
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3066

Abstract—Multi-agent communication of Semantic Web

information cannot be realized without the need to reason with
ontology and agent locations. This is because for an agent to be able to
reason with an external semantic web ontology, it must know where
and how to access to that ontology. Similarly, for an agent to be able to
communicate with another agent, it must know where and how to send
a message to that agent. In this paper we propose a framework of an
agent which can reason with ontology and agent locations in order to
perform reasoning with multiple distributed ontologies and perform
communication with other agents on the semantic web. The agent
framework and its communication mechanism are formulated entirely
in meta-logic.

Keywords— Semantic Web, agent communication, ontologies.

I. INTRODUCTION
OMMUNICATION of Semantic Web (or briefly “SW”)
information between browsers and servers can be

understood as multi-agent communication. However, this
communication cannot actually be realized without the need to
reason with ontology and agent locations. This is because for an
agent to reason with an external SW ontology, it must know
where and how to access to that ontology. Similarly, for an
agent to communicate with another agent, it must know where
and how to send a message to that agent. To achieve this, in this
paper we propose a meta-logical model of SW communication
among agents using meta-information of ontology and agent
locations.

Some previous works on an agent system related to SW are:
Zou et. al. [4] used SW languages, as the languages for
expressing agent’s messages and knowledge base, to specify
and publish common ontologies; [5] presented a multi-agent
based scheduling application in which data sources are
described by SW languages and encapsulated in the agents. In
[6], an agent is built to perform scheduling with distributed
ontologies about events, e.g. conferences, classes, published on

Manuscript received November 30, 2005. This research was supported by

the Japan International Cooperation Agency (JICA) under the ASEAN
University Network / Southeast Asia Engineering Education Development
Network (AUN/SEED-Net) Program.

Visit Hirankitti is with the Department of Computer Engineering, Faculty of
Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok,
Thailand (corresponding author to provide phone: +66-2-739-2400; fax:
+66-2-739-2404; e-mail: visit@ce.kmitl.ac.th).

Vuong Tran Xuan is with the Department of Computer Engineering, Faculty
of Engineering, King Mongkut’s Institute of Technology Ladkrabang,
Bangkok, Thailand (corresponding author to provide phone: +66-2-739-2400;
fax: +66-2-739-2404; e-mail: txvuong@yahoo.com).

the SW. Those approaches are mainly related to applying the
SW technology in a multi-agent system. However, here we are
concerned with multi-agent communication and reasoning with
distributed ontologies and some works [1, 2] were done
previously. In this paper we have extended the communication
framework in [2] to reason with ontology and agent locations.

The rest of this paper is organized as follows. Next we give
an overview of our framework. Section III presents our
meta-representation of SW ontologies and section IV describes
our single agent architecture. Section V describes the
meta-interpreter which can reason with ontology and agent
locations, and section VI introduces multi-agent
communication. Section VII shows how to query and reason
with SW ontologies by multi-agent communication. Section
VIII covers some implementation issues. Finally, we discuss
about other related works and conclude this paper.

II. OUR FRAMEWORK
The meta-logical system for one agent consists of three main
parts: meta-programs for multiple ontologies, a
meta-interpreter, and the communication facility. Each
meta-program contains meta-logical representations of
ontologies obtained from the transformation of these ontologies
defined in RDF, RDFS, and OWL. Some elements in one
ontology may be related to some elements in another. The
meta-interpreter is the inference engine for infering implicit
information from the multiple ontologies. The communication
facility supports the communication among the agents. One
block in Fig. 1 illustrates one agent.

Fig. 1 Our SW multi-agent communication system

When several agents of this kind are formed as a community,
the way the multi-agent system works is that initially the user
queries an SW browser to get answers from an SW ontology on
SW. The browser can perform two alternative ways.

Firstly, it may retrieve this ontology from SW, transform it
into a meta-program, and then reason with the program to infer

Semantic Web Agent Communication Capable of
Reasoning with Ontology and Agent Locations

Visit Hirankitti and Vuong Tran Xuan

C

SW Browser

Service Advertising Server
Internet

SW Ontologies

Comm. Facility

Service S1 can be provided by agent A1.

. . .

SW Server

Name2Location Server

Agent A1 is located at address @1.

. . .

Agent A1 is located at address @1.

User
SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address 1.

. . .

Agent A2 is located at address 2. SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address @1.

. . .

Agent A1 is located at address @1. SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address 1.

. . .

Agent A2 is located at address 2.

Meta -interpreter

SW Ontologies

Comm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

Service S2 can be provided by agent A2.

Meta -interpreter

SW Browser

Service Advertising Server
Internet

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

Service S1 can be provided by agent A1.

. . .

SW Server

Name2Location Server

Agent A1 is located at address @1.

. . .

Agent A1 is located at address @1.

User
SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address 1.

. . .

Agent A2 is located at address 2. SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address @1.

. . .

Agent A1 is located at address @1. SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

. . .

Agent A1 is located at address 1.

. . .

Agent A2 is located at address 2.

Meta -interpreter

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

SW OntologiesSW Ontologies

Comm. FacilityComm. Facility

Service S2 can be provided by agent A2.

