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Abstract—The mobile systems are powered by batteries. 
Reducing the system power consumption is a key to increase its 
autonomy. It is known that mostly the systems are dealing with time 
varying signals. Thus, we aim to achieve power efficiency by smartly 
adapting the system processing activity in accordance with the input 
signal local characteristics. It is done by completely rethinking the 
processing chain, by adopting signal driven sampling and processing. 
In this context, a signal driven filtering technique, based on the level 
crossing sampling is devised. It adapts the sampling frequency and 
the filter order by analysing the input signal local variations. Thus, it 
correlates the processing activity with the signal variations. It leads 
towards a drastic computational gain of the proposed technique 
compared to the classical one. 

Keywords—Level Crossing Sampling, Activity Selection, 
Adaptive Rate Filtering, Computational Complexity. 

I. INTRODUCTION

HIS work is a contribution in the development of smart 
mobile systems. The goal is to reduce their size, cost, 

processing noise, electromagnetic emission and especially 
power consumption as they are remotely powered by batteries. 
This can be done by smartly reorganizing their associated 
signal processing theory and architecture. The idea is to 
combine the signal driven processing with the asynchronous 
circuit design in order to reduce the system processing 
activity.  

Most of the real life signals like speech, seismic, Doppler 
and biological signals are time varying in nature. The spectral 
contents of these signals vary with time, which is a direct 
consequence of the signal generation process [5]. Classical 
systems are based on the Nyquist signal processing 
architectures. They do not take advantage of the input signal 
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local variations. These systems are highly constrained due to  
the Shannon sampling criterion especially in the case of low 
activity sporadic signals. As in such a case they cause a large 
number of samples without any relevant information, so a 
useless increase of the system activity.  

This problem is resolved by employing a signal driven 
sampling scheme, which is sensitive to the input signal local 
variations [12, 17]. It is based on the principle of “level-
crossing” that provides a non-uniform time repartition of the 
samples [1], consequently it is named as the LCSS (level 
crossing sampling scheme). This sampling scheme drastically 
reduces the activity of the post processing chain because it 
only captures the relevant information [11, 13]. In this 
context, analog to digital converters based on the LCSS have 
been developed [2, 4, 18]. Algorithms for processing [3, 11, 
13, 24] and analysis [8, 12, 19] of the non-uniformly spaced 
out in time sampled data obtained with the LCSS have also 
been developed. 

This paper focuses on the development of an efficient FIR 
(Finite Impulse Response) filtering technique. The idea is to 
extract the input signal local features and then use them to 
pilot the system processing activity accordingly. This idea is 
realised by smartly combining the features of both non-
uniform and uniform signal processing tools, which promise a 
drastic computational gain of the proposed technique 
compared to the classical one. 

Section II briefly reviews the LCSS. Complete functionality 
of the proposed filtering technique and its appealing features 
description are given in Section III. Section IV deals with the 
computational complexity and the processing error. In Section 
V, the proposed technique performance is evaluated for a 
speech signal. Section VI finally concludes the article. 

II. LCSS (LEVEL CROSSING SAMPLING SCHEME)
The concept of the LCSS is not new and has been known at 

least since 1950s [20]. It belongs to a class of sampling 
schemes, which are named as the signal dependent sampling 
schemes like zero-crossing sampling [21], Lebesgue sampling 
[22], reference signal crossing sampling [23], etc.  

The LCSS is a natural choice for sampling the time varying 
signals. It lets the signal to dictate the sampling process [17]. 
The non-uniformity in the sampling process represents the 
signal local variations [12].  
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In the case of LCSS, a sample is captured only when the 
input analog signal x(t) crosses one of the predefined 
threshold levels [1]. The samples are not uniformly spaced in 
time because they depend on x(t) variations as it is clear from 
Fig. 1.  

According to [1], the sampling instants of a non-uniformly 
sampled signal obtained with the LCSS are defined by 
Equation 1. 

nnn dttt 1  (1) 

1nnn ttdt (2)

Where tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between the current and the 
previous sampling instants (cf. Equation 2). 
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Fig. 1 Level crossing sampling scheme 

III. PROPOSED SIGNAL DRIVEN FILTERING TECHNIQUE

The principle of proposed technique is represented by the 
block diagram, shown in Figure 2.  
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Fig. 2 Block diagram of the proposed filtering technique 

The activity selection and local features extraction [8] is the 
base of the proposed technique. It makes to achieve the 
following goals. 

