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Abstract—Since 1984 many schemes have been proposed for 
digital signature protocol, among them those that based on discrete 
log and factorizations. However  a new identification scheme based 
on iterated function (IFS) systems are proposed and proved to be 
more efficient. In this study the proposed identification scheme is 
transformed into a digital signature scheme by using  a one way hash 
function. It is a generalization of the GQ signature schemes. The 
attractor of the IFS is used to obtain public key from a private one, 
and in the encryption and decryption of a hash function. Our  aim is 
to provide techniques and tools which may be useful towards 
developing cryptographic protocols. Comparisons between the 
proposed scheme and fractal digital signature scheme based on  RSA 
setting, as well as, with the conventional Guillou-Quisquater 
signature, and RSA signature schemes is performed to prove that, the 
proposed scheme  is efficient and with high performance. 

Keywords—Digital signature, Fractal, Iterated function systems 
(IFS), Guillou-Quisquater (GQ) protocol, Zero-knowledge (ZK) 

I. INTRODUCTION 
UBSEQUENT to the appearance of the first idea of a 
digital signature that relied on public key algorithms, 

many novel schemes were introduced and many new 
properties added. A ZK proof of identity is a novel idea in 
the identification schemes that relied on public key 
algorithms. It is cryptographic protocols provides provably 
secure entity authentication, without revealing any 
knowledge to any entity or to any eavesdropper based on 
hard computational problem.  

Secure identification is an important security affair to 
avoid computer fast developments. Using a hash function, a 
secure digital signature scheme can be constructed. A digital 
signature scheme has equal complexity as the identification 
scheme [1]. It is used to build effective communication tools 
and to ensure privacy. The ZK protocol was proposed at first 
as a method for exchanging public keys, for creating digital 
signatures or for protecting digital cash on smart cards. It is 
considered as time-consuming than other authentication 
methods, but also harder to crack [2]. The identification 
protocol by GQ is a particular type of digital signature 
defined in an RSA setting, but generates its own signature, 
which is vulnerable compared to the digital signature 
generated by RSA scheme. The concept of a digital signature 
was introduced by Diffie and Hellman in1976. They 
published their landmark paper”New Directions in 
Cryptography” [3]. The RSA signature is the first method 
discovered and it is approved as a standard system and is 
popular and most widely used. 
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The signature works in Zn where n is the product of two 
large primes’ p and q, and its security is based on the hardness 
of the modeling and factorization problem. The ZK Proof  was 
first introduced by Goldwasser, Micali and Rackoff  [4] in 
1985. The wide applicability of ZK was demonstrated by 
Goldreich, Micali and Wigderson  in [5]. Fiat and Shamir [6] 
introduced an identification and signature scheme that helps to 
prove the identity and the authenticity of the messages. The 
system generate signature which is vulnerable compared to the 
digital signature generated by the RSA scheme. Guillou and 
Quisquater (GQ) presented an identification and signature 
scheme [7].  It is an extension of the RSA protocol which 
reduces the number of rounds needed to 1, and its security is 
based on intractability of RSA problem.  

Unlike the identification and signature scheme of previous 
studies which based on factorization problem or discrete 
logarithm problem on a finite field, new systems for 
identification and signature based on infinite fields pose as 
new challenges in modern cryptosystems. Alia, M. and A. 
Samsudin in [8] proposed a new ZK proof of identity 
protocol based on Mandelbrot and Julia Fractal sets. They 
identified that the security of the proposed fractal ZK proof 
of identity is based on the NP-hard problem and the 
randomness of the output generated. Shuichi Aono, 
Yoshifumi Nishio, in [1] proposed an authentication protocol 
by using of three times the authentication interaction. This 
authentication protocol is based on iterations of the logistic 
map in public-key cryptography. Al-Saidi N. and Rushdan 
M. in [9] proposed a new digital signature scheme based on 
IFS. They generate the new digital signature system, based 
on fractal attractor.The remaining sections of this paper are 
organized as follows. The mathematical preliminaries about 
the iterated function system are presented in the materials 
and methods section. Following this the concepts of digital 
signature schemes, and GQ signature are summarized. A 
new digital signature identification scheme, based on IFS as 
a generalization of (GQ) identification and signature 
schemes is proposed. An example, and the performance 
analysis, are analyzed in the results and discussions section. 
Finally  conclusions are drawn. 

 
II. MATERIALS AND METHODS 

 
A- Iterated Function Systems 
The term “iterated function system” (abbreviated: IFS) 

was coined in [10] by Barnsley & Demko to describe a 
general framework of dynamics. However, most of the 
results about the IFS model are presented in [11]-[12]. This 
section provides an overview of the major concepts and 
results of Iterated Function System (IFS) and their 
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application. A more detailed review of the topics in this 
section are as in [13]-[14].  

