

,                                                (18)  

is an inverse mapping of ( )w zφ= . We define the range of  
1−φ  on the real line as 

1{ ( ) ( ) : }.u u D uψ φ−Γ = = ∈ −∞ < < ∞                                              

The sinc grid points Γ∈kz in dD will be denoted by kx  
because they are real. For the evenly spaced nodes 

∞
−∞=kkh}{ on the real line, the image which corresponds to 

these nodes is denoted by 

1( ) ,
1

kh

k kh
a bex kh

e
φ− +

= =
+

 ,...2,1 ±±=k .             (19)                  

Sinc interpolation and quadrature rules. For further 
explanation  of the procedure, the important class of functions 
is denoted by ( )EB D . The properties of functions in 

( )EB D  and detailed discussions are given in [10] and [11]. 
We recall the following definitions and theorems for our 
purpose.  
 
Definition 1. Let ( )EB D  denote the family of functions 

F which are analytic in ED  and satisfy  
 

( )

( ) 0,
u L

F z dz
ψ +

→∫   u → ±∞                                 (20)                  

 

where },
2

:{ π
≤<= dvivL and on the boundary of  

ED (denoted by ED∂ ) satisfy 
 

( ) ( )
ED

N F F z dz
∂

≡ < ∞∫ ,                                     (21) 

                                                                                    
Theorem 1. If )( EDB∈′φ then for all Γ∈x  
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Moreover, if ( )
1( ) xF x C e α φ−≤ ,  x ∈Γ , for  

some  positive constants 1C  and α  , and let  

2 /h d Nπ α= then  

1/ 2

( ) ( ) ( , ) ( )

(exp( (2 ) )).

N

k
k N

F x F x S k h o x

O d N

φ

π α
=−

=

+ −

∑
          (23)            

 
Theorem 2. Let )( EDBF ∈  and φ  be a conformal 

 map with constants α and 2C  so that  
 

,
)(
)( )(

2
zeC

z
zF φα

φ
−≤

′
   ,Γ∈z                                       (24) 

 
then the sinc trapezoidal quadrature rule is 
 

( )
( ) (exp( ))

( )

N
j

j N j

F z
F z dz h O Nh

z
α

φ=−Γ

= + −
′∑∫  

                                            + (exp( 2 / )).O d hπ−         (25) 
Hence, by selecting 
 

  ,)2( 2/1

N
dh

α
π

=                                                               (26)    

 the exponential order of the sinc trapezoidal quadrature    rule 
in (25) is 1/ 2(exp( 2 ) ).O d Nπ α−  By applying the 
Theorem 2, we conclude the following Corollary that is special 
case of (25).   
   
 Corollary. Let   )( EDBF ∈ , and let h be selected  by (26), 
then   

∫
Γ

′
=

)(
)()(),()(

k

k

z
zFhdzzohkSzF

φ
φ  

                                          + 1/ 2(exp( 2 ) ).O d Nπ α−    (27)  
 
Theorem 3. Let φ  be a conformal one-to-one map of the 

simply connected domain dD  onto .ED  then 

   == = kxxjk xohjS |)](),([)0( φδ        
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In order to illustrate the performance of the sinc-Galerkin 
method, we present some examples. 
 
Example 1. We first consider the following variational 
problem with the exact solution tetu 3)( = in [9]: 

1
3

0

min ( ( ) ( ) 4 ) ,xJ u x u x e dx′= + −∫                             (31) 

subject to boundary conditions 
 

3(0) 1, (1) .u u e= =                                                (32) 
 
Considering the Eq. (31), the Euler-Lagrange equation of this 
problem can be written in the following form: 

3( ) ( ) 8 0.xu x u x e′′ − − =                                                (33) 
 
The solution of the second-order differential equation (33) 
with boundary conditions (32) is approximated by the sinc 
method. For our purpose, first we convert the non-
homogeneous boundary condition (32) to homogeneous 
boundary condition by considering the following 
transformation  

 ( ) ( ) ( ) ( )b x x ay x u x u a u b
b a b a
− −

= − −
− −

.                   (34) 

Using the above change of variable yields the following 
boundary value problem 

3 3( ) ( ) (1 ) 8 ,xy x y x x xe e′′ − = − + +                            (35) 
with boundary conditions 

(0) 0, (1) 0y y= = .                                               (36) 
 
We consider the boundary value problem (35)-(36) in general 
form as follows: 
 

  ( ) ( ) ( ) ( ),y x x y x xυ σ′′ + =     ( ) ( ) 0y a y b= =       (37) 
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We suppose that the boundary value problem (37) has a unique 
solution ( ).Ey B D∈  In this case consider sinc pproximation 
by the formula 

