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Abstract—Ship detection is nowadays quite an important issue
in tasks related to sea traffic control, fishery management and ship
search and rescue. Although it has traditionally been carried out
by patrol ships or aircrafts, coverage and weather conditions and
sea state can become a problem. Synthetic aperture radars can
surpass these coverage limitations and work under any climatological
condition. A fast CFAR ship detector based on a robust statistical
modeling of sea clutter with respect to sea states in SAR images
is used. In this paper, the minimum SNR required to obtain a
given detection probability with a given false alarm rate for any
sea state is determined. A Gaussian target model using real SAR
data is considered. Results show that SNR does not depend heavily
on the class considered. Provided there is some variation in the
backscattering of targets in SAR imagery, the detection probability
is limited and a post-processing stage based on morphology would
be suitable.

Keywords—SAR, generalized gamma distribution, detection
curves, radar detection.

I. INTRODUCTION

YNTHETIC Aperture Radars (SARs) are capable of

generating high-resolution remote-sensing images of the
electromagnetic energy backscattered by the Earth surface.
SAR systems are installed aboard mobile platforms, such as
spacecrafts, using the platform movement to obtain a larger
synthetic antenna and improve azimuth resolution. As SAR
systems can be used regardless of meteorological conditions,
can operate at night due to their illumination properties [1],
[2], they have become powerful tools to map terrain and sea
surfaces and to detect and classify point and extended targets.
Some applications deal with the maritime traffic or natural
disasters monitoring. The fact that the origin and properties of
SAR images are different from optical ones makes necessary
the development of new signal processing algorithms and/or
the adaptation of conventional ones to allow the automatic
interpretation of contained information.

One of the problems to solve in SAR imagery is to
reduce the speckle noise. Speckle noise is always present
in SAR images. This noise is due to the coherent sum
of many elementary scatterers in each resolution cell and
gives a grainy appearance to images, which makes detection
and classification tasks more complex [1]. The presence of
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speckle noise makes difficult the statistical modeling of the
data, which has become a crucial task to address for SAR
interpretation (such as pattern recognition, coastline estimation
or ship detection). In addition, the dispersive characteristics
of the sea surface, affected by many different meteorological
phenomena, make the image analysis to be quite tough. This
variability demonstrates the importance of developing adaptive
techniques associated to the different areas in a SAR image.

The conventional ship detector, which is an important
problem in sea traffic control, fishery management and
ship search and rescue, is wusually based on adaptive
threshold algorithms using Constant False Alarm Rate (CFAR)
techniques. The performance is highly dependent on the
knowledge of the clutter statistics. In [3]-[8] statistical clutter
models for terrain and marine SAR data were proposed. In
[9], it was concluded that the best model, among several
that were studied, was the Generalized Gamma model, which
will be used in this paper as the sea clutter model in a ship
detection application. This model showed its versatility as
it adapted extremely well to several sea states. The goal of
this paper will be the analysis of those sea states in terms
of SNR (Signal-to-Noise Ratio), and how this value affects
the Pp (Probability of detection) and the Pr,4 (Probability
of false alarm) in a ship detection application using real SAR
data. The considered detector is based on the Neyman-Pearson
(NP) criterion [10], which maximizes the Pp maintaining
the Pr4 equal or lower to a given value, using Generalized
Gamma clutter model and Gaussian target model. If z is the
observation vector and f(z|H) and f(z|H;) are the detection
problem likelihood functions, a possible implementation of
the NP detector consists in comparing the Likelihood Ratio
(LR), A(z), to a threshold (1) selected according to Pp4
requirements, and decide in favor of H; when the LR output
is higher than the selected threshold (1).