Adaptive rate sampling (only relevant number of 
samples to process)  
Adaptive rate filtering (only relevant number of 
operations to deliver per filtered sample).  

The achievement of above defined goals assures a drastic 
computational gain of the proposed filtering technique 
compared to the classical one. The approaches to realize it are 
detailed in the following subsections. 

A. Adaptive Rate Sampling 
In the studied case, the AADC [2], is employed for 

digitizing x(t) (cf. Figure 2). An M-bit resolution AADC has 
2M - 1 quantization levels which are uniformly disposed 
according to x(t) amplitude dynamics. The AADC has a finite 
bandwidth. Thus, to assure a proper signal capturing a band 
pass filter with pass-band [fmin; fmax], is employed at the AADC 
input.  

Reconstruction issue of the non-uniformly sampled signal 
has been discussed in [7, 14]. In [14], author showed that a 
bandlimited signal can be ideally reconstructed from its non-
uniformly spaced samples, provided that the average number 
of samples satisfies the Nyquist criterion. In the case of 
AADC, the number of samples is directly influenced by M and 
the signal characteristics [2, 4, 18]. Thus, for a given 
application an appropriate M should be chosen in order to 
respect the reconstruction criterion [14]. 

The non-uniformly sampled signal obtained with the 
AADC can be used directly for further non-uniform digital 
processing [3, 12].  However in the studied case, the non-
uniformity of the sampling process, which yields information 
on the signal local features, is employed to select only the 
relevant signal parts. Furthermore, the characteristics of each 
signal selected part are analyzed and are employed later on to 
adapt the proposed system parameters accordingly. This 
selection and local features extraction process is named as the 
ASA (Activity Selection Algorithm). The complete procedure 
of activity selection has been explained in [8]. The ASA 
displays interesting features with the AADC, which are not 
available in the classical case. It selects only the interesting 
parts of the non-uniformly sampled signal obtained with the 
AADC. Moreover, it correlates the length of the selected 
window with the signal activity, lies in it. In addition, it also 
provides an efficient reduction of the phenomenon of spectral 
leakage in the case of transient signals. This is done by 
avoiding the signal truncation with a simple and efficient 
algorithm instead of a smoothening window function, which is 
used in the classical scheme [8]. 

For a chosen M, the temporal density of the AADC 
sampling operation is a function of the input signal variations 
[11, 13, 24]. Let Fsi represents the AADC sampling frequency 
for the ith selected window Wi. Fsi can be specific, depending 
upon the window length Tsi in seconds and the slope of x(t)
part lying within this window [8]. It can be calculated by 
using the following equations. 

iii ttTs minmax                                                 (3)

i

i
i

Ts
NFs                                                             (4) 
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In Equation 3, tmaxi and tmini are the final and the initial 
times of the ith selected window. Ni is the number of non-
uniform samples lying in Wi.

Let Vin and x(t) be the AADC and x(t) amplitude 
dynamics respectively. In order to avail the complete AADC 
resolution in the studied case, x(t) is always adapted to match 

Vin. For a chosen M, The AADC maximum sampling 
frequency Fsmax and minimum sampling frequency Fsmin [11] 
are defined by Equations 5 and 6 respectively. Where, fmax and
fmin are the bandwidth and the fundamental (lowest) 
frequencies of x(t) respectively.

12..2 maxmax
MfFs (5)

12..2 minmin
MfFs (6)

Fsmax and Fsmin respectively pose the upper and the lower 
bounds on Fsi.

The selected signal lies in Wi is resampled uniformly before 
proceeding to the filtering stage (cf. Figure 2). Characteristics 
of the selected signal part lies in Wi are employed to choose its 
resampling frequency Frsi. Choice of Frsi is crucial and this 
procedure is detailed in the Section III-B. Once the resampling 
is done, there are Nri samples in Wi.

An additional error occurs due to this resampling. 
Nevertheless, prior to this transformation, one can take 
advantage of the inherent over-sampling of the relevant signal 
parts in the system [11, 13]. Hence, it improves the accuracy 
of the post resampling process [4].  