( ) ( ) ( , ) ( )
N

N j
j N

y x y x w S j h xοφ
=−

≈ = ∑ ,                       (38) 

Our purpose is applying the Galerkin method based on sinc 
function. Therefore, consider inner product for arbitrary 
function f  and g  in the following form 
 

, ( ) ( ) ( ) ,f g w x f x g x dx
Γ

< >= ∫                                  (39) 

where 

1/ 2

1( )
[ ( )]

w x
xφ

=
′

.                                                          (40) 

 
We apply the inner product (39) for ( , ) ( )S k h o xφ  and 
equation (37) as follows : 
 

( ), ( , ) ( ) ( ) ( ), ( , ) ( )
( ), ( , ) ( ) 0

y x S k h o x x y x S k h o x
x S k h o x

φ υ φ
σ φ
′′< > + < >

− < >=
 

                                                                                           (41) 
Multiplying the both side of equation (41) in h and considering 
the Equations (38) and (39) we obtain : 
 

1/ 2 1/ 2

1/ 2
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φ

Γ Γ

Γ

′′ +
′ ′

− =
′

∫ ∫

∫
 

                                                                                           (42) 
Now, we apply part by part integration for the  first term of 
Eq.(42) and then we get 
 

1/ 2 1/ 2

( , ) ( ) ( , ) ( )( ) ( ) ( ) .
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S k h o x S k h o xh y x dx h y x dx
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φ φ
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                                                                                           (43) 

By using Eqs.(27) and (38) we can write 
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2
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Having used the relations (28)-(30) we have 

kk xxxx xohjS
d
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                                                                                           (46) 
From the above relations and Eq.(44) we obtain 
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Now, consider second term of Eq.(42). By applying the 
Eqs.(27) and (38) we can obtain 

2 (0)
,1/ 2 3/ 2

( )( , ) ( ) ( ) ( ) .
[ ( )] [ ( )]

N
j

N k j
j N j

zS k h o xh x y x dx h
x z

υφ υ δ
φ φ=−Γ

=
′ ′∑∫  

                                                                                           (48) 
Similarly, for the third term of Eq.(42) we get  
 

2
1/ 2 3/ 2

( )( , ) ( ) ( ) .
[ ( )] [ ( )]

k

k

zS k h o xh x dx h
x z

σφ σ
φ φΓ

=
′ ′∫                 (49) 

 
Now, the Galerkin result is obtained by using substituting Eqs. 
(47)–(49) in Eq. (42), in matrix form as follows: 
 

,BW P=                                                                        (50) 
 
where 

1
2 2 2

3/ 2 2

1 1( ( ) ) . [ ] ,
( ) [ ]

B I h D Dυ φ
φ φφ

⎛ ⎞ ⎛ ⎞
′′ ′= + +⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′′ ⎝ ⎠⎝ ⎠

                  

2
3/ 2

1( ) ,
[ ]

P h D S
φ

=
′

      ( ( ),..., ( )) ,T
N NS z zσ σ−=  

1 1( , ,..., , ) .T
N N N NW w w w w− − + −=   

Corresponding to a given function u , ( )D u defined a 

diagonal matrix and 2 (2)
,[ ]k jI δ= . The above linear system 

containing (2 1)N +  equations with (2 1)N +  unknown 

coefficients { }N
j j Nw =− .  Solving this linear system, we can 

obtain the approximate solution as follows: 

( ) ( ) ( , ) ( )
N

N j
j N

y x y x w S j h xοφ
=−

≈ = ∑ . 
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The errors are reported on the set of uniform grid points 
 

0

0

{ ,..., ,..., },

, 0,1,2,..., , .

i n

i

S a x x x b
b ax x ih i n h

n

= = =
−

= + = =
                 (51)               

                                                                             
The maximum error on the uniform grid points S  is 
 

0
( ) max ( ) ( ) ,y j N jj n

E h y x y x
∞ ≤ ≤

= −                         (52) 

where ( )jy x is the exact solution of the given example, and 

( )N jy x is the computed solution by the sinc method. The 
examples have been solved by the presented method with 
different values of N and α ,  0 1.α< ≤  Examples 1 and 2 

are solved for 
4

d π
=  and 

1
2

α =  and also example 3 is 

solved for 
4

d π
=  and 1α = . The maximum absolute errors 

in numerical solution of the Example 1 are tabulated in Table 
I. These results show the efficiency and applicability of the 
presented method. The plot of exact solution and the solution 
of sinc-Galerkin method for 3N = and 10N =  have been 
displayed in Figure 1. 

