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Simulation of sample paths of nonGaussian
stationary random fields

Fabrice Poirion, and Bénédicte Puig

Abstract—Mathematical justifications are given for a simulation
technique of multivariate nonGaussian random processes and fields
based on Rosenblatt’s transformation of Gaussian processes. Different
types of convergences are given for the approaching sequence.
Moreover an original numerical method is proposed in order to solve
the functional equation yielding the underlying Gaussian process
autocorrelation function.

Keywords—simulation, nonGaussian, random field, multivariate,
stochastic process.

I. INTRODUCTION

THE use of nonGaussian models in order to mimic the
natural world uncertainty has gained some popularity

among the civil engineering community (but not only) for
several reasons: firstly, there exist today large amounts of
experimental measures which show that many physical phe-
nomena are not Gaussian. It is indeed the case for the sea
state, where the statistical distribution of the largest wave
height cannot be deduced from a Gaussian assumption [1], [2],
[3], for seisms [4], [5], winds in the atmospheric boundary
layer [6], [7], and also in astrophysics [8]. Secondly, the
formidable progress of computer technology allows the use of
Monte Carlo simulation (MCS) methods for real life industrial
problems. Lastly, manufacturers are looking for cost reducing
technologies and, taking into account more realistic models
for environment, is a step towards reducing security margins.
Various methods have been proposed for generating simu-
lated paths of non-Gaussian real valued processes [9], [10],
[11], [12], [13], [14], [15], [16]. As it is not realistic
to construct a numerical model for a non-Gaussian pro-
cess based on its entire family of joint distributions

, all the proposed
methods focus on the following reduced objective: construct a
model which has the same one-dimension marginal probability
distribution and the same correlation function. The numerical
methods which are proposed in the litterature are all related ,
except [2], to real valued processes. This is because they ex-
plicitely use the inverse of the prescribed marginal cumulative
distribution function, but this approach cannot be used in the
context of multivariate processes since such an inverse does
not exist.
The goal of this paper is to propose an extension of the
general method given by the authors in [17] for generating
simulated paths of non-Gaussian homogeneous random scalar
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fields to the vector case. The extension is based on Rosenblatt’s
transformation, in order to generalize the use of the inverse
cumulative function, and on its projection on the multivariate
Hermite polynomial basis. Different types of convergence will
be given for the approximating sequence. As in the scalar
case, the autocorrelation function of the underlying Gaussian
process will be approached by an optimization problem. This
approach is well adapted to the case where the first order
marginal probability distribution is described through copulas.
Several numerical examples will be given in order to illustrate
this approach and its generality. Let be a proba-
bility space. All the random variables or stochastic processes
appearing in this paper will be constructed on this abstract
probability space.

II. DATA AND ASSUMPTIONS

Let a n-dimensional
random field, which is weakly stationary:

(1)

The spectral measure of the random field is related to the
autocorrelation function through:

(2)

the last integral being meaningful when the
spectral measure has a density with respect to the Lebesgue
measure: .
As it is explained in the introduction, the goal is to

construct a simulation method of a vector valued nonGaus-
sian random field which is described only by its au-
tocorrelation function , or equivalently by its spectral
measure , and by its first order marginal distribution

which is independant of parameter since
the random field is assumed to be stationary. Therefore let
be an -dimensional random variable with probability distri-
bution and

a function such that , the unit
matrix, and such that the trace tr( ) is a nonnegative definite
function.

III. MEMORYLESS TRANSFORMATION CONSTRUCTION FOR
MULTIVARIATE PROCESSES

Starting from the fact that generation of Gaussian sample
paths is a classical problem : there exist various methods in
the literature which can be used [18], the proposed method is
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a 2 step procedure. The first step is to find a functional rep-
resentation of the nonGaussian process in terms of stationary
Gaussian process. This representation is constructed from the
marginal distribution data, and the second step is to identify the
autocorrelation function of the underlying Gaussian processes
using the nonGaussian autocorrelation function . In
order to find the functional representation, a natural way to
proceed is to use what is done for the simulation of multivari-
ate random variables. The simplest but not the most frequent
case is when the multivariate distribution is directly expressed
as a function of independant real-valued random variables for
instance the Dirichlet distribution which can be expressed in
terms of independant gamma distributions [19]. Apart this
very particular situation, there exist two main methods in the
literature for simulating random vectors: the rejection method
or the conditional distribution method. Clearly the first method
is based on a purely algorithmic construction and cannot be
represented as a function of given scalar random variables. The
second method however can be described functionnaly using
the Rosenblatt’s transformation [20]. It is also the case when
copulas are introduced for describing the dependency of the
random vector components.

A. Rosenblatt’s transformation
Let a random vector with distribution

. The random variable can be simulated using
the following algorithm [21]:

...

where are independant random variables with uni-
form distribution on , is the cumulative function of
random variable and , , is
the conditionnal cumulative function of random variable
knowing . Those last relations can be rewritten
as :

...

