International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

Shopping Cart System: Load Balancing and Fault
Tolerance in the OSGi Service Platform

Irina Astrova, Arne Koschel, Thole Schneider, Johannes Westhuis, Jirgen Westerkamp

Abstract—The main purpose of this paper was to find a simple
solution for load balancing and fault tolerance in OSGi. The
challenge was to implement a highly available web application such
as a shopping cart system with load balancing and fault tolerance,
without having to change the core of OSGi.

Keywords—Fault tolerance, load balancing, OSGi, shopping cart
system.

I. INTRODUCTION

HE OSGi (Open Services Gateway initiative) Service

Platform [2] (or just OSGi for short) is a Java platform,
which “delivers an open, common architecture to develop,
deploy and manage services in a coordinated fashion.” The
platform is freely available and constantly developed by the
OSGi Alliance. There are both commercial and non-
commercial implementations of OSGi, including Eclipse
Equinox, Apache Felix, Knopflerfish and ProSyst’s mBedded
Server. Although OSGi was originally designed for embedded
systems, nowadays it finds more and more use in enterprise
systems.

The core of the platform is the OSGi Framework, which
helps to create loosely coupled, service-oriented, extensible
applications called bundles that can be loaded and removed at
runtime. The framework simplifies the development and
deployment of bundles, by decoupling the bundle’s
specification from its implementation, i.e., a bundle is accessed
through its interface, which is by definition separate from the
bundle’s implementation. This separation enables changing the
bundle’s implementation without changing the environment
itself and other bundles.

The OSGi Framework provides a service registry to register
services, so that services can be found and used by other
bundles. Also the framework provides methods and services
for core functionalities such as life cycle management and
security. In addition, there are many implemented services for
other tasks such as event handling, logging and database access
but not for load balancing and fault tolerance. As an attempt to
fill a gap in this field, we present the implementation of a
simple yet reasonable solution for load balancing and fault
tolerance in OSGi. The solution is based on previous
conceptual work from [3].

Irina Astrova is with Institute of Cybernetics, Tallinn University of
Technology, Tallinn, Estonia (e-mail: irina@cs.ioc.ee).

Prof. A. Koschel, Thole Schneider, Johannes Westhuis, and Jirgen
Westerkamp are with Faculty 1V, Department of Computer Science, Hannover
University of Applied Sciences and Arts, Hannover, Germany (e-mail:
akoschel@acm.org).

The rest of the paper is organized as follows. Section 11 will
demonstrate our own implementation of load balancing and
fault tolerance in OSGi. The demo implemented a shopping
cart system. Section I11 will give a short overview about related
work. Sections 1V and V will make a conclusion with a critical
overview on the demo implementation.

II. SHOPPING CART SYSTEM

To demonstrate and test the design solutions proposed in our
previous paper [3], we implemented some of them in a simple
demo running in the OSGi Framework.

The demo resamples a web application, which provides a
shopping cart system. The system should be 24/7 available to
users. A user can log into the system, add items to the shopping
cart, remove items from the shopping cart and logout of the
system. After logout, the shopping cart is deleted, assuming
that a transaction has completed. For simplicity, we
implemented vertical load balancing.

Fig. 1 shows the demo components, including Replica,
Session Service, Db4oService, HTTP Server, HTTP
Wrapper and Load Balancer. All these components were
implemented as OSGi bundles.

A.Replica

In the demo we used replication, which is a common
approach to fault tolerance [6].

Fig. 2 shows the class diagram of a bundle Replica, which
represents one instance of the web application. In the demo, all
replicas had the same functionality and differed in their
symbolic names only. Since the business logic represents the
shopping cart system, a bundle Replica has the following
methods:

e login: This method creates a new shopping cart. It also
saves in the database a new session state with a given user
name.

e addltem: This method adds a given item to the shopping
cart. It returns the contents of the shopping cart.

e removeltem: This method removes a given item from the
shopping cart. It returns the contents of the shopping cart,
which can be empty.

e logout: This method deletes the session state from the
database.

e getCartContent: This method returns the content of the
shopping cart, which can be empty.

If a replica receives an update, all other replicas have to be
informed about that update.

479



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

One approach is to keep a consistent state of the session
among all the replicas is to use a shared persistent memory,
which might be implemented by saving the session state
persistently in a database. In addition, the session state has to
be available globally to all the replicas.

In the demo, we used shared memory. OSGi’s service
registry makes it easy to integrate a bundle, which employs
other services for storing the session state. This bundle can
preserve the state information in a database.

