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Abstract—A matrix is called a ray pattern matrix if its entries are 
either 0 or a ray in complex plane which originates from 0. A ray 
pattern A of order n is called spectrally arbitrary if the complex 
matrices in the ray pattern class of A give rise to all possible nth degree 
complex polynomial. Otherwise, it is said to be spectrally 
non-arbitrary ray pattern. We call that a spectrally arbitrary ray pattern 
A of order n is minimally spectrally arbitrary if any nonzero entry of A 
is replaced, then A is not spectrally arbitrary. In this paper, we find that 
is not spectrally arbitrary when n equals to 4 for any θ which is greater 
than or equal to 0 and less than or equal to n. In this article, we give 
several ray patterns A(θ) of order n that are not spectrally arbitrary for 
some θ which is greater than or equal to 0 and less than or equal to n. 
by using the nilpotent-Jacobi method. One example is given in our 
paper. 

 
Keywords—Spectrally arbitrary, Nilpotent matrix, Ray patterns, 

sign patterns.  

I. INTRODUCTION 

N nn ray pattern A is a matrix with entries ija  from  

 

}0{}0{ ：rrei  
 

For brevity, we denote a ray ire  simply by ie . It is easy to 

verify that for two rays 1ie and 2ie , if  k221   where k 

is an integer number, then 
 

                            
21  ii ee  ;                                      (1) 

 

otherwise, .21  ii ee   For two rays 1ie and 2ie , multiplication, 
division and addition are performed obviously. The product and 
quotient are given as: 
 

)( 2121   iii eee                                    (2) 
 
and  

                   
)( 2121 /   iii eee .                                    (3) 

 

1 and 
2  differ by a multiple of 2 , then 121  iii eee  . 

The sum of two distinct rays 1ie and 2ie is either a straight 
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line through the origin or an open sector in the complex plane 
with vertex at the origin (when the two rays are opposite in 
direction). We denote ＃ by any sum of rays where at least two 
of the rays are distinct. It is easy to verify that 
 

##,##   ii ee  

#.##,#0##,0#0,##0   
 

Let iyxz  be a non-zero complex number and 

,|| 22 yxzr   then we get  sin,cos ryrx  , 

where   is the angle made by z with the positive x-axis. 

Therefore,   is unique up to the addition of a multiple of 2  

radians. We call the number   satisfying the above pair of 
equations and argument of z and denote it by arg z. The ray 
pattern class of an nn ray pattern A, denoted by )(AQ , is the 

set of nn  complex matrices given by 
 

}.argarg

;00:)C (][:{

otherwiseab

aifbMbB

pqpq

pqpqnpq




 

 
An nn  ray pattern A is said to be spectrally arbitrary if 

given any monic nth degree polynomial )(xf with coefficients 

from ℂ, there exists a matrix )(AQB  having characteristic 

polynomial )(xf . A spectrally arbitrary ray pattern A is said to 

be minimally spectrally arbitrary if any nonzero entry of A is 
replaced by zero, then it is not spectrally arbitrary.  

The question of the existence of spectrally arbitrary sign 
patterns, that is, sign patterns that allow the realization of every 
self-conjugate spectrum, arose in [1]. In this paper, the 
nilpotent-Jacobi method for showing that a sign pattern was 
developed and all its superpatterns are spectrally arbitrary and a 
conjunction that a particular family of tridiagonal patterns is 
spectrally arbitrary was given. Since that time there have been 
many papers on this topic (see, for example, [2]-[7]) and 
several families of spectrally arbitrary patterns have been 
presented and general properties of spectrally arbitrary patterns 
have been studied ([8-11]). In [12], Britz et al. showed that 
every irreducible, spectrally arbitrary sign pattern of order n 
must have at least 2n-1 nonzeros and they also gave families of 
patterns that have exactly 2n nonzeros. This result is easily 
extended to zero–nonzero patterns over ℝ and ℂ. In [13], the 
problem of classifying the spectrally arbitrary zero–nonzero 
patterns over ℝ is studied and all nn spectrally arbitrary 
zero–nonzero patterns are classified when 4n . This article 
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presented the idea that identifies the maximum number of 
nonzero entries such that a zero-nonzero pattern with maximum 
number of nonzeros is spectrally arbitrary. In [14], DeAlba et al. 
studied properties of reducible, spectrally arbitrary sign and 
zero-nonzero patterns over ℝ. Recently, McDonald and Stuart 
[19] described a method for proving an irreducible ray pattern 
with exactly n3  non-zeros and its superpatterns are spectrally. 
From that time there have many articles on this topic (see, for 
example, [15]-[18]). 