(3)
hence we have constructed a functional relation between the
random vector and the random vector
:

Now, each random variable can be written in terms of
independant Gaussian random variable with distribution

: . Which yields a functional representa-
tion of process in terms of independant Gaussian processes:

The first order marginal distribution of the random process
is by construction. In order to solve the problem,

the autocorrelation function of each Gaussian process has
to be defined.

B. Copulas

As it is written in the introduction, simulation methods are
used to reproduce real life phenomena and as such, have to be
constructed from experimental in situ measurements. Although
it is relatively simple to obtain some statistic information
through measures for each component of a random vector
valued process, often, dependancy information between each
component is lacking. What is done in general (especially in
financial mathematics [22] or geophysics [23], [24], [25]) is to
introduce such a dependancy through the use of copula [26].
One advantage of copulas is that a wide range of them are
described through one or two parameter models. The statistical
problem of fitting those parameters is much simpler than the
problem of estimating the entire distribution of the original
random vector. Without going into the details (see [26] for a
complete overview on the subject), a copula can be defined
as:
Definition 3.1: Let a -variate ran-
dom vectors such that each component has a uniform
distribution. Its cumulative distribution function is defined by:

(4)
The restriction of function to the hypercube is called
a copula and is denoted :

(5)

The utility of copulas comes from the Sklar’s theorem:
Theorem 3.2: Let be the cumulative distribution function

of a -variate random vector and let
denote the cumulative distribution function of component .
Then there exists a copula such that:

(6)

Moreover if the functions are continuous, is unique and:

This theorem shows how to build the distribution of a
random vector given its marginal distributions and a copula
: different copulas yield different distributions having the
same marginal distributions. Therefore the modelling of a
multivariate distribution is decomposed into two steps, the first
one being the identification of the marginal distributions, the
second one being the identification of the copula.
Simulation of such distributions which are described

through marginal distribution and a copula is straightforward:
simulate a -variate random vector such that
each component has a uniform distribution according
to the -variate distribution defined by the copula and use
relation (6) to generate vector :



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

232

The simulation of random vector is done through the con-
ditional distribution method (3) starting from independant

uniform random variables and using the following
property of copulas(when the following derivatives exist):

(7)

(8)

and so on. The simulation of vector is done by solving:

...

A functional relation between the independant random
variables and can therefore be constructed:

...

Writing once again each random variable in terms of
independant Gaussian random variables with distribution

we construct a functional representation of process
in terms of independant Gaussian processes:

(9)

C. Construction of the underlying Gaussian process

1) Multivariate Hermite polynomials: We have seen that
process is written as the image of a dimension Gaussian
process through the map . In order to generalize
the construction of scalar nonGaussian processes to the vector
case we will need to project function on a basis of the Hilbert
space where is the standard Gaussian
measure on . We will denote this last space by . Let us
start by introducing multi-index notations.
Let and . We

denote

Let a standard Gaussian variable

on . Its distribution is:

Definition 3.3: Let be a multi-index, the normalized
Hermite polynomial is defined by:

with being the Hermite polynomial on .
Proposition 3.4: The family is an or-
thonormal basis of the Hilbert space :

(where is a - random variable.)
Corollary 3.5: Let ,then can be projected on the
above basis:

(10)

In particular, process can be written as the series:

(11)

In the following we will use an approximation of
given by the truncated series:

(12)

2) Melher formula for multivariate processes: In order
to finish the construction of multivariate model of the non-
Gaussian process we have to determine the autocorrelation of
the underlying multivariate Gaussian process. Since we have
assumed the Gaussian processes to be independant, we
have to determine their scalar autocorrelation function.
Writing the autocorrelation function of using expan-

sion (11) yields:

(13)

The term is computed using the
assumption that the processes are independant,
therefore:

so
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The autocorrelation function of can be written in terms
of the unknown autocorrelation function of each :

(14)

As in the scalar case, this equation cannot be solved
explicitely and is replaced by the following optimization
problem: find nonnegative definite scalar functions
which minimizes the quantity

This problem is then written in terms of the spectral
measures in order to get rid of the cumbersome positiveness
constraint for the autocorrelation functions:

(15)

under the constraints: the are positive and even func-
tions.
3) Convergences:
Proposition 3.6: The series converges in

quadratic mean uniformly in t to .
Proof. We have with

.

As the gaussian process is stationary, doesn’t
depend on . Then for all fixed , we have

the series being uniformly convergent in quadratic mean.

Proposition 3.7: Let be the autocorrelation function of
the process .

Proof. Owing to the Mehler formula, we have

Which gives the result.