The resampling process requires interpolation, which 
changes the properties of the resampled signal compared to 
the original one. The properties of the resampled signal 
depend upon the interpolation technique used to resample it 
[9, 10]. The NNRI (nearest neighbour resampling 
interpolation) is employed for data resampling.  It is a simple 
interpolation method as it employs only one non-uniform 
observation for each resampled one. Thus, it is efficient in 
terms of the computational complexity. Moreover, it provides 
an unbiased estimate of the original signal variance, due to 
this reason, it is also known as a robust interpolation method 
[9, 10]. The detailed reasons of choosing NNRI are discussed 
in [8, 9, 10]. 

B. Adaptive Rate Filtering 
It is known that for fixed design parameters (cut-off 

frequency, transition-band width, pass-band and stop-band 
ripples) the FIR filter order varies as a function of the 
operational sampling frequency. For high sampling frequency, 
the order is high and vice versa. In the classical case, the 
sampling frequency and the filter order both remains unique 
regardless of the input signal variations, so they have to be 
chosen for the worst case. This time invariant nature of the 
classical filtering causes a useless increase of the processing 
load. This drawback has been resolved up to a certain extent 
by employing the multirate filtering techniques [15, 16, 25]. 
They achieve computational efficiency which is not attainable 

with the classical approach.
The proposed filtering technique is a smart alternative of 

the multirate filtering techniques. It adapts the sampling 
frequency and the filter order by following the input signal 
local variations, which leads to a drastic computational gain of 
the proposed technique over the classical one.  

The idea is to offline design a reference FIR filter for a 
reference sampling frequency Fref, which satisfies the Nyquist 
sampling criterion for x(t). The process can be expressed 
mathematically as: Fref  2.fmax.

During online computation, Frsi is chosen by employing the 
values of Fref and Fsi. Frsi can be specific depending upon Fsi.
The reference filter impulse response hk is sampled at Fref

during offline processing. Here, k is index of the reference 
filter coefficients. For proper online filtering Fref and Frsi

should match. The approaches of keeping Fref and Frsi

coherent are explained below.  
In the case, when Fsi  Fref, Frsi=Fref is chosen and hk

remains unchanged. This choice of Frsi makes to resample the 
selected data which lies in Wi closer to the Nyquist rate, so 
avoids the unnecessary interpolations during the data 
resampling process. Thus, adds to the computational 
efficiency of the proposed techniques.  

In the opposite, when Fsi < Fref, Frsi= Fsi is chosen and hk

is online decimated in order to reduce Fref to Frsi. In this case, 
it appears that the data lies in Wi may be resampled at a 
frequency which is lesser than the Nyquist frequency of x(t)
and so it can cause aliasing. Since the AADC sampling 
frequency varies according to the slope of x(t). A high 
frequency signal part has a high slope and the AADC samples 
it at a higher rate and vice versa [2, 4]. Hence, a signal part 
with only low frequency components can be sampled by the 
AADC at a sub-Nyquist frequency of x(t). But still it is locally 
over sampled in time with respect to its local bandwidth. It is 
valid as far as x(t) is adapted to match Vin [11, 13]. This 
statement is further illustrated with the results summarized in 
Table 3.  

In order to decimate hk the decimation factor di for Wi is 
online calculated by employing Equation 7. 

i
refi

Frs
F

d                                                              (7) 

di can be specific for each selected window depending upon 
Frsi. In order to adopt an appropriate decimation process for 
hk, a test is made on di. It is done by computing Di=floor(di)
and verifying if (Di=di). Here, floor operation delivers only 
the integral part of di. If the answer is yes, then hk is decimated 
with Di, the process is clear from Equation 8. 

kD
i
j ihh

. (8)

Equation 8 shows that the decimated filter impulse response 
for the ith selected window hj

i is obtained by picking every 
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(Di)th coefficient from hk. Here, j is index of the decimated 
filter coefficients. If the order of hk is P, then the order of hj

i is 
given as: Pi = P /Di.

For a fractional di, the process of matching Fref with Frsi

requires a fractional decimation of hk, which is achieved by 
resampling hk at Frsi.

