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Sequential Partitioning

Abstract—This paper proposes a data-driven, biology-inspired
neural segmentation method of 3D drosophila Brainbow images.
We use Bayesian Sequential Partitioning algorithm for probabilistic
modeling, which can be used to detect somas and to eliminate
crosstalk effects. This work attempts to develop an automatic
methodology for neuron image segmentation, which nowadays still
lacks a complete solution due to the complexity of the image.
The proposed method does not need any predetermined, risk-prone
thresholds, since biological information is inherently included inside
the image processing procedure. Therefore, it is less sensitive to
variations in neuron morphology; meanwhile, its flexibility would
be beneficial for tracing the intertwining structure of neurons.

I. INTRODUCTION

IT is amazing that how little we know about our
brain. Occupied by numerous neurons interweaving the

whole structure, the brain processes enormous information
every day and is prompted to react to any environmental
stimulation anytime. Although scientists have recognized
some perceptions are related to certain sections inside the
brain, a thorough understanding of how neurons communicate
and transmit information has not yet been completed. The
scientific study of neuroscience aims at unveiling those
secrets inside the brain. Neuroscience is a multidiscipline that
requires high level of integration. With advances in molecular
biology, electrophysiology, and bioinformatics, neuroscience
has enjoyed fruitful discoveries for the latest centuries.
However, one of the biggest challenges remains to map all
the neural networks inside such a delicate structure onto a
comprehensive system, the connectome. To study the fabricate
structures in the brain, many methods have been proposed
and utilized [19]; however, they all have their limitations.
One of the most common approaches is to stain proteins
contained in the neuron. This technique can be dated back
to late nineteen century: Camillo Golgi first developed a
staining procedure that could show one or more neurons in
monochrome. This method was later adopted by Santiago
Ramon y Cajal. Both of them became Nobel Laureates in
Physiology or Medicine in 1906. Starting from that time,
neuroscientists were equipped with a much more powerful tool
than ever for observing and describing neurons in the brain.
Many brain-related deceases were able to find causes and
treatments. However, the thorough understanding of neurons
was still very tough due to comparatively little information
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extracted per experiment. Think of comparing that information
with the scale of the brain: for example, it is estimated
that a human brain has roughly 100 billion neurons; even
a tiny fly has approximately 100 thousands of neurons.
As a result, monochromic staining was very inefficient if
neuroscientists would have to use that to map all neurons; nor
was it accurate enough to distinguish neighboring neurons if
neurons were stained simultaneously. As for image processing,
many automatic neuron-tracing algorithms had been proposed
[1]-[5]. Nevertheless, all those methods were dedicated for
monochromic images back in old days. It was the limitation of
biological experiment and insufficiency of image information
that made the development of connectome staggered.

However, the scientific needs for understanding the brain
never halt. In 2007, a major breakthrough in neuron-imaging
technique, Brainbow, was invented. Developed by a team led
by Jeff W. Lichtman and Joshua R. Sanes [6], Brainbow
shed new light on connectomics. Nominated by its fluorescent
nature, Brainbow allows not only flagging more than 100
different neurons simultaneously but also distinguishing
neighboring neurons by different colors, almost solving
previous shortages all at once. However, it raised complexity
for image processing, especially neuron segmentation. For
one reason, snaking neurons cause serious crosstalks if the
image resolution is not high enough. Other properties, like
the saturation of fluorescence, also make image processing
difficult to handle. Up to present, there has not been any
complete solution for automatic multicolored-neuron-image
segmentation. Thus for quite a long time, neuroscientists
had to trace neurons by eye to get reliable segmentations.
It is extremely labor-intensive and time-consuming. In 2013,
Shin-ya Takemura et al. [7] proposed a method of constructing
a visual motion detection circuit, in which a way of processing
the neural image is also involved. However, it still requires
human interaction. In this paper, a new method is proposed
to treat the three-dimensional structure as a whole, adaptively
eliminating and amending for undesirable image deficiencies,
such as crosstalks and insufficient resolutions.