 
Definition 1. Given a metric space (X,d), the space of all 

nonempty compact subset of X is called the Hausdorff space 
H(X). The Hausdorff distance h is defined on H(X) by, 
h(A,B)= max{inf{ε>0; B⊂Nε(A)}, inf{ε>0; A⊂Nε(B)}}     (1) 

 
Definition 2. For any two metric spaces (X,dX) and (Y,dY), 

a transformation w:X→Y is said to be a contraction if and 
only if there exists a real number s, 0<s<1, such that 
dY(w(xi),w(xj))≤ sdX(xi,xj), for any xi,xj ∈X, where s is the 
contractivity factor for w. 

 
Definition 3.  An (hyperbolic) iterated function system is a 

couple (X, w), where w={wi},i=1,…N, such that  wi:X→X , 
which are contractions of contractivity factors si∈[1,0) with 
respect to the metric d. 

An IFS describes a unique set: it is the attractor. The 
attractor is an invariant under the Hutchinson operator of the 
IFS and is very often fractal. The following theorem, 
fundamental to the study of iterated function systems, asserts 
that, for any IFS, such a set is always exists. It first appeared 
in Hutchinson [11]. 

 
Theorem 1. (Fundamental Theorem of Iterated Function 

Systems) For any IFS w={wi},i=1,…N there exists a unique 
non-empty compact set A∈Rn, the invariant attractor of the 
IFS, such that A=w(A). 

Another important property (Theorem 2) of contractive 
transformations of a complete metric space within itself, is 
known as the contraction mapping theorem,  

 
Theorem 2. Let w:X→X  be a contraction on a complete 

metric space (X,d). Then, there exists a unique point xf ∈X 
such that w(xf)=xf. Furthermore, for any x∈X, we have  

f
n

n
xxw =

∞→
)(Lim o , where wºn is the n-fold composition of w. 

 
Definition 3. Any affine transformation w:R2→R2 of the 

plane has the form, 

.bXA
f
e

y
x

d      c
b      a

y
x

w
v
u

+=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ r                      (2) 

where (u,v), (x,y)∈ R2,  are any points on a plane. 
By considering a metric space (X,d) and a finite set of 

contractive transformation wn : X→X, 1≤n≤N, with 
respective contractivity factors sn, we proceed to define a 
transformation W: H(X)→ H(X), where H(X) is the 
collection of nonempty, compact subsets of X, by, 
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== for any   B∈H(X)                        (3) 

It is easily shown that W is a contraction, with 
contractivity factor s=max 1≤n≤N sn. The mapping W is 
usually referred to as Hutchinson operator. It follows from 
the contraction mapping theorem that, if (X,d) is complete, 

W has a unique fixed point A∈H(X), satisfying the 
remarkable self covering condition. 

      U
N

i
i AwAWA

1

)()(
=

==                                                   (4) 

B- Signature Identification. 
A digital signature (DS) is performed by three algorithms 

(key generation, signing and verification). It is a polynomial-
time algorithms [15]. 

– Key Generation. On input k,  where k denotes the 
security parameter, the algorithm produces a pair of 
matching public and secret keys (pk, sk). 

– Signing. On input (sk,m), the algorithm returns a 
signature σ = Signsk(m), where m is a message. 

– Verification. On input (pk,m, σ), the algorithm returns 1 
(accept) or 0 (reject). It is required that 
Verifypk(m,σ)=1, for all σ ← Signsk(m). 

 
C- Guillou-Quisquater Signature Scheme. 
The GQ signature scheme is a modification of the GQ 

identification protocol obtained by replacing the challenge 
with a one-way hash function SHA-1. The signing key J and 
the verification key B are related via JBv=1. The three 
components of the GQ signature are presented as follows 
[16]. 

1. Key generation: The signer generates two primes p and 
q (n =pq), and chooses a prime e as the public exponent 
in the RSA setting. Then computes d = e−1 (mod φ(n)), 
chooses a random number J∈Zn and computes the 
signing key s = (1/J)d (mod n). He then publishes the 
verification key set VK = (n, e, J, SHA-1), where SHA-1 
is a hash function,  SHA-1:{0, 1}* → Zn*. The signing 
key B and the system secret for the signer d, are kept 
secret separately. 

2. Signature generation: The signer chooses a random 
number r∈Zn* and computes s= SHA-1(re || M) and z= 
rBa. The signature pair is (s, z).  

3. Signature verification: Upon receiving (s,z), the verifier 
computes s'= SHA-1(zeJa || M). 

The signature is accepted if a=a'.  
In this scheme, only someone with knowledge of B can 

successfully forge the signature. Given arbitrary J, to 
compute B, the e-th root of 1/J is the inverse RSA problem, 
which is assumed to be intractable. 

