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 
Abstract—This paper investigates the nature of the fluctuation of 

the daily average Solar wind speed time series collected over a period 
of 2492 days, from 1st January, 1997 to 28th October, 2003. The 
degree of self-similarity and scalability of the Solar Wind Speed 
signal has been explored to characterise the signal fluctuation. Multi-
fractal Detrended Fluctuation Analysis (MFDFA) method has been 
implemented on the signal which is under investigation to perform 
this task. Furthermore, the singularity spectra of the signals have been 
also obtained to gauge the extent of the multifractality of the time 
series signal. 
 

Keywords—Detrended fluctuation analysis, generalized Hurst 
exponent, holder exponents, multifractal exponent, multifractal 
spectrum, singularity spectrum, time series analysis. 

I. INTRODUCTION 

OLAR wind [1] consists of ionized plasma along with 
some residual solar magnetic field. It radially outflows 

from the hot corona of the Sun into interplanetary space. The 
massive differential pressure of the gas between the solar 
corona and interstellar space is the primary cause of this solar 
wind flow. This colossal differential pressure difference forces 
the charged solar plasma to overcome the intense gravitational 
force of the Sun and causes it to stream out through the solar 
surface in the form of solar wind. The nature of the fluctuation 
of this solar wind is a matter of great curiosity to the scientists 
and astrophysicists. In this paper, the authors have tried to 
implement the statistical signal processing methodology to 
shed some light on this aspect. The solar wind speed time 
series from 1st January, 1997 to 28th October, 2003 (Space 
Weather Prediction Center, National Oceanic and 
Atmospheric Administration) has been taken as the signal 
under investigation. The complex behaviour of the signal has 
been characterized by probing the multifractality and 
inspecting the singularities in it. A system is said to be fractal 
when it has a non-integer dimension or fractal dimension. A 
fractal system which has more than one fractal dimensions are 
known as a multifractal system. So, for a multi-fractal system 
instead of a single fractal dimension, a continuous spectrum of 
the fractal dimension is required to explain its dynamics. This 
continuous spectrum is referred to as a singularity spectrum. 
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MFDFA, which is immune to the effect of the non-
stationarity of the signal, has been used to investigate the 
presence of multifractality, to learn about the degree of 
multifractality and nature of the singularity spectrum of the 
solar wind speed time series. MFDFA removes the underlying 
polynomial trends and focuses on the study of the fluctuation 
[2]-[5]. 

Here the detailed analysis of fractal properties of the solar 
wind speed time series has been unearthed. The signal 
parameters like scaling exponents τ(q), multiracial scaling 
exponents h(q) and generalised multifractal dimensions D(q), 
which quantifies the multifractality of the signal have been 
computed. For tracking the singularities in the time series 
signal, the singularity strength or Holder exponent (α) is 
computed and the Hausdorff dimension or singularity 
spectrum f(α) is obtained. The results from all these methods 
indicate that the time series exhibits strong multifractality. 

II. METHODOLOGY 

The method of MFDFA [6], [7] is the modified edition of 
generalized detrended fluctuation analysis (DFA) [8]. The 
intrinsic fluctuation of the time series signal is taken out by 
discriminating the polynomial trends from the signal. For a 
time series X(i), MFDFA basically consists of five steps [9], 
[10]. The first three steps are essentially identical to the 
conventional DFA procedure. 
Step 1: The signal profile Y(j) is determined as: 
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Here X  is the mean of the time series. 
Step 2: The profile Y(j) is segmented into Ns non-overlapping 
segments of equal length s. Since the length N of the time 
series may not be a multiple of the considered time scale s, a 
short tail at the end of the profile may remain. In order to take 
this tail of the series into account, the same procedure is 
repeated starting from the opposite end. Thereby, 2 Ns 
segments are obtained altogether. In each segment, we fit the 
integrated time series by using a polynomial function ρv(j) 
which is regarded as the local trend. The local trend in each 
segment is subtracted and the detrended fluctuation function 
Ys(j) is obtained as  
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Step 3: In each segment of size s, from the detrended 
fluctuation function, we determine the variance F2(s, v): 
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for each segment v, v= 1, 2,….Ns and 
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for v= Ns+ 1,……….., 2Ns. 