II. RELATED WORKS

Early works as [8], Cohen et al. showed that it is possible
to design automatic cell tracking procedures. Later, several
works were able to trace monochromic neuron images [1]-[5].
By selecting proper filtering criteria, some fabricate structures
can be extracted. But they all suffer from the danger of losing
important data, because, in a neural image, signal intensity
might not be correlated with its significance.
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On the other hand, few works were dedicated for Brainbow
images, since it is still developing and also complex to process.
First, because of the fluorescent effect, some areas with
stronger fluorescence would saturate, therefore staining or even
shadowing its neighboring neurons. Wu et al. [9] proposed a
way of probabilistic fitting to eliminate such crosstalk effects.
We will use the idea but with a new estimation method
for the probability model. Second, some works attempted
to model the shape of neuron cells, based on which Bas
et al. [10] proposed a cylinder-shape model to delineate the
structure of neurons. However, due to the irregular outlines of
neuron fibers, it is difficult to assign a general shape to model
them. Moreover, the ends of dendrites and axons are usually
places where transmissions of cerebral signals occur; even a
dim voxel might serve as important information. Therefore,
treating each voxel as precious information as they should
be, this perspective taken on [3] was dedicated for resolving
this issue. In this work, this idea is extended to multicolor
three-dimensional images.

For a brief summary, the proposed method is
voxel-perspective, automatic and also adaptive for tracing
and segmenting all neurons in a Brainbow dataset. We
consider the 3D image as a whole, and also try to mend the
lower resolution in the third dimension. Therefore, unlike
methods proposed in [7], whose segmentation was done by
segmenting 2D images first and then stitching back to 3D,
the proposed method can prevent the segmentation task from
losing information along the third dimension. Also, it does
not need any predetermined thresholds, as the spectral matting
methods proposed in [9] and [11], nor does it require the
object being traced to have any specific morphology. It is less
sensitive to variations in the snaking structure; meanwhile,
its flexibility would be an advantage for tracing intertwining
structures.

The organization of this paper is as follows. The Brainbow
imaging technique and its difficulties of image processing will
be introduced in Section III. Section IV is the complete flow
of the proposed method with details described. Section V
will show the experiment results of using the methodology
for Brainbow image segmentation. Finally, Section VI is the
conclusion.

III. THE BRAINBOW IMAGE

The Brainbow image is acquired by confocal microscopes.
Confocal microscopy is a laser scanning technique which
allows the recording of three-dimensional images of small
objects stained with a fluorescent dye. It is one of the most
common sources for neuron digitalization nowadays. During
scanning, each voxel is illuminated in turn by a focused
laser beam. The photons emitted by the fluorescent dye are
filtered by a small pinhole, and the remaining photons are
detected by a photo multiplier. The captured image would
later be stored into a sequence of two-dimensional image
stacks, forming a three-dimensional image set [19]. The image
format we acquire is LSM, which is an exclusive format of
Carl Zeiss AIM Inc. There are three to four channels for each
two-dimensional image, and the intensity is from 0 to 255. Fig.

1 is an example of such an image, and Fig. 2 is the partial
zoom-in of Fig. 1.

Our goal is to segment neuron paths automatically in any
given Brainbow image. And the main challenges are: First,
it can be seen clearly from Fig. 2 that the resolution is not
enough for distinguishing signals from noises; in addition,
many voxels contain simultaneously more than two neurons.
Second, still seen from Fig. 2, there are many isolated
fluorescent dots distributing randomly on the image. They
may be isolated due to low resolution while they should be
connected, or they may simply be noises. The criteria for
seperating these two should be examined carefully. Third,
crosstalks between channels also happen randomly. Not only
have we to detect them but also to amend deficiencies due to
crosstalks. Combined with additional biological morphology
of the neuron, the proposed method can be used to achieve
automatic neuron segmentation effectively.

somas circled

IV. METHODS

Fig. 3 shows the flow of the proposed methodology.
First the Bainbow image dataset is acquired and filtered
out noises. Because confocal laser scanning of multicolor
stacks is generally done at speeds of about 1 us per pixel
or less to save time, the small number of photons collected
for each pixel gives rise to sufficient shot noise to cause
perceptible local color differences. After denoising, several
features are extracted: (1) coordinates of voxels, and (2)
color information of those, namely their RGB values. Each
voxel contains five dimensions of properties, and then the
Bayesian sequential partitioning (abbrev. BSP [18]) is used to