A simple decimation causes a reduction of the decimated 
filter energy compared to the reference one. It will lead to an 
attenuated version of the filtered signal. di is a good 
approximate of the ratio between the energy of the reference 
filter and that of the decimated one. Thus, this effect of 
decimation is compensated by scaling hj

i with di. The process 
is clear from Equation 9. 

i
j

ii
j hdh .                                                                 (9) 

The complete flow chart of the proposed filtering technique 
is shown in Figure 3.  

Fig. 3 Flowchart of the proposed filtering technique 

C. Basic Example 
In order to illustrate the ARD and the ARR filtering 

techniques, an input signal x(t) shown on the left part of Figure 
4 is employed. Its total duration is 20 seconds and it consists of 
three active parts. Summary of x(t) activities is given in Table I.  

Table I shows that x(t) is band limited between fmin = 5Hz 
and fmax = 1 kHz. In this case, x(t) is digitized by employing a 
3-bit resolution AADC. Thus, for given ENOB the 
corresponding minimum and maximum sampling frequencies 
are Fsmin=70 Hz and Fsmax = 14 kHz. The AADC amplitude 
range Vin = 1.8 v is chosen, which results into a quantum q = 
0.2571 v. 

Fig. 4 Input signal (left) and the selected signal (right) 

TABLE I
SUMMARY OF THE INPUT SIGNAL ACTIVITIES

ACTIVITY SIGNAL COMPONENT
LENGTH

(SEC)
1st 0.5.sin(2.pi.20.t)+ 0.4.sin(2.pi.1000.t) 0.5 
2nd 0.45.sin(2.pi.10.t)+ 0.45.sin(2.pi.150.t) 1.0 
3rd 0.6.sin(2.pi.5.t)+ 0.3.sin(2.pi.100.t) 1.0 

Table I shows that x(t) is band limited between 50 to 500 
Hz. In this example x(t) is sampled by employing a 3-bit 
resolution AADC. Thus, Fsmax and Fsmin become 7 kHz and 
0.7 kHz respectively (cf. Equations 7, 8). Fref = 1.25 kHz is 
chosen, which satisfies the criteria given in Section II-C. Vin

= 1.8v is chosen, thus q becomes 0.2571v in this case (cf. 
Equation 5). All x(t) activities have a low and a high 
frequency component (cf. Table I). In order to filter out the 
high frequency components from each activity, a low pass 
reference FIR filter is implemented by employing the standard 
Parks-McClellan algorithm. The reference filter parameters 
are summarized in Table II. 

TABLE II
SUMMARY OF THE REFERENCE FILTER PARAMETERS

Cut-off 
Freq
(Hz)

Transition
Band
(Hz)

Pass Band 
Ripples

(dB) 

Stop Band 
Ripples

(dB) 

Fref 

(Hz) P

30 30~80 -25 -80 2500 127 

In order to apply the ASA, the reference window length   
Tref = 1 second is chosen, for this studied example [8]. The 
ASA delivers three selected windows, for the whole x(t) span 
of 20 seconds. The selected signal is shown on the right part 
of Figure 4. The three selected windows respectively 
correspond to the three x(t) activities. The selected windows 
parameters are summarized in Tables III and IV.  

TABLE III
SUMMARY OF THE SELECTED WINDOWS PARAMETERS

Wi Tsi

(Sec)
Ni

(smp) 
Fsi

(Hz)
Fref 

(kHz)
1st 0.4994 3000 6000 2500 
2nd 0.9993 1083 1083 2500 
3rd 0.9986 464 464 2500 

di = Fref / Frsi

Di = floor(di)

Di = di

hj
i = hD

i.k

IF No IF Yes Fsi < Fref

Frsi = Fref 

IF YesIF No 

Frsi  = Fsi

hj
i=Resample(hk @ Frsi)

hj
i = hk

hj
i = di .hj

i
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TABLE IV
SUMMARY OF THE SELECTED WINDOWS PARAMETERS

Wi Frsi

(Hz) di Nri

(smp) Pi

1st 2500 1 1250 127 
2nd 1083 2.3 1083 54 
3rd 464 5.4 464 24 

Table III shows that for W1 the case Fsi  Fref holds, on 
contrary, the case Fsi < Fref holds for W2 and W3. The 
interesting features of the proposed filtering technique are 
evident from Tables III and IV. These are achieved due to the 
smart combination of the non-uniform and the uniform signal 
processing tools.  