The order of the polynomial ( )v j  determines the order of 
trend in the time series which will be removed. For the linear, 
quadratic, cubic or higher order polynomials, MFDFA are 
denoted accordingly like MFDFA1, MFDFA2, MFDFA3 and 
so on [11], [12]. MFDFA2 which will remove trend up to 
quadratic one is chosen.  
Step 4: The averages of F2(s, v) over all segments Ns are taken 
to find the qth-order fluctuation function Fq(s) as  
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Here the moment q can be any real value except zero. Because 
when q  0, Fq(s) will diverge. So a logarithmic average has 
been taken to find Fq(s) at q  0 as 
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This procedure is repeated for different scale length s  and 
Fq(s) for different values of q is computed. 
Step 5: The final step is to estimate the slope of the log-log 
plot of Fq(s) versus s for each value of q. From this plot, the 
scaling behaviour of the fluctuation functions can be 
determined. If the series X(i) are long-range power-law 

correlated, Fq(s) increases with increase of s , as a power-law 
 

( )( ) h q
qF s s

                            
(7) 

 
Here, the moment q from -10 to +10 with the increment of 

0.25 and the scale s from 10 to 300 (≤ N/5) [13] with the 
increment of 5 has been taken. Form the log–log plot of Fq(s) 
against s, h(q) is calculated for various values of q. If h(q) 
varies with q, one can conclude that the scaling is multifractal. 
For mono fractal time series, h(q) is a constant H. If H = 0.5, 
there is no correlation and the data is an uncorrelated signal 
(white noise). For H < 0.5, the data is anti-correlated. The data 
is long-range correlated for H < 0.5. The exponent h(2) is 
identical to the well-known Hurst exponent H. Therefore, the 
exponent h(q) is called generalized Hurst exponent. 

For positive values of q, the segments v with large variance 
F2(s, v) will dominate the average Fq(s). Thus, for positive 
values of q, h(q) describes the scaling behaviour of the 
segments with large fluctuations. For negative values of q, the 

segments v  with small variance F2(s, v) will dominate the 
average Fq(s). Hence, for negative values of q, h(q) describes 
the scaling behavior of the segments with small fluctuations. 

The generalized Hurst exponent h(q) is related to 
multifractal exponent τ(q) which is regarded as a characteristic 
function of the fractal behavior. For a time series, τ(q) can be 
obtained through the generalized Hurst exponent h(q) as: 

 

( ) ( ) 1q q h q                                 (8) 
 
If τ(q) versus q is linear, the time series is monofractal. On 

the other hand, non-linear τ(q) vs. q curve is the signature of 
non-homogeneous functions that exhibit multifractal 
properties under the time series signal. On the basis of the 
obtained τ(q) characteristics, we can estimate the well-known 
curves of f(α)- α (where α is the Lipschitz–Holder exponent) 
and D(q) curve. The curve of f(α) versus α is called the 
multifractal spectrum for the time series data X(i). This 
spectrum is an important tool in fractal investigation for the 
time series. The Holder exponents α and the singularity 
spectrum f(α) are calculated by Legendre transform as: 
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A single-humped spectrum curve is an indication towards 

multifractality. In the case of a monofractal time series, the 
curve of the spectrum converges to a point. The range of the 
fractal exponents present within the multifractal signal is 
reflected from the width of the single-humped spectrum curve, 
whereas the maximum of the spectrum provides the 
information about the dominant fractal exponent within the 
range. The generalized multifractal dimension D(q) is related 
to τ(q) as: 
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For multifractal time series the D(q) values have a strong 

non-linear dependence on q values which is a typical 
characteristic of multifractals.  

III. RESULTS 

Fig. 1 represents the exponentially smoothed and denoised 
time series [14] of the daily Solar Wind Speed from 
1stJanuary, 1997 to 28th October, 2003. 
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Fig. 1 Solar Wind Speed Time series 
 

Fig. 2 gives the comparison of log-log plot of Fq(s) against 
s for various values of q using MFDFA1, MFDFA2, 
MFDFA3 and MFDFA4 to the solar wind speed time series 
data. From Fig. 2 it is found that the difference between the 
slopes of the log-log plot of Fq(s) against s for MFDFA1 and 
MFDFA2 remains very small for every values of q, whereas 
those for MFDFA3 and MFDFA4 varies for every q. Thus, it 
can be said that the time series for the solar wind speed may 
have trend up to second-order and hence MFDFA2 is suitable 
for further analysis of the signal. 