Fig. 1 A 2D slide of a 3D Brainbow image set with several

Fig. 2 Partial zoom-in of Fig. 1
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detect somas. The returned probability density is an indicator
for regions containing somas. After soma detection, we start
to trace dendrites and axons. Here an adaptive inspection
window is imposed in this algorithm. The main function of
the inspection window is to detect the direction of growth and
filter voxels inside. It is an imaginary 3D box that encloses the
neuron under tracing. In each inspection window, two stages of
filtering are done: connecting filtering and color filtering. Then
we use its direction of growth as an indicator for enlarging the
inspection window. Every time after color filtering, we check
whether the neuron still has the tendency to grow. If it is true,
we iterate this procedure until finding no tendency of growing.
More details will be provided as follows.

A. Soma Detection

Somas are those areas that have extremely strong brightness
intensity and the only round, dense structure in the whole
image. As Fig. 1 shows, circles 1 to 3 are somas but circle
4 is not. They are obvious to human visual perception and
can be easily acquired by image erosion, as proposed in [11].
However, we here propose a different approach, which utilizes
the BSP to process all voxel data first and retrieve their joint
probability density as indicators for soma locations.

We define each voxel Vi as the function of its own
coordinates (in 3-dimensional Cartesian coordination) x, y, z,
and its rR and rG, which are defined as

rR =
RR

RR +RG +RB
(1)

rG =
RG

RR +RG +RB
(2)

rB =
RB

RR +RG +RB
(3)

where RR, RG, and RB are the R, G, and B intensities
correspondingly.

Since Brainbow image was acquired by confocal
microscopy, its RGB intensity of a certain fluorescence

color varies inherently but the proportion of its color
ingredients rarely changes. In other words, the intensity ratio
of R:G:B is comparatively more stable throughout a complete
neuron, rather than the original R, G and B intensities. Since
rB is completely dependent on rR and rG, here only rR
and rG are included as parameters. After obtaining that
information, we use the BSP to find their joint probability
density P (X = xi, Y = yi, Z = zi, RR = rRi, RG = rGi|D).
The BSP will perform variable selection, which adjusts the
input data and returns the most suitable bin width of a
histogram, so that those bin partitions with high probability
density are most likely to be regions that actually contain
somas.

Generally, there are two kinds of situations for a partition
to possess a high probability density. One is that the
partition contains soma. The other is that the partition
contains synapses. They can be seperated by their different
morphology: somas have much higher density, defined as
voxels per volume, than synapses do. By applying this criterion
to partitions possessing high probability density, we can
identify somas out.

B. Connected Filtering

From those somas found as starting points, the next step is
to trace rest of the neurons from them. Starting from a soma
SOMi, we use (1) connected component filter C and (2) color
ratio filter R to determine the rest of voxels vr such that for
every neuron

Ni = SOMi ∪ vr. (4)

Since obviously vr should be connected with the soma,
connected component filter is adopted first. An inspection
window is created to save all six-direction boundaries of the
neuron: minimum x, maximum x, minimum y, maximum y,
minimum z and maximum z. The inspection window encloses
the neuron under tracing. In each iteration, only voxels inside
one inspection window are taken into consideration, preventing
waste of repetitive computation and memory occupation.
Besides, the inspection window has another function, which is
to detect where the neuron grows. By detecting whether any
side of the inspection window has neuron voxels laid on, we
can further decide to where the next inspection window should
grow. We record those sides with voxels laying on as Si, and
those voxels as VS .