 
D- Using Fractal to Generalize GQ- Identification 

Protocol. 
The theory of fractal sets is a modern domain of research. 

Iterated function systems (IFS) have been used to define 
fractals. Such systems consist of sets of equations, which 
represent a rotation, translation, and scaling. These equations 
can generate complicated fractal images [17]. An 
explanation is given here on how to get GQ signature from 
GQ identification based on iterated function system. 

 
The Fractal method [9]:  To generate fractal attractor, the 
Hutchinson operator W is constructed based on a given 
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affine transformation. Consider an IFS consisting of the 
maps, 
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Fractal generated using IFS of four affine transformation 
(w1,w2,w3,w4) are used and arranged in a matrix H, where the 
generalized case can be easily followed. The affine 
transformation given by (5), satisfy the semi-group property. 

  A dummy coordinate Z with value 1 is added to 
represent the translation in the affine transformation, and the 
2-dimensional matrix (5) are structured by (3 by 3) matrix as 
in (6).  
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We calculate the Hutchinson operator W=w4w3w2w1,   and 
represent it in the form of  (6), then we have (7). 
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A= a4a3a2a1,   A≠1. 
B=b4b3b2b1,    B≠1, 
C=a4a3a2c1+a4a3c2+a4c3+c4. 
D=b4b3b2d1+b4b3d2+b4d3+d4. 
This W is used to generate the attractor, without dealing 

with iteration process. This attractor is generated by 
computing Wn for large n. 

 
The  Algorithm 
The fractal identification protocol can be turned into a 

digital signature mechanism by using a one way hash 
function SHA-1: {0,1}*→Zn

*. It consists of two parts, key 
generation, and signature protocol. 

 
1- Key Generation 
Initially the parameters (matrix H, g, p) must be agreed 

upon by the prover and the verifier, (where g∈Z, and p is 
prime number).  

We need to generate the number of iteration secretly to 
find the attractor of the IFS, which is used for generating the 
public key and for signing and verifying process. A Diffie-
Hellman key exchange  protocol is used to generate this 
secret private key n.  

Each entity has to create a public key and a corresponding 
private key. 

a- Entities A & B generate the numbers (x, s), (x’,r) as 
private keys, where x,x’∈R, r,s∈Z. 

b- Calculate Fs=gs (mod p), Fr=gr (mod p) as public keys. 
c- Exchange Fs, and Fr. 
d- After receiving Fr, entity A calculates a private shared 

key n=(Fs)r (mod p), the number of iteration for the 
IFS, and generates the fractal attractor Wn to be used in 
the cryptosystem, 
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where, Tn(A)=An-1+An-2+…+A+1 , and 
            Tn(B)= Bn-1+Bn-2+…+B+1. 
e- Based on their private keys x, x’, and using the fractal 

attractor Wn   entities A & B generate the public keys u 
= Wn(x,0,1), and u’ = Wn(x’,0,1), where 

C)A(TxAu n
n += , and   

C)A(TxAu n
n +′=′  

f- Exchange (u) and (u’) between them. 
 
2- Signature Protocol 
Entity A signs a message M. Any entity B can verify this 

signature by using A's public key. 
Signature generation: Entity A should do the following: 
a- Determine the message to be signed and represent it as 

pairs M=(m1;m2). 

b- Calculate  
x.*

A
C)A(T'uz n
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 using the public key u’ 

and the private key x. 
c- Use z and the fractal attractor Wn  to find v’=Wn(0,z,1), 

where DBTzBv n
n )(' += . 

d- Then the hash function SHA-1 is used to generate the 
signature s'=SHA-1(M,v') and send s' with the message 
M to entity B. 

Verification: To verify A's signature s' on M, Entity B 
should do the following: 

e- Use the public key u and his private key x’ to calculate 

x'.*
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f- After receiving (M,s') the verifier generate the signature 
s=SHA-1(M,v), where v=Wn(0,z',1) is calculated using  
the private key z' and the fractal attractor Wn, such that 

DBTzBv n
n )('+= . 

g- Compare if s=s', then the signature has been verified. 
 

III.    RESULTS AND DISCUSSION 
The algorithm for the proposed protocol in this paper is 

formalized based on nonlinear fractal function (IFS), that is 
defined within the infinite subfield (0,1). All the algorithms 
are carried out using Java under Net-Beans IDE 6.8. The 
message transforms to its corresponding ASCII codes, with a 
possibility to be read either from a file or by direct input 
text.  The efficiency of the algorithms is documented in this 
section. All the results have been obtained using a computer 
with the specifications: 3.0GHz Intel Cor. 2 Duo CPU, and 
2GB RAM. 

