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Abstract—This paper presents a sensor-based motion planning 

algorithm for 3-DOF car-like robots with a nonholonomic constraint. 
Similar to the classic Bug family algorithms, the proposed algorithm 
enables the car-like robot to navigate in a completely unknown 
environment using only the range sensor information. The car-like 
robot uses the local range sensor view to determine the local path so 
that it moves towards the goal. To guarantee that the robot can 
approach the goal, the two modes of motion are repeated, termed 
motion-to-goal and wall-following. The motion-to-goal behavior lets 
the robot directly move toward the goal, and the wall-following 
behavior makes the robot circumnavigate the obstacle boundary until 
it meets the leaving condition. For each behavior, the nonholonomic 
motion for the car-like robot is planned in terms of the instantaneous 
turning radius. The proposed algorithm is implemented to the real 
robot and the experimental results show the performance of proposed 
algorithm. 
 

Keywords—Motion planning, car-like robot, bug algorithm, 
autonomous motion planning, nonholonomic constraint. 

I. INTRODUCTION 
UTONOMOUS navigation for car-like robots is a 
challenging field because the car-like robot must depend 

on only the local information from the sensor during the motion 
planning. Thus the navigation algorithm needs to guarantee that 
the robot approaches the goal location only using the local 
information of the environment. Another difficulty for 
navigation occurs because of the motion constraints, like the 
nonholonomic constraint that prevents a side-slip motion in the 
perpendicular direction, and the minimum turning radius. In 
order to design a motion planner for the car-like robot, the 
nonholonomic motion generated from the motion planning 
algorithm should satisfy these motion constraints.  

This paper proposes a sensor-based motion planning 
algorithm for the car-like robot based on the Bug family 
algorithms. For the point robot with a contact sensor or a zero 
range sensor, the simplest motion planning algorithms called 
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Bug1, Bug2 algorithms was introduced [1], whereas the 
Tangent Bug algorithm is used when the robot has a finite range 
sensor with a 360º infinite orientation resolution [2]. Basically, 
the two behaviors, the motion-to-goal and the wall-following, 
are repeated until the robot reaches the goal or a loop is 
detected, in which case the goal is not reachable. The 
motion-to-goal moves the robot in the direction of the shortest 
path to the goal. As the robot avoids the obstacle, the distance to 
the goal may reach a local minimum and begin to increase. If 
this happens, the motion-to-goal is terminated and the 
wall-following is executed so that the robot circumnavigates 
the obstacle boundary until the distance to the goal becomes 
smaller than the recorded minimum distance to the goal. These 
works have been applied to various motion planning tasks 
[3],[6]. Extensions to classical Bug-like algorithms are 
introduced in [3]–[5]; the problem of the planetary rover 
navigation with a limited field of view (FOV) is addressed by 
the WedgeBug algorithm. This motion planning algorithm 
minimizes the requirement to sense and store data using 
autonomous gaze control [3]. As a variant of TangentBug, 
CautiousBug was introduced in [4]. Although the structure of 
the algorithm is the same as Bug-like algorithm, CautiousBug 
algorithm uses a cautious search when it determines the 
direction to follow on obstacle boundaries. For on-line robot 
navigation, CBug algorithm was designed for the navigation of 
disk robot and its competitiveness in terms of path stability has 
been established [5]. However, the above works consider the 
navigation of robot without accounting for motion constraints. 
The minimum turning radius of car-like robot limits the 
instantaneous reachable space; thus, the convergence to goal 
point for the motion planning is not guaranteed. 

Compared to the two degree-of-freedom point robot, the 
car-like robot is modeled with three degree-of-freedom, 
including not only position but also orientation, and it also has a 
nonholonomic constraint. A number of approaches have been 
proposed recently to cope with this motion constraint for the 
car-like robot navigation. The mapping from the configuration 
space to the specific configuration space was suggested so that 
the well-known reactive collision avoidance method for a 
holonomic robot like a potential field can be applied to the 
nonholonomic robot in that space [7]. Thus, the transformation 
between two spaces is necessary for executing the reactive 
motion planning method. Nonholonomic path deformation 
methods were introduced in [8] which simultaneously execute 
the real-time path planning and obstacle avoidance. Given an 
initial path, the methods in [8] define the potential field over the 
space of a path. The obstacle potential is generated from the ob- 
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Fig. 1 Kinematic model of a car-like robot 

 
stacle and determines the direction of the path deformation. 
Since these methods compute the obstacle potential field along 
the path, it requires numerous computations by the robot’s 
real-time controller. These reactive approaches also suffer from 
local minima which causes the robot to converge to a non-goal 
region. 