Then we start to filter inside the inspection window. Firstly,
binary connected filters are used . A threshold of brightness
is set to separate signal and noise. We define I(Vi) as an
indicator for signal and B(Vi) as the brightness of voxel Vi.
Therefore,

I(Vi) =

{
0, B(Vi) < th

1, B(Vi) ≥ th.
(5)

If I(Vi) equals one for Vi, we treat Vi as a real signal; else,
it is a background noise. Each time as the inspection window
grows, the connected component Ci is obtained by

Fig. 3 Flow of Brainbow image processing with BSP
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Ci = Ci−1 ∪ (Ci ∩ VS). (6)

That means, given the soma SOMi as C1, every time the
size of the inspection window increases, a new Ci is obtained.
The union of the new Ci and its previous one, namely Ci−1,
should represent the neuron segmentation been found so far. In
addition, the intersection of Ci and VS is taken first, because
it is then ensured that the connected components found in the
new inspection window are indeed connected with neurons
from its previous inspection window.

The connected component filter has been well accepted
as providing a rich, scale-invariant description for grey-level
images. Its data structure can be efficiently implemented using
a connected-component tree structure. It has been involved,
in particular, in the development of attribute filtering [12],
object identification [13], and image retrieval. In the context of
segmentation or recognition tasks, it enables performing object
detection without having to precompute a specific threshold
(which is usually an error-prone task). It is highly suitable
for fabricate structures whose contour contains important
information. It scoops out wanted voxels without altering the
rest of the image. Another advantage of connected-component
tree structure lies in its low algorithmic cost: many efficient
algorithms have been designed to compute it [14]-[16]. The
achievable time complexity is O(N + E), where N and E
are number of nodes and edges respectively. Together with
inspection window, which allows us processing only a small
amount of voxels per iteration, the algorithm is highly efficient.
Therefore, the proposed method suits handling of big data like
the Brainbow, whose bulk volume adds to a surge of the data
amount, comparing with a typical 2D image. Therefore, it is
necessary to do such data reduction and focus on only data
containing information of interest.

Fig. 5 shows one soma detected by BSP, and it is enclosed
in the inspection window, which will detect the direction to
which the neuron keeps growing. As the inspection window
keeps being enlarged, the neuron region-grows to its connected
voxels. After several iteration, Fig. 6 shows that the neuron has
grown form its soma (inside the right box) to some extension
of its dendrites. When more neural voxels are collected into
the inspection window, the better control of the neuron under
tracing is acquired. As a result, connecting criteria can be
set adaptively in each iteration. For example, as we gather
more voxels, we will know their brightness distribution over
their distances from soma. Fig. 4 shows such a distribution of
several neurons. If the th in (5) is chosen too high, important
information might be missing as we trace to the end of
dendrites and axons, whose brightness is much lower than
the soma. On the contrary, if th is chosen too low, the danger
is to involve too much noises that shall not be involved. As
a result, the proposed method does not depend on a global
th as an universal indicator; instead, it imbues the flexibility
in each iteration. Each th, threshold of brightness, and δv,
increment of volume of the inspection window, are calculated
by Euler method [17]. That is, we predict thn+1, the brightness
threshold following thn, by its rate of change over its current
inspection windows volume vn; that is,

thn+1 = thn + δv · f(thn, vn),where (7)

f(thn, vn) =
thn

vn
. (8)

Since the threshold of brightness and the size of
the inspection window are chosen adaptively, it can
adjust to neuron morphology (irregular shape) and image
quality (nonhomogeneous brightness) according to its local
information. Also, since each time we only calculate Ci and
finally find the union of them as in (6), every iteration step is
independent. Therefore, the iteration does not take up more
time complexitythe time complexity is still dominated by
connected component filtering.

distance from its own soma

inspection window

segmentation method

C. Color Filtering

The second filtering stage is the color filter. There are two
color filters: one for eliminating crosstalk effects and the other
for selecting right colors and also amending for intersecting

Fig. 4 Signal brightness (normalized from 0 to 1) vs. lattice

Fig. 5 A soma detected from BSP and its corresponding

Fig. 6 Growing neuron from Fig. 5. undergoing the proposed



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1548

areas whose colors are mixed and changed, prone to be filtered
out after typical color filtering for a limited bandwidth.

Instead of setting criteria based on common color spaces
like RGB, HSB, or HSV for filtering, we use the ratio of
R:G:B defined in (1)-(3) as filtering criteria. Therefore, after
partitioning and reconstructing, the following color patterns
specifically to Brainbow are adopted in this methodology:

1) Color ratio stability: Throughout the whole neuron, its
RGB and HSB/HSV value varies. What is kept steady is its
ratio of R:G:B.