II.  THE NILPOTENT-JACOBI METHOD  

In [9], Drew et al. gave a method of establishing that a sign 
pattern and every of its superpatterns are spectrally arbitrary. 
This method worked for a sign pattern in whose class certain 
types of nilpotent matrices could be found. McDonald and 
Stuart [19] extended their method to the ray pattern case in the 
following manner: 

The nilpotent-Jacobi method [19]: 
1. Find a nilpotent matrix in the given ray pattern class. 
2. Change 2n of the positive coefficients (denoted by 

nrrr 221 ,,  ) of the ije  in this nilpotent matrix to variables 

nttt 221 ,,  . 

3. Denote the characteristic polynomial of the resulting 
matrix as: 

 

)),(),((

)),(),((

)),(),((

2121

211211

1
211211

nnnn

nnnn

n
nn

n

ttigttf

xttigttf

xttigttfx
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

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
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4. Find the Jacobi matrix 
 

n

nn

ttt

gfgf
J

221

11

,,

),,,,(




  

 
If the determinant of J evaluated at ),,(),,( 221221 nn rrrttt    

is nonzero, then by continuity of the determinant in the entries 
of a matrix, there exists a neighborhood U of ),,( 221 nrrr   such 

that all the vectors in U are strictly positive and the determinant 
of J evaluated at any of these vectors is nonzero. Moreover, by 
the Implicit Function Theorem there is a neighborhood UV   

of 2n
221 R),,( nrrr  , a neighborhood W of 0) , 0, (0,  ℝ 

and a function ),,( 221 nhhh   from W into V such that for any 

Wbaba nn ),,,( 11   there exists a strictly positive vector 

 
Vbabahhhsss nnnn  ),,,)(,(),( 2211221221   

 
where

jnjjnj bsssgasssf  ),(,),( 221221  . If we take positive 

scalar multiples of the corresponding matrices, then we have 
that each monic nth degree polynomial over ℝ is the 
characteristic polynomial of some matrix in this ray pattern 
class. 

5.   Consider a superpattern of our pattern. Let 11
1

jiec
 be the 

new nonzero entries. Denote the new functions in 
characteristic polynomial by )(ˆ xF . Let 
 

jn
knj

knj

n

j

n

xcctttg

cctttfxxF








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1221
1


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where ),,,,,,(ˆ
1221 knj cctttf  and ),,,,,,(ˆ 1221 knj cctttg   

represent the real and complex parts of the coefficient of jnx  . 
Let  
 

n

nn

ttt

gfgf
J

221

11

,,

)ˆ,ˆ,,ˆ,ˆ(ˆ



 ，  

 
be the new Jacobi matrix. As above, let Wbaba nn ),,,( 11   

and 

Vbabahhhsss nnnn  ),,,)(,(),( 2211221221 
. 

Then 
 

)0,,0,,,,(ˆ),,,( 221221  nnjj sssfsssfa   

)0,,0,,,,(ˆ),,,( 221221  nnjj sssgsssgb   

 
and the determinant of evaluated at 
 

)0,,0,0,,,,(),,,,,,,( 22121221  nkn ssscccttt   

 
is equal to the determinant of J evaluated at  
 

),,,(),,,( 221221 nn sssttt    

 
and hence is nonzero. By the implicit function theorem, there 
exists a neighborhood VV ˆ  of ),,,( 221 nsss  , a neighborhood 

T of )0,,0,0(  ℝ k  and a function ),,,( 221 nqqq  from T 

into V̂ such that for any vector Tddd k ),,,( 21  , there exists a 

strictly positive vector 
 

Vcccqqqeee knn
ˆ),,,)(,,,(),,,( 21221221    

 
where 

jknj accceeef ),,,,,,,(ˆ
21221   

 
and  

jknj bccceeeg ),,,,,,,(ˆ 21221  . 