Meta -interpreter

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3067

the answers; if some elements in this ontology are related to
some elements of another ontology, the interpreter will try to
reason with that ontology in itself (by retrieving it first), or
request reasoning of that ontology in an SW server and obtain
the answers from that server, and this scenario may repeat
itself. For the browser to be able to retrieve an ontology, it must
know which server the ontology belongs to, and how and where
to access to it. This is the ontology’s meta-information
provided in the ontology. The browser will use this to contact
with that server and request that ontology from it, or to pass a
query to that server so that the server can derive an answer from
the ontology.

Alternatively, the browser passes the query to an SW server
to answer and gets the answers back for the user. The server
infers those answers based on its inferential results which
sometimes also require support of the inferential results derived
from other servers. In case the browser does not know which
server can answer that query, it will consult the Service
Advertising Server which gathers information telling which
server can provide what service. The browser then uses this
information to communicate with the selected server directly.
For the browser to communicate to any server as said earlier,
having known the server name the browser will pass the name
to the Name2Location server to obtain the server location and
then make contact with that server at that location. Note that
conceptually the term ‘location’ we use here is intended to be
an abstract one; an agent location could be the place, such as an
address (IP address) on the Internet, or even a (postal) address,
where the agent can be reached.

III. THE META-LANGUAGES AND META-PROGRAMS

A. Language Elements of the Semantic Web Ontology
The language elements of ontology are classes, properties, class
instances, and relationships between and among them
described in the object level and the meta-level as in Fig. 2.

Fig. 2 The elements of an SW ontology at the object level and
meta-level

At the object level, an instance can be an individual or a
literal of a domain; and a property is a relationship between
individuals, or is an individual’s attribute. At the meta-level, a
meta-instance can be an individual, a property, a class, and an
object-level statement; and a meta-property is a property to
describe a relationship between and among meta-instances, or
is a meta-instance’s attribute.

B. Meta-information of Ontologies
To facilitate communication between agents and reasoning
with multiple distributed ontologies, language elements of an
ontology should be associated with an ontology name. An
ontology should also be related to the agent possessing it, the
agent’s communication channel used to access to that ontology,
the file containing this ontology, and the file’s path location.
This is some meta-information of the ontology and it should be
treated as a part of a meta-level of the ontology.

C. Meta-languages of the Semantic Web Ontology
In our framework, for an SW ontology we distinguish between
its object and meta levels, and similarly its object and meta
languages. Hence, we have formulated two meta-languages:
one discusses mainly about objects and their relationships we
call “meta-language for the object level (ML)” and the other,
called “meta-language for the meta-level (MML)”, discusses
mainly about classes, class instances, properties, and their
relationships. MML includes the meta-language representing
the meta-information of an ontology discussed earlier in III.B.
Due to some connections between the object and meta levels,
ML and MML are slightly overlapped.

• A meta-language for the object level (ML)
Objects and their relationships at the object level as well as
some provability and references at the meta-level are specified
in an SW ontology and this information is expressed at the
meta-level by the elements below. (Note that the linguistic
elements of provability are a part of AgentML (see section V)
and the elements expressing references are a part of MML.).

Meta-constant specifies a name of an object and a literal,
including a reference, e.g. a namespace and an ontology name.

Meta-variable stands for a different meta-constant at a
different time, e.g. Person.

Meta-function symbol stands for the name of a relation
between objects, or of an object’s property—i.e. an object-level
predicate name, such as ‘fatherOf’—including the name of
provability predicate, i.e. demo. The meta-function symbol also
stands for other meta-level function symbol, e.g. ‘←’, ‘∧’,
‘:’, ‘#’. Finally the meta-function symbol can also be a term
in the form <ontology_name>:<namespace>#
<object-level predicate name> where ‘:’ and ‘#’ are
meta-function symbols, and <ontology_name> and
<namespace> are meta-constants or meta-variables.

Meta-term is either a meta-constant or a meta-variable or a
meta-function symbol applied to a tuple of terms, e.g.
‘family_ont’:‘f’#‘M1’.

To express an object-level predicate, it has the form: P(S,
O) where P is an object-level predicate name, S and O are
meta-constants or meta-variables (we presume all
meta-variables appearing in the tuple are universally
quantified), e.g. ‘f’#‘fatherOf’(‘f’#‘M2’, ‘f’#‘M1’).
To express a provability predicate, it has the form: demo(A, T,
P(S, O)), e.g. demo(a, o, ‘o’:‘f’#‘fatherOf’(
‘o’:‘f’#‘M2’, ‘o’:‘f’#‘M1’)).

ontology
element

instance of

is a

used in

object-level statement

instance

object predicate

property

meta-statement

meta-instance

subject object predicate

meta-property

class

subject

Object level Meta level

ontology
element

instance of

is a

used in

object-level statement

instance

object predicate

property

meta-statement

meta-instance

subject object predicate

meta-property

class

subject

Object level Meta level

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3068

The meta-term expressing an object-level sentence
(sometimes with some provability) is a term P(S, O) or
demo(A, T, P(S, O)) or a logical-connective function
symbol applied to the tuple of these terms. One form of it is a
Horn-clause, e.g.
 ‘o’:‘f’#‘fatherOf’(F, Ch) ←
 demo(b, ob, ‘ob’:‘p’#‘parentOf’(F, Ch)) ∧

 demo(c, oc, ‘oc’:‘m’#‘male’(F)).

