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Abstract—In this paper, solution of fuzzy differential equation
under general differentiability is obtained by simulink. The simulink
solution is equivalent or very close to the exact solution of the
problem. Accuracy of the simulink solution to this problem is
qualitatively better. An illustrative numerical example is presented
for the proposed method.
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I. INTRODUCTION

F
UZZY set theory is a powerful tool for modelling uncer-

tainty and for processing vague or subjective information

in mathematical models. The main directions of development

of this subject have been diverse with applications to variety

of real problems like the golden mean [9], quantum optics,

gravity [11], synchronize hyperchaotic systems [24], chaotic

system, medicine [2], [4], and engineering problems [15].

Particularly, fuzzy differential equation is an important topic

from the theoretical point of view (see [1], [12], [17], [18]) as

well as its applications like in population models [13], [14],

civil engineering and hydraulics.

Differentiable fuzzy valued mappings were initially studied

by Puri and Ralescu [19]. They generalized and extended the

concept of Hukuhara differentiability (H-derivative) for set

valued mappings to the class of fuzzy mappings. Subsequently,

using H-derivative, Kaleva [16] started to develop a theory for

fuzzy differential equations.

In the last few years, many works have been done by several

authors in theoretical and applied fields for fuzzy differential

equations with H-derivative (see [20], [21], [22], [23]). Now,

in some cases this approach suffers certain disadvantages since

the diameter diam(x(t)) of the solution is unbounded as time

t increases [10]. This problem demonstrates that in some case

this interpretation is not a good generalization of the associated

crisp case.

The generalized differentiability was introduced and studied

in [5], [6], [7], [8]. This concept allows us to resolve the above

mentioned shortcoming. Indeed, the generalized derivative is

defined for a larger class of fuzzy number valued functions

than Hukuhara derivative. Hence, this differentiability concept

is used in the present paper. Under appropriate conditions, the
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fuzzy initial value problem considered under this interpretation

has locally two solutions. In this paper, simulink approach is

used to compute the solution of fuzzy differential equation.

Simulink is a MATLAB add-on package that many pro-

fessional engineers use to model dynamical processes in

control systems. Simulink allows to create a block diagram

representation of a system and run simulations very easily.

Simulink is really translating block diagram into a system of

ordinary differential equations. Simulink is the tool of choice

for control system design, digital signal processing (DSP)

design, communication system design and other simulation

applications [3]. This paper focuses upon the implementation

of simulink approach for solving fuzzy differential equation.

This paper is organized as follows. In section 2, the ba-

sic concepts and fuzzy differential equation are described.

In section 3, simulink method is presented. In section 4,

numerical example is discussed. The final conclusion section

demonstrates the efficiency of the method.

II. BASIC CONCEPTS AND FUZZY DIFFERENTIAL

EQUATION

Let X be a nonempty set. A fuzzy set u in X is character-

ized by its membership function u : X → [0,1]. Then u(x) is

interpreted as the degree of membership of a element x in the

fuzzy set u for each x ∈ X.

Definition 2.1: Let Fn be the space of all compact and

convex fuzzy sets on R
n. Let u, v ∈ Fn. If there exists

w ∈ Fn such that u = v⊕w, then w is called the H-difference

of u and v and it is denoted by u ⊖ v.

Definition 2.2: Let F : T → Fn and t0 ∈ T . The function

F is said to be differentiable at t0 if

(I) an element F ′(t0) ∈ Fn exist such that, for all h > 0
sufficiently near 0, there are F (t0+h)⊖F (t0), F (t0)⊖F (t0−
h) and the limits

lim
h→0+

F (t0 + h) ⊖ F (t0)

h
= lim

h→0+

F (t0) ⊖ F (t0 − h)

h

are equal to F ′(t0).
(or)

(II) there is an element F ′(t0) ∈ Fn exist such that, for all

h < 0 sufficiently near 0, there are F (t0+h)⊖F (t0), F (t0)⊖
F (t0 − h) and the limits

lim
h→0−

F (t0 + h) ⊖ F (t0)

h
= lim

h→0−

F (t0) ⊖ F (t0 − h)

h

are equal to F ′(t0)
Note that if F is differentiable in the first form (I), then it is

not differentiable in the second form (II) and viceversa.
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Given that F : T → F is a function and [F (t)]α =
[fα(t), gα(t)], for each α ∈ [0, 1]. The following result is the

fundamental for solving a fuzzy differential equation.