Instead of using services, the communication can also be
done through events. For example, a bundle Replica can send
one of the following events to a bundle Session Service:

e REQUEST: This event asks for the current session state.

e SAVE: This event asks to save a given session state.

e REMOVE: This event asks to remove a given session
state.

B. Session Service

Fig. 3 shows the class diagram of a bundle Session
Service. The main task of this bundle is to distribute a
consistent state of the session to all the (functional) replicas.
Therefore, the bundle has to listen to all the events, which are
sent by replicas, and reacts on them, by sending one of the
following events:

e REPLY: This event contains the current state for a given
session.

e NOTFOUND: This event notifies that no state is available
for a given session.

e EXCEPTION: This event indicates that the saving of the
session state failed.

To store the session state, db4o was used.

C.Db4oService

Db4o is an object-orientated database, which is primarily
designed for embedded systems. We selected db4o because of
its support of OSGi - specifically db4o is delivered with a
bundle Db4oService, which can create a database, handle
constraints and perform transactional CRUD (create, read,
update and delete) operations. In other words, this bundle
provides all the operations needed for storing the session state.

D.HTTP Server

Fig. 4 shows the class diagram of a bundle HTTP Server.
This is a component, which accepts HTTP requests from
outside the system. In the demo, the bundle is just listening for
HTTP requests and redirects them to a bundle HTTP Wrapper.

E.HTTP Wrapper

Fig. 4 shows the class diagram of a bundle HTTP Wrapper.
The task of this bundle is to perform the mapping of HTTP
requests and responses from outside the system into OSGi
service calls and vice versa. The main reason to insert this
component was to make the demo extensible. With the bundle
HTTP Wrapper, replicas have no dependency on the HTTP
protocol. So it should be easy to integrate a new interface, e.g.,
a web service endpoint. In this case, only an extra bundle HTTP

Wrapper needs to be added, which performs the mapping from

web services to OSGi services.

In the demo, Pax Web [4] was used. It is an implementation
of OSGi’s HttpService. Pax Web supports servlets, filters,
listeners and some other functionality. Important for the demo
was the servlet support, because the bundle HTTP Wrapper
depends on servlets. The following servlets were implemented
within the demo:

e IndexServlet: This servlet represents a static index
page. It returns a page with a form where the user has to
enter the user name. On submission, the user name is
given over as a parameter to the login page. Additionally, a
cookie with the session ID of a type java.util .UUID is
set up in the response from the IndexServlet.

e ReplicaServlet: This servlet represents all other pages.
The constructor from the Replica Servlet expects the
reference to the bundle Load Balancer. The
ReplicaServilet stores all the parameters in a map.
Then a method doAction from the bundle Load
Balancer is called with the session ID, the name of the
requested service and the map. As a return value, a map
with the response parameters is expected. Based on them,
the HTML response is generated, which presents the
shopping cart of the user.

When the service from the bundle Load Balancer is
present, the servlets can be registered. At first, the
IndexServlet is registered under an alias index as shown
below:

httpService.registerServlet("/index", new
IndexServilet(), null, null);

After that, the ReplicaServlet is registered in a loop with
different aliases for all other pages as shown below:

String[] urls =
"logout", "'get'};

{"login', "add", ‘'remove",

for (int i=0; i<this.urls.length; i++) {
httpService.registerServlet("/"+this.urls[i],
new ReplicaServlet (this.service), null, null);

}

When a request arrives, the HttpService looks up for an
URL and calls a registered servlet, whose alias matches the
requested URL. Then the selected servlet is started and the
HTTP request is given over. To achieve fault tolerance, the
ReplicaServlet catches exceptions from the bundles Load
Balancer and Replicas. If an exception comes up, an
individual failure page is sent to the user. This makes system
failures transparent to the user. When the bundle HTTP
Wrapper is stopped, all the servlets are unregistered.

F. Load Balancer

Since it would be very inconvenient to let users switch
between replicas (especially in web applications), some kind of
a dispatcher called load balancer is needed to allocate the
incoming requests to the replicas [5].

480



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

Fig. 5 shows the class diagram of a bundle Load
Balancer. The task of this bundle is to connect replicas with
the system — specifically it forwards service requests from the
bundle HTTP Wrapper to a bundle Replica and returns the
response. The bundle Load Balancer consists of the three
main classes: LoadBalancer, Scheduler and Facade.