Fsi represents the sampling frequency adaptation by 
following the local variations of x(t). Ni shows that the 
relevant signal parts are locally over-sampled in time with 
respect to their local bandwidths [11, 13]. Frsi shows the 
adaptation of the resampling frequency for each selected 
window. It further adds to the computational gain of the 
proposed technique by avoiding the unnecessary 
interpolations during the resampling process. Nri shows that 
how the adjustment of Frsi avoids the processing of 
unnecessary samples during the filtering process. Tsi exhibits 
the dynamic feature of ASA, which is to correlate the 
reference window length [8] with the signal activity lying in 
it. On the contrary, in the classical case, the reference window 
length remains static and is not able to adapt according to the 
signal activity lying in it. Moreover, the windowing process 
does not select, only the active parts of the sampled signal. 
For this studied example, Tref = 1 sec would lead to twenty 1-
second windows for the whole signal span (20 seconds), in the 
classical case. It follows that the system has to process more 
than the relevant information part in x(t).

From Table IV, Pi represents the adaptation of hk for Wi. It 
is another advantage of the proposed technique over the 
classical one. In the classical case, the filter remains time 
invariant so it has to be designed for the worst case. In this 
example, the input signal is band limited to 1 kHz. Therefore, 
if the Fs = 2.5 kHz is chosen in order to respect the Shannon 
sampling theorem. Then for the same filter parameters, 
summarized in Table II, Parks-McClellan design algorithm 
provides a 127th order filter. it makes N=20×2500 = 50000 
samples to process with the 127th order FIR filter. In the 
proposed technique, the total number of resampled data points 
is 2797. In addition, the local filters order P2 and P3 are lower 
than 127. It assures the computational efficiency of the 
proposed techniques compared to the classical one. 

IV. PERFORMANCE EVALUATION

A. Computational Complexity 
This section compares the computational complexity of the 

proposed filtering technique with the classical one. The 
complexity evaluation is made by considering the number of 
online operations executed to perform the algorithm.  

In the classical case, for a P order FIR filter, P
multiplications and P additions are required for computing 
each filtered sample. If N is the number of samples then the 
total computational complexity C1 can be calculated by 
employing Equation 10. 

tionsMultiplicaAdditions
NPNPC ..1                                    (10) 

In the proposed filtering techniques, the adaptation process 
requires some extra operations for each selected window. 

The choice of Frsi requires one comparison between Fref

and Fsi. The data resampling operation is also required in the 
proposed technique. The NNRI is employed for this purpose, 
which is performed as follow. 

If trn is the nth interpolation instant, which occurs between 
the level-crossing instants [tn; tn+1]. Then firstly, the distance 
of trn to each tn and tn+1 is computed and secondly, a 
comparison among the computed distances is performed, to 
decide the smaller among them. It makes to choose the nearest 
among the level-crossing amplitudes [xn; xn+1] as xrn. Here xrn

is the nth interpolated amplitude. The NNRI complexity for Wi

becomes 2.Nri additions and Nri comparisons. 
In the case, when Fsi < Fref, decimation of hk is performed. 

In order to do so, di is computed by performing a division 
between Fref and Frsi. Di is calculated by employing a floor 
operation on di. A comparison is made between Di and di. In 
the case when Di = di, the process of obtaining hj

i is simple 
(cf. Figure 3). In this case, the decimator picks every (Di)th

coefficient from hk. It has a negligible complexity compared to 
the operations like addition and multiplication. This is the 
reason that its complexity is not taken into account, during the 
complexity evaluation process.  

For fractional di, the fractional decimation is achieved by 
resampling hk at Frsi. The resampling is performed by 
employing the NNRI, which performs 2.Pi additions and Pi

comparisons to deliver hj
i.

Finally, in order to compensate the decimation effect the 
decimated filter impulse response is weighted with di. This 
weighting process performs Pi multiplications. The combine 
computational complexity for the proposed filtering technique 
C2 is given by Equation 11. 