Theorem 2.3: Let F : T → F be a function. Then

(i) If F is differentiable in the first form (I), then fα and

gα are differentiable functions and

[F ′(t)]α = [f ′

α(t), g′α(t)]. (1)

(ii) If F is differentiable in the second form (II), then fα and

gα are differentiable functions and

[F ′(t)]α = [g′α(t), f ′

α(t)]. (2)

Theorem 2.4: Let F : T → F be a continuous function.

Then

(i) If F is differentiable in the first form (I), then F ′ is

integrable if and only if F (a) ≺ F (t) for all t ∈ T .

(ii) If F is differentiable in the second form (II), then F ′ is

integrable if and only if F (t) ≺ F (a) for all t ∈ T .

A. Fuzzy differential equation

Consider the fuzzy differential equation

x′ = F (t, x(t)), x(a) = x0, (3)

where F : [a, b]×F → F is a continuous fuzzy mapping and

x0 is a fuzzy interval.

The solution of the fuzzy differential equation (3) is depen-

dent of the choice of the derivative: in the first form or in the

second form. The equations (1) and (2) in Theorem 1 give

us an useful procedure to solve the fuzzy differential equation

(3). For this, let

[x(t)]α = [uα(t), vα(t)]

and

[F (t, x(t))]α = [fα(t, uα(t), vα(t)), gα(t, uα(t), vα(t))].

Example 2.1: Let us consider the fuzzy differential equa-

tion

x′(t) = −λx(t), x(0) = x0, (4)

where λ > 0 and the initial condition x0 is a symmetric

triangular fuzzy number with support [−a, a]. That is,

[x0]
α = [−a(1 − α), a(1− α)] = (1 − α)[−a, a].

If x′(t) is considered in the first form(I), the fuzzy differential

system will be as given below:

u′

α
(t) = −λvα(t), uα(0) = −a(1 − α)

v′α(t) = −λuα(t), vα(0) = a(1 − α).

The solution of this system is uα(t) = −a(1 − α)eλt and

vα(t) = a(1−α)eλt . Therefore, the fuzzy function x(t) solving

(4) has level sets

[x(t)]α = [−a(1− α)eλt, a(1 − α)eλt]

for all t ≥ 0.

If x′(t) is considered in the second form(II), the fuzzy

differential system will be as given below:

u′

α(t) = −λuα(t), uα(0) = −a(1 − α)

v′α(t) = −λvα(t), vα(0) = a(1 − α).

The solution of this system is uα(t) = −a(1 − α)e−λt and

vα(t) = a(1 − α)e−λt. Therefore, the fuzzy function x(t)

solving (4) has level sets

[x(t)]α = [−a(1− α)e−λt, a(1 − α)e−λt]

for all t ≥ 0.

III. SIMULINK METHOD

Simulink is an interactive tool for modelling, simulating

and analyzing dynamic systems. It enables engineers to build

graphical block diagrams, evaluate system performance and

refine their designs. Simulink integrates seamlessly with MAT-

LAB and is tightly integrated with state flow for modelling

event driven behavior. Simulink is built on top of MATLAB.

A Simulink model for the given problem can be constructed

using building blocks from the simulink library. The solution

curves can be obtained from the model without writing any

codes.