 
Taking Tddd k ),,,( 21   strictly positive, we have that there 

also exist matrices in the superpattern's class with every 
characteristic polynomial corresponding to a vector in W. If we 
choose positive scalar multiples of the corresponding matrices, 
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then we get that each monic nth degree polynomial over ℂ is the 
characteristic polynomial of some matrix in this superpattern’s 
class. 

III. MAIN RESULTS 

In [18], McDonald and Stuart defined the nn  ray sign 
patterns of the following form. 

 

1 1 0 0 0

1 1 0 0 0

1 0 0 1 0 0 0

( )
1 0 0 0 1 0 0

1 0 0 0 1 0

1 1 0 0 1

1

i

n

e

A

i i i i





 
 
 
 
 
   
 
 
 
      

  
 


       


 
  
  

    (4) 

 

where  20  and 4n and gave the following theorem. 
Theorem1. [18] For 4n , there exist infinitely many choices 

for  with  20  , so that )(nA  and all of its 

superpatterns are spectrally arbitrary ray patterns.  
McDonald and Stuart [15] have proved the theorem. 

According to the definition of .nA
 

 

4

1 1 0 0

1 1 0

1 1 0 1

1

ie
A

i i i



 
 
 
 
 

   

       (5) 

 
Unfortunately, we find that 

4A  is not spectrally arbitrary for 

any  with  20  . Now we prove that 
4A  is not 

spectrally arbitrary for any   with  20  . For 

convenience, we restrict   to 
2

0
  . Let cosq . 

Suppose )( 44 AQB  , then by scaling and positive diagonally 

similarity we can assume 
 

1

2
2

4

3 4

4 3 2 1

1 0 0

1 1 0

0 1

a

a q i q
B

a b

a ib ib ib

 
 

    
  
 

       (6) 

 

where 321321 ,,,,, bbbaaa  are negative and 
44 ,ba  are positive. 

From [19], the characteristic polynomial of
4B  is as follows: 

 

4 2 3
1 1

2
2 1 1 4

2 2
2 1 1 1 1

2 2
3 1 4 1 1 2

2

3 1 1 2 3 1 4
1

2
4 1 2

3

1 1 4 1 2 4
1

[( ) ( 1 )]

[( 1 )

( 1 )]

[( 1 1 )

( )]

[ 1

( )]

k k
k
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i b a b q b q a b b b x

a a b q

i a b b a b q a b
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




      
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     

      

      

   

    

   (4) 

 

Suppose that 
4B  is nilpotent. Setting the coefficient of jnx   

equal to zero for 4,3,2,1j , then solving for ja  and jb , we 

get that 
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2
1
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 (8) 

 
Substituting 

4b  into the equation 
 

2
3 4 2 (1 )a qb q q            (9) 

 
we obtain 
 

2 2
3 2 (1 ) 2 (1 ) 0a q q q q             (10)

 
 
which contradicts the fact that )( 44 AQB  . Thus, 

4A  is not 

potentially nilpotent, which implies that 
4A  is not spectrally 

arbitrary for any   with .20    

IV.  EXAMPLES 

Example1. The 44  ray pattern 
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1 1 0 0

1 3
1 1 0

2
1 1 0 1

1

i
A
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 
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    

       (11) 

 
is not spectrally arbitrary. The matrix  
 

1

2

3 4
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 
 
 
 
 
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       (12) 

 
is in the pattern class )(AQB whenever 

42 , aa  are negative 

and 32131 ,,,, bbbaa  are positive. The characteristic 

polynomial of B is  
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1 1

1 1
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    
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(13) 

 

Suppose that B is nilpotent. Setting the coefficient of jnx   
equal to zero for 4,3,2,1j , then solving for 

ja and 
jb , we get 

that 
 

1 2 3 4

1 2 3 4

1 3
, 1, 0, ,

2 16

3 3 3 3 3
, , ,

2 4 8 16

a a a a

b b b b

     

      

   (14) 

 
which contradicts the fact that )(AQB . Thus, A is not 

potentially nilpotent, which implies that A is not spectrally 
arbitrary. 
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