L

i

tionsMultiplica

iii

Additions

iii

sComparison

ii

FloorDivision

PNrPPPNr

PNr

C
1

2
22

11
 (11) 

In Equation 11, i = 1,2,3,…..,L represents the selected 
windows index.  and  are the multiplying factors.  is 0 for 
the case when Fsi  Fref and it is 1 otherwise.  is 0 for the 
case when di = Di and it is 1 otherwise. 

From C1 and C2 it is clear that there are uncommon 
operations between both filtering techniques. In order to make 
them approximately comparable the following assumptions 
are made. 
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A comparison has the same processing cost as that of 
an addition. 
A division or a floor has the same processing cost as 
that of a multiplication. 

By following these assumptions, comparisons are merged 
into additions count and divisions plus floors are merged into 
multiplications count, during the complexity evaluation 
process. Now the Equations 11 can be written as follow. 

L

i tionsMultiplica

iii

Additions

iii PNrPPPNrC
1

2 23113 (12)

The computational comparison of the proposed technique 
with the classical one is made, in terms of additions and 
multiplications. The respective gains for different time spans 
of x(t)are summarized in Table V. 

The computational gain of the proposed filtering technique 
over the classical one is calculated for results of the 
illustrative example, for different time spans of x(t). The 
results are summarized in Table V. 

TABLE V
SUMMARY OF THE COMPUTATIONAL GAIN

Signal Part Gain in Additions Gain in Multiplications 
1st activity 1.9 2.0 
2nd activity 5.3 5.4 
3rd activity 27.3 28.4 

Total signal span (20) 29.4 29.8 

Above results show the gain in additions and 
multiplications of the proposed filtering technique over the 
classical one. Although for the 1st activity the resampling 
frequency and the filter order are the same as in the classical 
case (cf. Table IV), yet a computational gain is achieved with 
the proposed filtering technique. It is due to the fact that the 
ASA correlates Tref =1 second with the signal activity (0.5 
Sec.), while in the classical case Tref remains static and it 
makes the system to process unnecessary samples. For W2 and 
W3 the gains of the proposed techniques are much larger than 
the classical one. It is achieved by processing the lesser 
number of samples at lower filter orders, in the proposed 
techniques compared to the classical one. While considering 
the total x(t) span of 20 seconds, the proposed technique also 
take advantage of the idle x(t) parts, which further adds up to 
their computational gains compared to the classical case.

The above results confirm that the proposed filtering 
techniques lead towards a drastic reduction in the number of 
operations compared to the classical one. This reduction in 
operations is achieved due to the joint benefits of the AADC, 
the ASA and the resampling, as they enable to adapt the 
sampling frequency and the filter order by following the input 
signal local variations. 

B. Processing Error 
Methods to compute the resampling and the filtering errors 

for the proposed technique are devised, they are detailed as 
follow. 

In the proposed technique, the resampling error mainly 
contains two effects. The time-amplitude pairs uncertainties 
which occur due to the AADC finite timer and threshold 
levels precisions. The interpolation error which occurs during 
the uniform resampling process, by considering these two 
effects, the Mean resampling Error for Wi can be computed by 
employing the following Equation. 

iNr

n
nni

i xrxo
Nr

MRE
1

.1
 (13) 

Where, xrn is the nth resampled observation, interpolated 
with respect to the time instant trn. xon is the original sample 
value which should be obtained by sampling x(t) at trn. In the 
studied example discussed in Section III, x(t) is analytically 
known, thus it is possible to compute its original samples 
values at any given time instant. It allows us to compute the 
resampling error introduced by the proposed technique by 
employing Equation 13. The results obtained for each selected 
window for the proposed technique are summarized in Table 
VI.

TABLE VI
MEAN RESAMPLING ERROR FOR EACH SELECTED WINDOW

Selected Window W1 W2 W3

MREi (dB) -18.51 -19.63 -20.92 

Table VI shows the error introduced by the proposed 
techniques. This process is accurate enough for a 3-bit AADC. 
For the higher precision applications, the resampling accuracy 
can be improved by increasing the AADC resolution M and 
the interpolation order [4, 6, 11]. Thus, an increased accuracy 
can be achieved at the cost of an increased computational 
load. Therefore, by making a suitable compromise between 
the accuracy level and the computational load, an appropriate 
solution can be proposed for a specific application. 