 

Fig. 2 log-log plot of Fq(s) against s of the solar wind speed time series data for various values of q =-10, -5, 0, 5 and 10 using MFDFA1, 
MFDFA2, MFDFA3 and MFDFA4 

 

 

Fig. 3 log-log plot of Fq(s) against s with MFDFA2 for q= -10, -6, -2, 2, 6, 10
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Fig. 3 shows the variation in the log log  plot of Fq(s) 

against s with MFDFA2 for q = -10, -6,  -2, 2, 6, 10for the 
solar wind speed time series signal. The mean Fq(s) taken over 
all the scales s  is denoted by F(q). Fig. 4 gives the 

comparative view of the plots of F(q) against q, h(q) against q, 
τ(q) against q, D(q) against q, α(q) against q, f(α) against α(q) 
and f(α)against q for the solar wind speed time series data. 

 

 

Fig. 4 Comparative view of the plots for the solar wind speed time series data (a) F(q) against q, (b) h(q) against q, (c) τ(q) against q, (d) D(q) 
against q, (e) α(q) against q, (f) f(α) against α, (g) f(α)against q 

 
Extrapolating the curve in Fig. 4 (f), we obtain the results 

like αmin (f = 0), αmax (f = 0) in the Table I. 
There are two strong causes in a signal to exhibit 

multifractal behaviour: (i)due to the broad probability density 
function (PDF) values of the time series and (ii) due to the 
different long-range correlations for small and large 
fluctuations [15]. If the cause of multifractality is the first one, 
then multifractality in the signal cannot be removed by 
randomising the series, whereas if the cause of the 
multifractality is the second one, then the series may have 
PDF with finite moments that are a Gaussian distribution. If 
the cause of multifractality is both the randomised series will 
show weaker multi fractility than the original signal. The 
easiest way to detect the cause of the multifractality is to 
analyse the corresponding randomised (shuffled and 
surrogate) [16] time series. As the values are being put in 
randomly due to shuffling or surrogating, all the correlations 
are being destroyed but the PDF stay unaffected. So, the time 
series whose randomised version gives h(q) = 0.5 for all values 
of q can be said to have multifractality due to type (ii) reason. 
On the contrary if the randomized version of the signal reveals 

that the h(q) ≠ 0.5 and is dependent on q, the multifractality 
within the signal is due to type (i) reason. The multifractality 
nature due to the fatness of the PDF signals is not affected by 
the shuffling procedure. On the other hand, the correlations in 
the surrogate series do not change, but the probability function 
changes to the Gaussian distribution. If multifractality in the 
time series is due to a broad PDF, h(q) obtained by the 
surrogate method (amplitude-adjusted Fourier transform) will 
be independent of q. Fig. 5 shows the comparative view of the 
plots of F(q) against q, h(q) against q, τ(q) against q, D(q) 
against q, α(q) against q, f(α) against α and f(α) against q for 
the original, surrogated and shuffled solar wind speed signals. 

 
TABLE I 

NUMERICAL RESULTS FOR THE SINGULARITY SPECTRUM FROM FIG. 4 (F) 

Spectrum Parameter Obtained Value 
αmin (f = 0) 
αmax (f = 0) 

W = αmax - αmin 
fmax(α) 

α (f =fmax(α) 

-0.3110 
0.6850 
0.9960 

2 
0.0792 
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Fig. 5 Comparative view of the plots for original, surrogated and shuffled time series data: (a) F(q) against q, (b) h(q) against q, (c) τ(q) 
against q, (d) D(q) against q, (e) α(q) against q, (f) f(α) against α, (g) f(α) against q 

 
IV. DISCUSSION AND CONCLUSION 

As shown in Fig. 4 (b), the generalized Hurst exponent h(q) 
obviously depends on q. The result that the dependence of 
exponent h(q) on q indicates the solar wind speed time series 
possesses multifractality. The relationship between τ(q) and q, 
as shown in Fig. 4 (c), is non-linear which is another 
indication of multifractal behaviour under the fluctuations of 
the solar wind speed time series signal. From the singularity 
spectrum as in Fig. 4 (f) the curve f(α) is single-humped which 
also shows the multifractality of the solar wind speed time 
series signal. The width of the singularity spectrum indicates 
the range of fractal exponents present, and thus, it measures 
the degree of the multifractality of the series. The width of the 
singularity spectrum is measured by extrapolating the fitted 
curve to zero. We calculate the width of spectrum function is 
W = 0.9960. The maximum of the spectrum function is 
f(α)max= 2, which occurs at α = 0.0792. These results indicate 
the time series have intense multifractality. From Figs. 5 (b) 
and (c) it is observed that variation in h(q) and τ(q) for the 
randomised data series are much flatter than those of the 
original signal. Fig. 5 (b) shows that h(q) for the randomised 
data series are not equal to 0.5. This signifies that the 
multifractality in the signal is mainly due to the fat–tailed PDF 
of the time series. 
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