To map service requests to one or more replicas, the bundle
Load Balancer implements a class LoadBalancer, which
tracks the state of all the service events from the replicas. This
is done using OSGi’s class ServiceTracker, which is
registered with the interface name of a replica. If a replica is
registered, the bundle LoadBalancer caches the reference and
the corresponding object. When the service is unregistered, the
reference and the object are removed from the cache. The
cache was internally implemented as a hash map. To provide
access to the cached objects and spread the requests over all the
(functional) replicas, the class LoadBalancer uses a scheduler
implemented in a class Scheduler. The scheduler has access
to the cache and is updated by the class LoadBalancer
whenever a replica is registered or unregistered. In the demo,
the round robin algorithm was implemented in a class
RoundRobin as the scheduler. This class uses a simple counter
to schedule the access to the objects in the cache. When an
object is requested but no replica is available, the scheduler
throws a ReplicasUnvailableException.

To provide access to replicas from the bundle HTTP
Wrapper, the class LoadBalancer registers a service with an
instance of a class Facade. This class assures that every
service request is redirected to another replica. For this reason,
the class Facade provides a method doAction to send service
requests to the replicas. For each call of this method, the class
Facade gets a replica from an instance of the class
LoadBalancer, interprets the service request and calls the
corresponding method of the replica (i.e., login, logout,
addltem, del I'tem or getCartContent).

With the class Facade, it also becomes possible to keep the
core of the bundle Load Balancer independent from the
managed service. Any kind of service can be scheduled and
load balanced by this class. Only the class Facade has to be
customized to the managed service. A simplified
communication among the bundles HTTP Wrapper,
Replicas and Load Balancer is illustrated in Fig. 6.

G.Testing

To test the demo, we used the life cycle management
functionality from the OSGi Framework. At first, a replica was
stopped within the running system. The load balancer reacted
to this change, by deleting the replica from the list. The system
continued working. After restart of the replica, it was
automatically added to the list.

Next, all the replicas were stopped. The load balancer threw
an exception, which then was displayed to the user. After
restart of a replica, the system was working again. The user
session was not affected, even with the complete loss of all of
the replicas.

Finally, we tested that all the exceptions and errors were
transferred to the client in case of failures. After a failure has
been detected, the failed bundle has to be isolated. Otherwise,
the failure can spread to the other bundles in the system. In
OSGi a bundle can be isolated by stopping it. Later the bundle
can be restarted and recovered if needed. If the bundle has a
permanent failure, the bundle has to be uninstalled and checked
manually.

I1l.  RELATED WORK

Ahn, Oh and Hong [1] proposed a proxy-based fault tolerant
approach to OSGi. The authors used a proxy, which wraps a
service object, intercepts service requests and routes the
requests to the best service at runtime. To provide reliability,
the proxy monitors faults. When a fault is detected, the proxy
recovers and isolates the failed services.

Another approach to providing high availability and fault
tolerance is the Virtual OSGi Framework. Papageorgiou [8]
presented a global OSGi Framework, which acts as a
virtualization layer on top of local OSGi Frameworks. The
global OSGi Framework connects two or more local OSGi
Frameworks running on different nodes and can handle
dynamic changes of the network. Maragkos [7] described the
replication and migration mechanisms of bundles in the Virtual
OSGi Framework. These features can be used to provide high
availability and fault tolerance.

Ahn, Oh and Hong’s approach assumes that all the parts of
the system are running in the same OSGi instance. For
solutions with more than one OSGi instance, the Virtual OSGi
Framework should be used. However, the Virtual OSGi
Framework requires modification of the OSGi Framework,
thus breaking compatibility with already existing bundles.
Moreover, the Virtual OSGi Framework does not cover
monitoring with the life cycle management over different
framework instances. A possible solution is to use an
individual management agent for every framework. This agent
could communicate over the Virtual OSGi Framework with a
central management server. But such a solution would become
much more difficult to implement and therefore, is not
recommended.

IV. CONCLUSION

This paper presented a simple solution for vertical load
balancing and fault tolerance, and demonstrated how these
concepts could be implemented in OSGi, without having to
change the OSGi Framework. The demo implementation
showed that the OSGi Framework offers many possibilities to
achieve vertical load balancing and fault tolerance. Even
though it still has open issues and spaces for possible
improvements, the demo implementation gives a closer look at
how these important goals can be reached.

It should be noted that the demo implementation is
extensible through many possible input sources and different
possible applications, which can run in OSGi.

481



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

V. FUTURE WORK

Due to the time limitations, not all the solutions proposed in
our previous paper [3] were implemented — specifically
horizontal load balancing was omitted.