Proposition 3.8: Let be the rest of
the convergent series . Let
consider the coefficients of the considered matrices,

, ,

Proof. The Cauchy-Schwarz inequality permits to write

Then

4) Simulation of the nonGaussian multivariate processes:
Once the solution of the optimization problem (15) have
been calculated, the simulation of process is staightforward.
Indeed one has only to generate simulated trajectories of
independant scalar Gaussian processes and use relation (12)
to generate trajectories of .
The simulation of each Gaussian process can be easily

done using either a spectral approach or a Markovian model
[17]. In any case, due to the number of optimization parame-
ters appearing in problem (15), each unknown spectral density

should be written as, or approximated by a rational
function, the same way as it is done in the Markovian approach
in [17], in order to introduce a smaller number of parameters.
This optimization problem is the difficult numerical part of
the procedure and one has to be careful when choosing the
domain on which the error is constructed. Stochastic
algorithm based methods are of course recommended for this
particular problem.
Remarks 3.9: 1/ The data used for constructing the numer-

ical model of a nonGaussian process is the distribution of a
random vector and either the autocorrelation matrix
or the spectral matrix of . One has of course to check
the consistency of the data, more precisely that

(16)

2/ Since the method explicitely use the spectral density of the
process in the optimization problem, it can be applied only to
the zero-mean process .

IV. NUMERICAL ILLUSTRATIONS

A. Example I

In this example our goal is to simulate a stationnary
process whose first order marginal
distribution is the uniform distribution over the unit disk :



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

234

and such that its spectral matrix is given
by:

(17)

The two components and are uncorrelated but
dependant.
The first step is to construct the functional representation
between a random vector uniformly distributed
on and a vector of independant uniform
variables. The following algorithm given in Devroye’s book
[19] can be used in order to simulate :

Generate a random variable with distribution

Knowing the value of , generate random
variable with an uniform distribution over

.
Denoting the cumulative distribution function of ,
the functional representation can be written:

(18)
Functions and are constructed numerically, but

due to relation (10), is calculated only for the Gauss
points used for computing the integral. In this example we
have used 20 Gauss points for computing the Hermite expan-
sion coefficients. We consider now the following memoryless
transformation of the Gaussian vector
:

(19)

(20)

The function is projected on the Hermite polynomial
basis:

and the optimization problem (15) is solved using a simulated
annealing algorithm where the unknown spectral density of
Gaussian processes is modeled as:

which yields 16 unknown parameters to be fitted. The non-
Gaussian process can then be simulated using the truncated
expansion (12). We first check the quality of the representation
of the memoryless transformation as a truncated series (12)
by estimating the the distribution of the marginal distribution
of . Figure 1 represents 50000 samples of the following 2
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Fig. 1. Histogram of the uniform distribution over the unit disk
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Fig. 2. Simulation using polynomial representation of the Rosenblatt’s
transformation

dimensional random vector

(21)

where and are independant normalized Gaussian vari-
ables. The order of truncation is . There are some
points which lie outside the unit disk: this is a consequence
of the truncation error. Figure 2 represents the histogram
built from those samples: one can check that the distribution
can be described as uniform over the disk. The next step is
to solve the optimization problem (15). Figure 3 shows the
comparison between the target autocorrelation function and
the one obtained as a solution of the optimisation procedure:
the agreement is excellent, even for the intercorrelation which
was chosen null. Lastly the expansion (12) is used to simulate
500 trajectories of the nonGaussian process from which its
spectral measure is estimated, each trajectory being discretized
using 1024 points. Figure 4 shows the comparison between the
target spectral measure and the estimated one. And finally a
trajectory of process is drawn on Figure 5.
Remark 4.1: In the same way, it is possible to simulate non-

Gaussian processes with uniform distribution on hyperspheres,
hyperellipsoids, triangles, etc.

B. Example II

In this last example, the distribution of a stationnary random
process will be defined through the
marginal distribution of and and a copula . More
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Fig. 3. Comparison between target auto correlation and solution of the
optimization problem
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Fig. 5. Trajectory of the nonGaussian process

precisely let be distributed as a random vector
such that and have a parameter exponential distribution
and such that the dependancy between and be defined
by the Gumbel copula :

The target autocorrelation function is:

(22)
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Fig. 6. Histogram of the distribution

The functional representation of in terms of independant
Gaussian processes can be derived by the general relations
(9),(9) and (9), but here, we will use a specific and simpler
algorithm to simulate a two dimension random vector
according the Gumbel’s copula:
generate 2 independant uniform variables over , et
.
solve

construct and using relations

where defines the Gumbel’s copula and

Remarks 4.2: This algorithm cannot be generalized to
higher dimension copulas.
Function is the cumulative distribution function of ran-
dom variable .
The functional representation of is therefore given by:

As in the two previous examples results of this approach is
illustrated through figures 6-10.
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