A simulink model is constructed for the following system

of two differential equations as shown in the Figure 1.

x′(t) = −2 ∗ x(t) − 1, x(0) = −1

y′(t) = −2 ∗ y(t) − 1, y(0) = 1.
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Fig. 1. Simulink model

As soon as the model is constructed, the simulink param-

eters can be changed according to the problem. The solution

of the system of differential equation can be obtained in the

display block by running the model.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:4, 2012

489

A. Procedure for Simulink Solution

Step 1. Select the required number of blocks from the simulink

Library.

Step 2. Connect the appropriate blocks.

Step 3. Make the required changes in the simulation parameters.

Step 4. Run the simulink model to obtain the solution.

IV. NUMERICAL EXAMPLE

Consider the fuzzy differential equation

x′(t) = −x(t) + 1, x(0) = x0,

where λ > 0 and the initial condition x0 is a symmetric

triangular fuzzy number with support [−1, 1]. That is,

[x0]
α = [−(1− α), (1− α)] = (1 − α)[−1, 1].

If x′(t) is considered in the first form(I), the fuzzy differential

system will be as given below:

u′

α(t) = −vα(t) + 1, uα(0) = −(1 − α)

v′α(t) = −uα(t) + 1, vα(0) = (1 − α).

If x′(t) is considered in the second form(II), the fuzzy differ-

ential system will be as given below:

u′

α(t) = −uα(t) + 1, uα(0) = −(1 − α)

v′α(t) = −vα(t) + 1, vα(0) = (1 − α).

A. Solution obtained using Simulink

The simulink model is constructed for the above systems

of differential equations. The simulink models are shown in

Figures 2 and 3. The simulink curves for the systems are

shown in Figures 4 and 5 when α = 0.4.
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Fig. 2. Simulink model
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Fig. 3. Simulink model
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Fig. 4. Simulink curve for the first system
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Fig. 5. Simulink curve for the second system

The simulink solution of I type fuzzy differential equation

is displayed in Table 1.

The simulink solution of II type fuzzy differential equation

is displayed in Table 2.

V. CONCLUSION

The solution of fuzzy differential equation under generalized

differentiability can be computed by using simulink approach.
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α =0.2 α =0.4

t uα vα uα vα

0.0 -0.8000 0.8000 -0.6000 0.6000
0.2 -0.7959 1.1584 -0.5516 0.9141
0.4 -0.8638 1.5231 -0.5654 1.2248

0.6 -1.0065 1.9089 -0.6421 1.5445
0.8 -1.2298 2.3311 -0.7847 1.8860
1.0 -1.5425 2.8067 -0.9988 2.2631

1.2 -1.9573 3.3549 -1.2933 2.6909
1.4 -2.4908 3.9976 -1.6797 3.1865
1.6 -3.1643 4.7605 -2.1737 3.7699

1.8 -4.0050 5.6744 -2.7951 4.4645
2.0 -5.0466 6.7759 -3.5688 5.2981

TABLE I

SOLUTIONS OF I SYSTEM

α =0.2 α =0.4
t uα vα uα vα

0.0 -0.8000 0.8000 -0.6000 0.6000
0.2 -0.4737 0.8363 -0.3100 0.6725

0.4 -0.2066 0.8659 -0.0725 0.7319
0.6 0.0121 0.8902 0.1219 0.7805
0.8 0.1912 0.9101 0.2811 0.8203

1.0 0.3378 0.9264 0.4114 0.8528
1.2 0.4579 0.9398 0.5181 0.8795

1.4 0.5561 0.9507 0.6054 0.9014
1.6 0.6366 0.9596 0.6770 0.9192
1.8 0.7025 0.9669 0.7355 0.9339

2.0 0.7564 0.9729 0.7835 0.9459

TABLE II
SOLUTIONS OF II SYSTEM

The simulink solution is equivalent or close to the exact

solution of the problem. A numerical example is given to

illustrate the derived results. In future, simulink approach can

be used to solve linear and nonlinear stochastic differential

equation in the fuzzy environment.
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