A. Load Balancing

Since the performance of one application server is normally
not enough to handle all the requests for a frequently used web
application such as the shopping cart system, the method of
choice would usually be horizontal load balancing. Also
horizontal load balancing enables to build a fault tolerant
system. By contrast, vertical load balancing relies on a single
application server and therefore, it can offer no tolerance
against hardware failures.

In the demo implementation, all software failures were
reported to the client. A useful extension would be to
implement a transparent failover so that the load balancer could
react on the failures of the replicas and distribute service
requests to the functional ones.

B. Fault Tolerance

Moreover, the demo implementation left some single points
of failure. For example, if the bundle Db4oService fails, the
session state cannot be saved and the replicas cannot work
either. Therefore, it is important to prevent single points of
failure. A single point of failure indicates a bottleneck in the
system. If one of the components fails, the whole system goes
down. Therefore, it is significant that every critical component
of the system has to be highly available and fault tolerant.
Otherwise, the single point of failure is just shifted to another
component of the system. The replication of the bundle
Db4oService is an easy task, because it is loosely coupled
with Replicas and reacts on events only. If a second database
were started, this bundle would also receive all the events and
thus, could store the session state.

A similar problem exists for other bundles: Load
Balancer, HTTP Wrapper and HTTP Server. These bundles
are single points of failure too. But again they are easy to
replicate. For example, we can use a management bundle,
which controls the life cycle and status of the bundles and
restart them if needed. A management tool could be an extra
application server or just a program on the server where the
application is running on. This tool could react when an
exception comes up but it can also monitor resources on its
own. For example, monitoring could be done by a management
tool, which pings the server in periodic intervals. This way the
tool can discover a failure even though the system never admits
an exception. This would be the case where the system crashes
without the ability to signal an exception.

Another kind of monitoring is passive checking. In this case,
all application servers send pings in periodic intervals. A
central management server is listening to all the incoming
pings. An application server, which does not send a ping, is in a
failure condition. Also a proxy-based monitoring approach is
possible. The proxy forwards all the requests from clients to the
application servers. In this central position the proxy has the
opportunity to monitor the status of the service requests and the
replicas.

In OSGi a management tool can be easily integrated as a
separate bundle. In addition to the use of a ping method to
discover failures, it can use the life cycle management
functionality from the OSGi Framework. With this
functionality, it becomes much easier to monitor other bundles
and restart them in case of failures. The proxy-based
monitoring of replicas is also possible in OSGi. A service can
act as a proxy, which provides access to a monitored bundle or
service. This way the proxy has the ability to check, e.g., the
correctness of the results and the response time.

HTTP-Server from
ety Integrated with
profile "wek" fram
P& -Runner

OSGCI-Framewaork. ]

Mew Renlica will be
discaverd from Load
Balancer by
Senvicelistener.

HTTP-Wrapper takes
Request and redirect
them as a OSGI-Senvice

<<HTTP-Sener>> g
___________ 5 Jetty -y
HTTP-Reguest HTTP-Redirect

Wirapper_Senvet & Load_Balancer g ]

ServiceCall

I
1
. : .
- ] .
SepviceCall Semﬂlecal\ ServiceCall
o [ S

< <failure-tolerance > >
DB_Connector

Listener : EventListener

logical name from the Manifest-File.
Therefore no changes at the

Each Replica is individual by its T

Listener is listining for a Session-
State-Events from a Replica. The
Session-State is then stared [/
loaded in / from a DB,

7 sourcecode is needed!

Fig. 1 Overview of shopping cart system

482



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:8, No:3, 2014

pkg

|

I

Activator

<<private-package> >
de.fhhannover.vms2.lbft.replica.activator

Replica

1

< <private-package> >
de.fhhannover.vms2.lbft.replica.impl

ReplicatableServicelmpl

+ handleEvent(evt : Event) : void

]

| > EventAdmin

T
i’