In the proposed filtering technique, a reference filter hk is 
employed and then it is online decimated for Wi depending 
upon the chosen Frsi. This online decimation can causes the 
degradation of the filtering precision. In order to evaluate this 
phenomenon on our test signal, the following procedure is 
adapted.

A reference filtered signal is generated. In this case, instead 
of decimating hk to obtain hj

i, a specific filter hi
m is directly 

designed for Wi by employing the Parks-McClellan algorithm. 
It is designed for Frsi by employing the same design 
parameters, summarized in Table II. The corresponding signal 
activity is also sampled at Frsi by employing a high precision 
classical ADC. This sampled signal is filtered by employing 
hi

m. The filtered signal obtained in this way is used as a 
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reference one for Wi and its comparison is made with results 
obtained by the proposed technique.  

Following this the mean filtering error for Wi can be 
calculated by employing Equation 14. 

iNr

i
nni

i yy
Nr

MFE
1

^.1
(14)

Where, yn is the nth reference filtered sample and yn
^ is the 

nth filtered sample obtained with the proposed techniques. The 
mean filtering error of the proposed technique is calculated, 
for each selected window. The results are summarized in 
Table VII. 

TABLE VII
MEAN FILTERING ERROR FOR EACH SELECTED WINDOW

Selected Window W1 W2 W3

MFEi (dB) -36.23 -23.46 -11.60 

Table VII shows that the online decimation of hk in the 
proposed filtering technique, causes a loss of the desired 
filtering quality. Indeed, the filtering error increases with the 
increase in di. The measure of this error can be used to decide 
an upper bound on di (by performing an offline calculation), 
for which the decimated and the scaled filter provides results 
with an acceptable level of accuracy. The level of accuracy is 
application dependent. Moreover, for high precision 
applications, an appropriate filter can be directly calculated 
online for each selected window at the cost of an increased 
computational load. 

V. CASE STUDY

In order to evaluate the proposed technique performance for 
real life signals, a speech signal x(t) shown on the left part of 
Figure 5 is employed. x(t) is a 1.6 second, [50 Hz; 5 kHz] 
band-limited signal corresponding to a three word sentence. 
The goal is to determine the pitch (fundamental frequency) of 
x(t) in order to determine the speaker's gender. For a male 
speaker, the pitch lies within the frequency range [100 Hz, 
150 Hz], whereas for a female speaker, the pitch lies within 
the frequency range [200 Hz, 300 Hz] [27]. 

The reference frequency is chosen as Fref=11200 Hz, which 
is a common sampling frequency for speech signal. A 4-bit 
resolution AADC is used for digitizing x(t)and therefore, we 
have Fsmin= 1.5 kHz and Fsmax= 150 kHz. The amplitude 
range is always set to Vin=1.8 V, which leads to a quantum q
= 0.12 V. The amplitude of x(t) is normalized to 0.9 V in order 
to avoid the AADC saturation. 

Fig. 5 Input speech signal (left), selected signal (middle) and zoom 
of W2 right 

The studied signal is part of a conversation and during a 
dialog the speech activity is 25% of the total dialog time [26]. 
A classical filtering system would remain active during the 
whole dialog duration. The proposed signal driven technique 
will remain active only during 25% of the dialog time, which 
reduces the system power consumption. 

A speech signal mainly consists of vowels and consonants. 
Consonants are of lower amplitude compared to vowels [27]. 
In order to determine the speakers pitch, vowels are the 
relevant parts of x(t). For q = 0.12v, the consonants are 
ignored during the signal acquisition process and are 
considered as low amplitude noise. In contrast, vowels are 
locally over sampled like any harmonic signal [3, 11, 13]. This 
smart signal acquisition further avoids the processing of 
useless samples, within the 25% of x(t) activity and so further 
improves the system computational efficiency. 

In order to apply the ASA, Tref = 0.5 seconds is chosen. The 
ASA delivers three selected windows at the output, which are 
shown on the middle part of Figure 5. The selected window 
parameters are summarized in Table VIII. 