Hy) Ha
% 5 Mr(Pra) (1)

II. SEA STATE CLASSIFICATION

Using the study carried out in [9], a set 8,100 500x500-pixel
patches is considered in order to define the different observed
sea states. Five classes were defined with the following
properties:

o First class: Sea clutter returns with a linear and very
narrow structure that does not respond to wave fields
(Figs. 1 (c) and (h)).
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Fig. 1 Examples of 500 x 500-pixel patches of each class: The five columns correspond to the five classes defined in Section IT

o Second class: Sea clutter without a structure visible. The
gray level of pixels are distributed without any pattern
(Figs. 1 (e) and (j)).

o Third class: Sea clutter echoes with high waves and
different wavelengths. As the waves are higher than in the
first class, the difference in gray level between the crest
and the trough is also higher. Crests tend to be closer to
white and troughs closer to black (Figs. 1 (b) and (g)).

o Fourth class: Sea clutter associated to wave fields where
crests and troughs are partially defined and they hardly
appear to be linear as in first and second classes (Figs. 1
(d) and (i)).

« Fifth class: Sea clutter returns with low to medium height
waves and different wavelengths. The gray level of the
crest and the trough are both at medium levels (Figs. 1

(a) and (f)).

ITII. DETECTOR BASED ON THE GENERALIZED GAMMA
CLUTTER MODEL

The detector proposed in [11], a fast block CFAR detector
especially suitable for very-high-resolution SAR images, is
used in this paper for ship detection. As a first step, the area of
interest is divided into equally-sized patches, depending on the
resolution and the pixel spacing of the considered image. After
this, the brightest pixels of each patch are filtered so that the
remaining pixels belong mostly exclusively to the sea surface,
and a statistical modeling of the sea clutter is performed. It
is widely extended the assumption of a Gaussian model for
the sea clutter in this kind of detectors [12]- [14], and had the
goal been just the detection of the ship or the definition of
an area where the ship is contained, it would have sufficed;
however, in the spirit of making the most of the resolution
current SAR sensors can achieve, a heavy-tailed distribution
is selected, for it models better the SAR sea clutter distribution

[9] and therefore, a better and more accurate ship detection is
expected. It is for this reason that the Generalized Gamma
distribution is chosen to model the background clutter, whose
PDF (Probability Density Function) is as:

y = f(z|k,v,0) = Ul;‘ll(fl:) (§>ku—1 - exp (*k (%)V> )

where k£ > 0 is the shape parameter, 0 > 0 the scale
parameter and v # 0 the power parameter. It can model both
amplitude and intensity fluctuations and has several special
cases: Rayleigh (v = 2, k = 1), exponential (v = 1, k = 1),
Nakagami (v = 2), Gamma (v = 1), lognormal (k — oco) and
Weibull (k = 1).

With the parameters estimated in every patch, the CDF
(Cumulative Distribution Function) of the clutter is modeled
and by means of a selected Pr4, a decision threshold
inherent to the patch under study is set. Thus, the selection
of this threshold is adaptively achieved, providing a good
insight into the different states of the sea. What should be
remarked about this detector is its ability to detect ships
with one-pixel-resolution. Therefore, not only will ships be
detected, but they will also be better defined, for information
about their size could be provided with more detail, and
the variability of ship size will not become an issue.
Another important problem in high-resolution SAR imagery
is related to the fact that moving targets are unfocused.
ISAR techniques have been proposed for focusing ships,
extracting dominant scatterers and other features intended
for classification purposes. The correct extraction of the
information related to the ship is a key issue for improving
the performance of these techniques. The detector used in this
paper can fulfill this complex requirement.
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Fig. 3 Relation between the SNR and the Pp for the second class

0.9
08
07
06
o 05
0.4
0.3

0.2 ////

0.1}

.% -5 0 5

— Mentecarlo
-Gaussian
Generalized Gamma

10 15 20 25

SNR (d8)

Fig. 4 Relation between the SNR and the Pp for the third class

IV. RESULTS
A. SNR Requirements Analysis

In order to define SNR requirements to detect vessels in
different sea states, detection curves were analyzed assuming
target Gaussian model based on Swerling models [15], [16].
The detection curves show the minimum SNR required to
obtain the desired Pp with a given Pr4. The detection
capabilities were estimated using real clutter data of each
class defined according to the sea state. Two patches of

500x500 pixels are used, the first one to estimate the threshold
associated with the specified Pr4, and the second one to
estimate the corresponding Pp resulting of adding a synthetic
Gaussian target with different SNRs.