In this paper, we focus on the motion planning algorithm 
which provides a nonholonomic path to a goal for a car-like 
robot that ensures the global convergence using only locally 
available sensor information. The proposed motion planning 
algorithm generates the local nonholonomic motion using the 
instantaneous turning radius which satisfies the motion 
constraints on the robot. That is, even though the notions of the 
motion-to-goal and the wall-following from the Bug family 
algorithms are analogously used, we provide the local feasible 
motion to the car-like robot. 

II.  SENSOR-BASED MOTION PLANNING ALGORITHM 
The proposed algorithm navigates the car-like robot in a 

planar unknown environment populated by stationary obstacles. 
The car-like robot is a point robot with motion constraints, a 
nonholonomic constraint and a minimum turning radius. Only 
forward motion is allowed during the motion planning. We also 
assume that the robot is equipped with a 2D range sensor. 

Let us briefly describe the sensor-based motion planning 
algorithm. The proposed motion planning algorithm uses the 
two basic behaviors, the motion-to-goal and the wall-following. 
For each behavior, the instantaneous nonholonomic motion is 
generated based on the Pure pursuit method [11],[12] so that the 
motion constraints of the robot are satisfied. 

During the motion-to-goal behavior, the robot moves toward 
the goal point by following the nonholonomic path. When the 
distance to the goal point begins to increase during the 
motion-to-goal behavior, the local minima is determined and 
the behavior switches to the wall-following behavior. The robot 
circumnavigates the obstacle boundary until the current 
distance to the goal becomes smaller than the recorded minimal 
distance to the goal point. Then the robot leaves the obstacle 
boundary by switching the behavior to the motion-to-goal. 

A. Basic Notions 
1) Kinematic model 
In Fig. 1, the global coordinate system is a fixed coordinate 

system, and each axis is denoted by the superscript, G. The 
robot coordinate system, denoted by the superscript R, is a 
moving coordinate system attached to the robot, with the x-axis 

aligned with the heading of the robot. If the position and the 
orientation of the car-like robot are expressed by (x, y) and θ, 
respectively, the configuration of the car-like robot can be 
defined as q=[x y θ]T. Therefore, the kinematic model of the 
car-like robot is expressed by 

 
 

(1) 
 

 
where u=[v ω]T is the control input vector that contains the 
linear velocity v and the angular velocity ω. Here, the backward 
motion of the car-like robot is not considered in this work: that 
is, v is positive. 

In this kinematic model, the motion of the car-like robot 
constrained by the following nonholonomic constraint is 
describes as: 

                              (2) 
 
That is, it is assumed that the car-like robot is reasonably 

slow such that the longitudinal traction and lateral force exerted 
on the tires do not exceed the maximum static friction between 
the tires and the floor. This is called a no-slip condition. At the 
low speed of the car-like robot, the kinematic steering is 
determined from the Ackerman turning geometry as δ=b/R=bκ 
where δ is the equivalent steering angle for the front wheels, b 
is the wheelbase, and R is the turning radius. Thus with the 
maximum steering angle for the front wheel δmax, the lower 
limit on the turning radius is represented by Rlim which satisfies 
δmax=b/Rlim. 

2) Local Information from the 2D Laser Rangefinder 
The maximum sensing range for 2D laser rangefinder is 

defined as rmax and the FOV of the laser rangefinder is also 
limited by 2β. Even if the laser rangefinder provides the set of 
the discrete points with respect to the angle resolution of the 
sensor, they are considered as a continuous line or curve if the 
distance between the two points is close. Let the set of the end 
points of the obstacle boundary be the set E. For example, in 
Fig. 2, E={e1, e2, e3, e4}. 