TABLE VIII
SUMMARY OF THE SELECTED WINDOWS PARAMETERS

Selected
Window 

Ti

(Second)
Ni

(Samples) 
Fsi

(Hz)
Fref

(Hz)
W1 0.2074 2360 11379 11200 
W2 0.1136 347 3054 11200 
W3 0.1210 265 2190 11200 

Although the consonants are partially filtered out during the 
data acquisition process, yet for proper pitch estimation, it is 
required to filter out the remaining effect of high frequency 
consonants from x(t). In this regards, a reference low pass 
filter is designed, by employing the standard Parks-McClellan 
algorithm. Its characteristics are summarized in Table IX. 

TABLE IX
SUMMARY OF THE REFERENCE FILTER PARAMETERS

Cut-off  
Freq (Hz) 

Transition
Band (Hz) 

Pass-band  
ripples (dB) 

Stop-band  
ripples (dB) P

300 300~400 -25  -80  284 

To find the pitch, we now focus on W2, which corresponds 
to the vowel 'a'. A zoom of this signal part is plotted on the 
right part of Figure 5. The condition Fs2<Fref is valid and d2 is 
fractional (cf. Equation 7). The adapted values of Frs2, Nr2,
D2, and P2 for the proposed technique are summarized in 
Table X. 

TABLE X
ADAPTED PARAMETERS FOR W2 IN THE PROPOSED CASE

Frs2

(Hz)
Nr2

(Samples) D2 P2

3054 347 3.7 77 

Computational gain of the proposed filtering technique 
compared to the classical one is computed by employing 
Equations 10 and 12. The results show 13.17 times gain in 
additions and 13.26 times gain in multiplications respectively 
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for W2. It confirms the computational efficiency of the 
proposed technique compared to the classical one. It is gained, 
firstly by achieving the smart signal acquisition and secondly 
by adapting the sampling frequency and the filter order by 
following the local variations of x(t).

Spectra of the filtered signal lays in W2, obtained with the 
reference (cf. Section IV-B) and the proposed filtering 
techniques are plotted respectively on the right and the left 
parts of Figure 6. 

Fig. 6 Spectrum zoom of the filtered signal lies in W2 obtained 
with the reference filtering (right) and the proposed filtering (left) 

respectively. 

Spectra in Fig. 6 show that the fundamental frequency is 
about 215 HZ. Thus, one can easily conclude that the analyzed 
sentence is pronounced by a female speaker. Although it is 
required to decimate the reference filter 3.7 times for the 
proposed technique, yet the spectrum of the filtered signal, 
obtained with the proposed case is quite comparable to the 
spectrum of the reference filtered signal. It shows that even 
after such a level of decimation, the results delivered by the 
proposed techniques are of acceptable quality for the studied 
speech application. 

VI. CONCLUSIONS

An adaptive rate filtering technique is devised. This 
technique is well suited for the low activity sporadic signals 
like electro-cardiogram, phonocardiogram, seismic signals, 
etc.

A reference filter is offline designed by taking into account 
the Nyquist sampling criterion. The complete procedure of 
obtaining Frsi and hj

i for Wi, according to the input signal 
variations, is described for both proposed techniques. The 
computational complexity of the proposed technique is 
deduced and compared with the classical one by employing 
results of the studied example. It is shown that the proposed 
technique results into a more than one order magnitude gain in 
terms of additions and multiplications over the classical one. It 
is achieved due to the joint benefits of the AADC, the ASA 
and the resampling as they enable to adapt the Fsi, Frsi, Ni,
Nri, Di and Pi by exploiting the input signal local variations, 
which results into a significant reduction of the total number 
of operations compared to the classical case. The performance 
of the proposed technique is also studied for a speech 
application. The results obtained in this case are in coherence 
to those obtained for the basic example.  

Methods to compute the resampling and filtering errors for 
the proposed technique are also devised. It is shown that the 
errors made by the proposed technique are minor ones in the 
studied case. A higher precision can be achieved by increasing 
the AADC resolution and the interpolation order. Thus, an 
increased accuracy can be achieved at the cost of an increased 
computational load. 

A detailed study of the proposed technique computational 
complexity, by taking into account the real processing cost at 
circuit level is in progress. Further research focuses on the 
optimization of the proposed technique and on its performance 
study in the case of real life applications. 
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