2) Stochastic color mixing: Generally, the color variation
in hue changes gradually. However, in some areas where two
or more neurons meet, their color might mix with each other
because of the color-mixing effect of confocal microscopy
recording. In those areas, it is expected that a sharp peak of
change in hue value will happen.

To deal with these properties, first we use the color ratio
(1)-(3) as an aid to filtering. Then, while growing the neuron,
we will stop at each iteration to check the color ingredients
of the current inspection window and adjust the color filtering
criteria.

Since each color obtained from the confocal microscopy
is a combination of three to four discrete color channels, the
probability density function of each color component can be
constructed. Indeed the BSP used earlier in soma detection
also provides the information here. From BSP we obtain all
the marginal probability density of each channel and their joint
probability density. And this is the reason why we do not
use image erosion for soma detection. Then we can use the
probability density function of each channel as a color filter.
After that, crosstalk effects among channels can be greatly
eliminated [9].

The concept of the second color filter is illustrated by Fig. 7.
Every time we come to a new inspection window, we analyze
its color ingredients. For example, in Fig. 7(a), we see that
since the majority color ingredient is blue, we should filter
out all the other colors except blue. Fig. 7(b) shows another
case. Now other than blue, a comparatively large amount of red
components are involved in. Since magenta is the combination
of blue and red, it will appear at areas where red and blue
neurons meet. As a result, magenta should be preserved when
tracing both red and blue neurons.

(a)

(b)

V. EXPERIMENT RESULTS

Fig. 8 shows the tracing process of a neuron under our
proposed method, and Fig. 9 is a top-viewed, flatten complete

neuron.
First, in Fig. 8(a) we start from a soma, which was detected

by the soma detection method. Then we impose an inspection
window on it and detect its direction of growth. Every time
we detect its direction of growth, we enlarge the inspection
window in that direction, filter voxels inside, and find unions
of newly-found neuron paths with union paths from previous
inspection window. Fig. 8(a) to (d) show the concrete tracing
process of the methodology discussed in Section IV. Finally,
Fig. 9 is complete neuron segmentation.

Since tiny voxels may represent important information for
connectome, we have to treat them voxel by voxel. To allow
flexible parameter selection according to local information of
the neuron data, we use the concept of a growing inspection
window to deal with voxels locally. Fig. 8(c) and (d) show the
color filtering stage using local color information. Therefore,
this methodology does not depend on any predetermined
thresholds. It is a completely data-driven work that devotes
to large data mining of biological images.

VI. CONCLUSION

Connectomics is now a major topic in science. Brainbow
serves an innovative technique in neuron imaging, whose
ultimate interests devote to map and understand the whole
connectivity and functions of cerebral neurons. However, due
to the complexity of dealing with the intrinsic stochastic
property of Brainbow images whose details can not be
carelessly ignored, it still lacks completely automatic ways of
neuron segmentation, making the progress of new discovery
hampered.

In this paper, we propose a new solution for automatic
Brainbow segmentation by adaptively tracing neurons by their
biological morphology. It not only saves computation time by
reducing unnecessary data, but preserves important biological
information. The experiment results show good accordance
with some present known neuroscience. Another advantage is
its flexibility: it can adapt to variations of neuron morphology
and image quality - not any predetermined thresholds are
needed, nor is any model that might not be completely
suitable for modeling the irregular morphology of neuron
fibers required. Results indicate that the proposed method
can successfully trace multiple axons in dense neighborhoods.
Though there are still some limitations regarding to the
resolution of the original Brainbow image, we hope this
automatic segmentation method will help neuroscientists
accelerate new discoveries in connectomics. In future works,
we also hope to apply this method to more biomedical image
processing and data mining, catalyzing more new discoveries.
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Fig. 7 An example of the function of the second color filter



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1549

(a) Soma detected from BSP

(b) Growing from Fig. 8(a), the neuron grows
in a particular direction

(c) As the neuron keeps growing, the
connected-filter connects the neuron

to some unwanted areas

(d) Filter out unwanted regions in Fig. 8(c)
using proposed color filters.
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