Let A(q, rmax, β) be the area within the sensing distance and 
FOV. The arc boundary of A at radius rmax is defined as ∂A, and 
B is the union of the two bounding rays. Then the local free spa- 

 

 
Fig. 2 Local view from 2D laser rangefinder of the robot 
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Fig. 3 Geometry of Pure pursuit method 

 
ce is 

1

n

free i
i

F A WO
=

= − ∑            (3) 

 
where WOi is an i-th obstacle and n is the number of the 
obstacle. Then the local feasible space is defined as 

 
( )feas free L RF F C C= − ∪         (4) 

 
where CL and CR are the interior of the circles centered at (0, 
−Rlim), (0, Rlim), respectively. Thus, to guarantee the 
collision-free motion of the car-like robot, the instantaneous 
motion should be planned inside of Ffeas during motion 
planning. 

3) Pure Pursuit Method for the Motion Planning Algorithm 
For each behavior of the motion-to-goal and the 

wall-following, the proposed algorithm uses the Pure pursuit 
method [12] to plan the local nonholonomic motion. Figure 3 
shows the geometry of the Pure pursuit for the car-like robot. In 
Fig. 3, an arc that joins the current position of the robot and the 
look-ahead point pL can be constructed. The chord length of 
this arc is the look-ahead distance L. Let the location of the 
look-ahead point be (xL, yL) with respect to the robot coordinate. 
Then from Fig. 3, xL

2 + yL
2 = L2 and R = a + yL can be 

geometrically obtained where a satisfies xL
2 + a2 = R2. From 

these equations, R=L2/2yL can be obtained. Thus with the goal 
point pG shown in Fig. 3, the turning radius is calculated using 
this equation. 

Figure 4 shows the set of feasible trajectory with Pure pursuit  
 

 
Fig. 4 Set of feasible trajectory with Pure pursuit method 

 
Fig. 5 Left and right nonholonomic paths. 

 
method. If the orientation of the car-like robot is exactly toward 
the instantaneous goal point, then the look-ahead point lies on 
the intersection of the X-axis of the robot coordinate and the 
circumference of the circle with radius L. As the orientation of 
the robot moves away from the instantaneous goal point, the 
look-ahead point moves toward the point A or B along the 
circumference of the circle with radius L. When the look-ahead 
point coincides with the point A or B, then the look-ahead point 
is located on the Y-axis of the robot coordinate. For this case, 
the pure pursuit method calculates the minimum value of the 
turning radius min(R) as Rmin. Then the look-ahead distance L 
and the minimum turning radius have the relationship given by 

( ) min min2min 2 or .
2
LL R R R= = =            (5) 

thus, the look-ahead distance L needs to be selected so that it 
satisfies Rmin>Rlim where Rlim is the lower limit on the turning 
radius given in Sec. II. A.1. 

B. Motion-to-goal Behavior 
1) Blocking Obstacle with the Nonholonomic Path 
The left and right nonholonomic paths are the paths to the 

goal point starting with the right turn and the left turn, 
respectively. That is, the car-like robot has the two choices 
shown in Fig. 5, the left nonholonomic path (dotted line) and 
the right nonholonomic path (solid line). These paths are 
obtained based on the Pure pursuit method so that it satisfies the 
motion constraint of the car-like robot. The car-like robot 
selects the one which does not intersect with the obstacle and 
smaller than the other. The detail of algorithm is not described 
due to the space limitation. 

The blocking obstacle is detected when the both of path 
intersect with the obstacle. In the example of Fig. 5, the car-like 
robot can select the left nonholonomic path even the length of 
this path is longer than the other path. Thus the obstacle WO1 in 
Fig. 5 is not the blocking obstacle. Otherwise, if there is no 
collision-free path, the blocking obstacle requires the 
termination of the direct motion-to-goal and the beginning of 
the slide motion-to-goal to avoid the obstacle. 

2) Direct Motion-to-Goal Behavior 
Let Si be a point where the car-like robot starts the i-th direct 

motion-to-goal. The direct motion-to-goal behavior is required 
when there are no blocking obstacles and (pG−p)·XR ≥ 0 at Si.  
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environment, we showed that car-like robot can approach the 
goal point without violating the motion constraint. 
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