P <<interfaces>

<<export-packages> >

i

de.fhhammover.vms2.lbftreplica.service -

InvalidParameterException

SessionNotFoundException

< <interface>>
< < services >
ReplicatableService

+ login{sessionld : String, content : Map <String,String>) : void

+ addltemisessionld : String, content : Map<S5tring,String=) : void

+ removeltem(sessionld : String, content : Map <5String, String=>) : void

+ logoutisessionld : String, content : Map <String,String>) : void

+ getCartContent(sessionid : String, content : Map <5tring, String>) : void

1

org.osgi.service.event

EventHandler

Event

Fig. 2 Replica

pkgjava J

=l

I

<<export-package>>
de.fhhannovervms2.lbft.common

SessionService

Session5tate

ShoppingCart

- id : 5tring 2 _items : Vector <String>

- user : 5tring

<<private-package> >
de.fhhannover.vms2.lbft.session.activator

Activator

1

1

< <private-package> >
de.fhhannover.vmsz2.lbft.session.db

< <interface> >
DbConnection

+ saveSession(state : SessionState) : void
+ deleteSession(state : SessionState) : void
+ loadSession(id : String) : SessionState

yaY

]
|

Db4oDbConnection

< <privaje-package:> >
de.fhhannover.vms2.lbft.session.impl

SessionEventHandler

+ handleEvent(evt : Event) : void
+ setEventAdmin(admin : EventAdmin) : void
+ setDbConnectioniconn : DbConnection) : void

org.osgi.service.event

EventAdmin

<<Interface> >
EventHandler

Event

Fig. 3 Session Service

483



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

pkg
|
HTTP-Wrapper
]
< <private-package > >
de.fhhannovervms 2. IbfLhttpWrapper.activator ol |
- HTTP-Server
Altivator
- httpServceTracker : ServiceTracker
1
\L org.opsdj.paxweb pax-web-service
HupServiceTracker HtpService
+ service | Facade
—
< <export-package> >
de.fhhannovervms2.IbfLhttpWrapper.serviet
ReplicaServiet IndexServiet
Fig. 4 HTTP Server and HTTP Wrapper
pkg

=1

LoadBalancer

I

==private-package=>
de.fhhannover.vms2.|bft.activator

<=private-package=>
de.fhhannover.vms2.Ibft.impl

LoadBalancer

==interface== .
register() : void Scheduler Fn e
: void P :
- unregister(] : void + getobject() : Oblect + getObject() : Object
B maptc\\_at() : Linkedlist<Object= + Epdatjetlist : LmliedList-:ObJect:-) + void + updatedlist : LinkedList-<Object>] : void
+ getObject{} : Object
Facadelmpl

+ doAction{sessionld : String, command : 5tring, content : Map<=String, String=} : Map=5tring, String=

-:-:expfnr‘t-package:-:-

de.fhhannover.vms2.Ibft.service

==<interface==
<<senices>
Facade

+ doAction{sessionld : String, cornmand : String, content : Map<5tring, String=] : Map=String, String=

ReplicasUnavailableException

Fig. 5 Load Balancer

484



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:3, 2014

:ReplicaServiet | :Facade | | :Loadbalancer | : ReplicatableService 1 | | : ReplicatableService 2

1

1: doAction{command) ’l 1.1: getobject! ! !

— 1

< - Replical . :
. 1.2 login{} 'D

2: dosction{command)

2.2: additem(}

Fig. 6 Communication among Load Balancer, HTTP Wrapper and Replicas

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF). lIrina Astrova’s work was also supported by the
Estonian Ministry of Education and Research target-
financed research theme no. 0140007s12.

REFERENCES

[1] Ahn, H., Oh, H., Hong, J.: Towards Reliable OSGi Operating
Framework and Applications. In: Journal of Information Science and
Engineering (2007), Nr. 5, 1379-1390.

[2] OSGi Alliance: OSGi — The Dynamic Module System for Java. Last
accessed: January 2014, http://www.osgi.org.

[3] Kaoschel, A., Schneider, T., Westhuis, J., Westerkamp, J., Astrova, 1.,
Roelofsen, R.: Providing Load Balancing and Fault Tolerance in the
OSGi Service Platform. In: Mathematical Methods and Techniques
in Engineering & Environmental Science (2011), 426-430.

[4] Comunity, Pax-Runner: Pax-Runner. online. http://wiki.ops4j.org
[display/paxrunner/Pax+Runner.

[5] Schlossnagle, T.: Scalable Internet Architectures. Sams Indianapolis,
IN, USA, 2006.

[6] Torrao, C.: Fault Tolerance in the OSGi Service Platform. Last
accessed: January 2014, http://www.gsd.inesc-id.pt/~ler/reports/
carlostorrao-midterm.pdf.

[7] Maragkos, D.: Replication and Migration of OSGi Bundles in the
Virtual OSGi Framework. Last accessed: January 2014, http://e-
collection.ethbib.ethz.ch/eserv/eth: 30549/eth-30549-01.pdf.

[8] Papageorgiou, D.: The Virtual OSGi Framework. 2008.

485