Working example: The IFS transformations used in this 
example are as follows: 
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 Fractal attractor of this affine transformation function is 
illustrated in Fig.1, it is a known fractal example called 
Sierpinski Triangle. The Hutchinson operator W is given in (7) 

.
1      0       0
1875.00625.0    0
6875.0    00625.0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

            
           
         

W               (7) 

Sierpinski Triangle is used to carry out the fractal digital 
signature protocols with different key size as illustrated in 
Table I. 

 
Fig. 1 Fractal attractor for the given IFS 

A- Performance Analysis 
The fractal protocols is able to withstand the known 

attacks. They are considered as time consuming to be 
involved in solving non-linear system of equations 
numerically over the aforementioned infinite subfield. Hence 
the attempts to recover the private key using the trial and 
error methods seems to be computationally  not feasible, 
even if the attacker can access some secret parameters, 
because they are generated randomly. However, due to the 
open key space and big key size, the search space is massive, 
and the cumulative and truncation errors that accompany all 
numerical solutions of non-linear system of equation pose 
some strength to the proposed algorithm  to obtain imprecise 
decimal numbers. Some additional random values are 
introduced to the algorithm, that could help to ensure a large 
number of unknowns over number of equations to secrete 
the values of ciphertext through transmission. These added 
noise is removed after decrypting using their inverses. 
Hence, many well known attacks fail to solve the system of 
equation and find the imprecise secret key parameter from 
the given public one. The one way property of the 
authenticated value (Hash function SHA-1) increases the 
insurance that the message cannot be recovered easily, so it 
is considered as a factor to strengthen the security of the 

protocol.To prevent the brute force attack, the choice of the 
key size becomes a crucial issue. The key space depends on 
the size of the key. For any chosen number of bits (n), the 
fractal key space includes 2n possible key values, while the 
number of possible keys for  RSA and GQ is limited to the 
number of primes in Zp where p is the largest n-bits prime. 
The estimated value of RSA key space is calculated by 
n=log n, where key space is another factor play the main role 
in the security of digital signature protocol, to ensure the 
hardness of the problem and to prevent some known 
attacks.The performance comparison of the proposed 
protocol among fractal digital signature protocol [9],  is done 
in terms of execution time and key size, as shown by Table I. 
Also among two another digital signature protocols based on 
finite field that deals with discrete log and factorization 
problem, which are GQ, and RSA  digital signatures. We 
found that, as explained in Table I, the fractal digital 
signature based identification performs better than fractal 
digital signature based RSA in term of key generating time, 
but the latest performs better in term of the signature and 
verification times. The first value in each column in Table I, 
represent the key generation time and the second value is the 
sum of the signature and the verification time. From the 
same table, we conclude that  GQ digital signature scheme 
perform better than  RSA digital signature schemes in terms 
of the same parameters and under the same environment. 
The resulted  values for different key size in Table. I is 
graphed in Fig.(2,3). 

IV.    CONCLUSIONS 
Based on nonlinear fractal functions defined within the 

infinite subfield (0,1), a new digital signature protocol is 
proposed in this paper. The main purpose for investigating 
into this study is to find a system which perform better than 
what exist currently. Also using the fact that fractal functions 
was proved as an NP-Hard problem, is to ensure it cannot be 
solved in practical amount of time. Hence, many well known 
attacks fail to solve the nonlinear systems and find the 
imprecise secret key parameter from the given public one. 
Even if it is theoretically possible, it is computationally not 
feasible. After implementing the fractal digital signature 
protocols and the counterpart public protocols, such as RSA 
and GQ digital signatures,  we conclude that, the proposed 
schemes based on fractal functions resulted in a better 
performance compared to the counterpart schemes in terms 
of the evaluation parameters, key space, and key size.  
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TABLE I 

PERFORMANCE COMPARISION FOR SOME DIGITAL SIGNATURE PROTOCOLS 

 Fractal Based GQ Fractal Based 
RSA 

GQ-Signature RSA-Signature 

No. of  
Bits 

Key Gen. Time-- 
Sig.&Ver. Time 

Key Gen. Time -- 
Sig.&Ver. Time 

Key Gen. Time -- 
Sig.&Ver. Time 

Key Gen. Time -- 
Sig.&Ver. Time 

128 15-20 25-4 20-30 23-304 
256 30-24 47-4 50-96 49-1188 
512 52-42 95-13 150-440 177-6196 
1024 95-152 274-42 1340-2985 2014-41245 
2048 216-1006 1285-99 13168-21829 19470-310278 
4096 556-7247 8306-586 37832-168402 350983-2330175 
8192 1605-56407 58768-1856 834826-1326331 5033936-18257595 

 

 
Fig. 2 Key Generation Time for Some Digital Signature Protocols 

 
Fig. 3 Signature and Verification Time for Some Digital Signature Protocols 

 