Empirical results, used as reference ones, were estimated
using Montecarlo Simulation. Pr4 = 102, with an associated
estimation error of 0.2% with regard to patch size, was
considered to estimate the corresponding threshold. Using
the same patches associated with each class, new thresholds
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Fig. 5 Relation between the SNR and the Pp for the fourth class
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Fig. 7 SNR of the five classes for a fixed Pp of 80%

are also determined using statistical parameters estimated
assuming Gaussian model, widely used in the literature [12]-
[14], and Generalized Gamma model that presents a good
results to fit sea clutter in different sea states [9].

The comparative detection curves are presented in Figs. 2-6.
As can be seen, the Generalized Gamma model is closer to the
Montecarlo simulation in most cases, especially when the sea
state is higher, and in those cases where the Gaussian model is
closer, the difference between this model and the Generalized

Gamma is not important. Therefore, results confirm that the
Generalized Gamma model is expected to perform correctly
with every sea state.

Figs. 2-6 provide the SNR requirements for any Pp and
any sea state class. In Fig. 7, the dependence of the minimum
SNR needed in order to ensure such a Pp > 80% on the
sea state is detailed. Using the threshold corresponding to an
approximation to a Generalized Gamma model for Pry =
1072,1073 and 10~%, it can be observed that the SNR does
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Fig. 8 (a) original SAR image; (b) manually-estimated mask; (c) result of the ship detector based on the Generalized Gamma model; (d) pixel-level SNR of
both ships

not depend heavily on the class considered.

B. Ship Detection

In order to confirm the previous study, a subimage with
two ships is selected (Fig. 8 (a)). The image is a GEC/SE
stripmap with HH polarization, with both ground range and
azimuth resolution of 3m, 1.45 range looks, 1.039 azimuth
looks and a size of 52,400x37,200 pixels.

First, a manually-estimated mask is attained to serve as a
comparison to the result of the proposed detector and so that
the Pp and the Pr4 can be accurately estimated. This mask
is shown in Fig. 8 (b). The result of the detector based on the
Neyman-Pearson criterion presented in Section III for a Pry
equal to 10~%, presented in Fig. 8 (c), shows that although
most parts of both ships are detected, some internal areas are
not. This is due to their low backscattering, which results in
a lower SNR. Therefore, the Pp attained is pretty low, with
a value equal to 48.77%, while the resulting Pr4 is equal to
2.27 - 10~%, which is similar to the design requirements. As
said before, the explanation to this low Pp is the difference in
intensity of the signal reflected by the ships; in other words,
the difference in SNR. As a matter of fact, the SNR values
of the pixels within the ships are represented in Fig. 8 (d),
and given that the SNR for a Pp equal to 48.77% is close to
9 dB, it is clear that plenty of those pixels have a SNR well
under that threshold, thus being undetectable and requiring a
post-processing stage to include the semantic environment.

V. CONCLUSION

An analysis of the ship requirements in terms of SNR was
carried out in this paper, considering five different sea states
first defined in a database described in [9], and using real
SAR data. Detection curves were analyzed assuming target
Gaussian model based on Swerling models and a Generalized
Gamma model for the sea clutter. These model were used in
a comparison with a Montecarlo simulation and a Gaussian
clutter model, which is commonly used.

The analysis of the different sea states showed that the
Generalized Gamma model is closer to the Montecarlo
simulation in most cases, especially when the sea state is
higher, and in those cases where the Gaussian model is closer,
the difference between the two models is not significant.
SNR requirements for any Pp and any sea state class was
determined and it was observed that the SNR did not depend
heavily on the class considered.

Provided there is some variation in the backscattering of
targets in SAR imagery, which results in a lower SNR, the
detection probability is limited and, although most parts of
both ships are detected, some internal areas are not. Therefore,
in order to overcome this issue, a post-processing stage based
on morphology or semantic information would be desirable.
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