TABLE I 
RESULTS FOR EXAMPLE 1 

n  h  ( )yE h
∞

 

5  
10  

1.4049629  
0.9934588  

28.64656 10−×  
-3106.47961×  

20  0.7024815  -4101.39879 ×  
30  0.5735737  61010976.6 −×
40  0.4967294  71030248.4 −×
50 0.4442883  81092302.6 −×

N 3
N 10
Exact ———

0.2 0.4 0.6 0.8 1.0

7

6

5

4

3

2

1

 
      

  Fig. 1 Exact and approximate solutions for Example 1,(N = 3, 10) 
 
 
 
 
 
 

Example 2. In this example, consider the following problem 
of finding the extremals of the functional[8]: 
 

1 2

2
2 2

1 2 1 2
0

[ ( ), ( )]

( ( ) ( ) 2 ( ) ( )) ,

J u t u t

u t u t u t u t dt

π

=

′ ′+ +∫
                          (53) 

    
with boundary conditions 
 

1 1(0) 0, ( ) 1,
2

u u π
= =

                                         (54) 

1)
2

(0)0( 22 −==
πuu

                                      (55) 
which has the exact solution given by 

)).sin(),(sin())(),(( 21 tttutu −=  For this problem, the 
corresponding Euler-Lagrange equations are 
 

1 2

2 1

( ) ( ) 0,
( ) ( ) 0,

u t u t
u t u t
′′ − =⎧

⎨ ′′ − =⎩                                                          (56) 
 
with boundary conditions (54) and (55). In a similar manner,                  
the Eqs. (54)-(56) produce a linear system that contains 
2 (2 1)N× +  equations with 2 (2 1)N× +  unknown 
coefficients. Solving  this linear system, we can obtain the 
approximate solution of  the system of second-order boundary 
value problems (54)-(56).We solved Example 2 for different 
values of N . The maximum of absolute errors on the uniform 
grid points (51) are tabulated in Table II . The plot of exact 
solution and the solution of sinc-Galerkin method for 3N =  
and 10N =  have been displayed in Figures 2 and 3. 

TABLE II 
RESULTS FOR EXAMPLE 2. 

n  h  
1
( )yE h

∞
 

2
( )yE h

∞
 

5  
10  

1.4049629  
0.9934588  

-33.01744 10×  
-42.7295 10×  

-33.01744 10×  
-42.7295 10×  

20  0.7024815  61069675.8 −× 61069675.8 −×
30  0.5735737  71065263.5 −× 71065263.5 −×
40  0.4967294  81047391.5 −× 81047391.5 −×
50 0.4442883  91093422.6 −× 91093422.6 −×
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N 3
N 10
Exact ———

0.5 1.0 1.5

0.05

0.10

0.15

0.20
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Fig. 2 Exact and approximate solutions for Example 2,( 1y ) 

N 3
N 10
Exact ———

0.5 1.0 1.5

0.25

0.20

0.15

0.10

0.05

 
Fig. 3 Exact and approximate solutions for Example 2,( 2y ) 

Example 3. In this example, we consider the following 
variational problem 

∫
+

=
1

0
2

2

,
)(

)(1min dx
xu

xuJ
 

that satisfies the conditions 

          ,0)0( =u           5.0)1( =u  
THE EXACT SOLUTION OF THIS PROBLEM IS 

).4812118250.0sinh()( xxu =  
In this case the Euler–Lagrange equation is written as: 

.022 =′−′′+′′ uuuuu  
The numerical results for different values of  N  are tabulated 
in table III. The plot of this case for exact and obtained  
solutions is shown in Figure 4.  

TABLE III 
RESULTS FOR EXAMPLE 3 

n  h  ( )yE h
∞

 

5  
10  

0.9934588  
0.7024814  

41.1512 10−×  
-51.82294 10×  

20  0.4967294  -61.18951 10×  
30  0.4055779  71.38133 10−×  
40  0.3512407  82.21156 10−×  
50 0.3141593  94.40759 10−×  

 

N 3
N 10
Exact ———

0.2 0.4 0.6 0.8 1.0

0.008

0.006

0.004

0.002

 
Fig. 4 Exact and approximate solutions for example 3 

 
IV. CONCLUSION 

In this paper sinc-Galerkin method employed for finding the 
extremum of a functional over the specified domain. The main 
purpose is to find the solution of boundary value problems 
which arise from the variational problems. The numerical 
examples show that the accuracy improve with increasing the 
number of sinc grid points. 
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