Meta-statement for the object level reflects an object-level
sentence to its existence at the meta-level. It has the form:
statement(T, object-level-sentence), where T is an
ontology name, e.g.

 statement(o∪ob∪oc,‘o’:‘f’#‘fatherOf’(F, Ch) ←
 demo(b, ob, ‘ob’:‘p’#‘parentOf’(F, Ch)) ∧

 demo(c, oc, ‘oc’:‘m’#‘male’(F))).

• A meta-language for the meta-level (MML)

Additionally, an SW ontology defines classes, properties, and
their relationships, and also class-instance relations. This
information is precisely meta-information of the object level.
Here we express this information by MML which includes:

Meta-constant specifying a name of an agent, a namespace, an
ontology, a communication channel, a file’s path location, a
file, an instance, a property, a class, and a literal.

Meta-variable standing for a different meta-constant at a
different time.

Meta-function symbol naming a meta-level function, e.g.
port, protocol, #, :, path, file, location.

Meta-term is either a meta-constant or a meta-variable or a
meta-function symbol applied to a tuple of terms, e.g.
port(80), protocol(http), location(path(‘/’),
file(‘family.owl’)).

In our framework, a name of a class, a property, etc., can be
referenced by a meta-term in these three forms: uniqueName
or namespace#name or ontologyName:namespace#name,
e.g. ‘owl’#‘inverseOf’, ‘o’:‘f’#‘fatherOf’.

Meta-predicate name naming a relation between entities, or a
characteristic of a property, which fall into one of the following
categories: class-class relations, class-instance relations,
property-property relations, relations between literals and
instances/classes/properties, and characteristics of properties
[2]. A predicate name is labeled with a term to be associated
with its namespace and the name of an ontology it belongs to.

Meta-predicate expressing a relation between entities of the
form Pred(Sub,Obj), or a characteristic of a property in the
form Pred(Prop), where Pred is a meta-predicate name, Sub,
Obj, and Prop (a property) are meta-terms, e.g.
‘owl’#‘inverseOf’(‘o’:‘f’#‘fatherOf’, ‘o’:‘f’#
‘childOf’). Let all the meta-variables appearing in a
meta-predicate be universally quantified.

Meta-operator expressing a set operation between classes
such as union, intersection.

Meta-statement being a meta-predicate or meta-predicates
connected by logical connectives. One form of the
meta-statement is a Horn-clause meta-rule. Here are some
examples of the meta-rules:
 meta_statement(o, ‘owl’#‘inverseOf’(‘o’:‘f’#
 ‘fatherOf’, ‘o’:‘f’#‘childOf’) ← true).

 axiom(t, ‘owl’#‘equivalentClass’(C, EC) ←

 ‘owl’#‘equivalentClass’(C, EC1) ∧
 ‘owl’#‘equivalentClass’(EC1, EC)).
The second rule represents a mathematical ‘axiom’.

• A meta-language for the meta-information of ontologies

A meta-language expressing the meta-information of
ontologies discussed earlier in the section III.B is also included
in MML, although it could be taken to be at a higher meta-level
than MML; but for the simplicity we did not do that. The
meta-information relates an ontology to its agent, the
communication channel used to access to it, a file’s path
location, and the file that contains it; this meta-information is
formulated in MML in the form of
meta_info_statement(ontology, agent, port,
protocol, location(path, file)), e.g.
meta_info_statement(dmp, bookShopAgent, 80,
http, location(‘/’, ‘DocOnto.owl’)).

D. Meta-programs of the Semantic Web Ontology
Each ontology is transformed to a meta-program containing a
(sub-)meta-program expressed in ML, called “MP”, and/or a
(sub-)meta-program expressed in MML, called “MMP”.
Another meta-program expresses some mathematical axioms
using MML, called “AMP”. The inference engine often
requires AMP to reason with MP and MMP.

• The meta-program for the object level (MP)
MP contains meta-statements for the object level:
statement(T, P(S, O) ← true) and statement(T,
P(S, O) ← Body), where Body expresses a conjunction of
object-level predicates and some provability; the latter is its
Horn-clause form. Note that to state that a meta-statement
belongs to an ontology T we put T as the first argument; and this
form of ontology labeling will be used henceforth.

• The meta-program for the meta-level (MMP)
MMP contains description of classes, properties, their
relations, and class-instance relationships in terms of
meta-rules. It also contains statements expressing ontology
meta-information. Here is an example of a statement in MMP:
 meta_info_statement(dmp, bookShopAgent, 80,

 http, location(‘/’, ‘DocOnto.owl’)).

• The meta-program for the axioms (AMP)
AMP contains axioms for classes and properties. For example,
an axiom defining an equivalence of classes:

 axiom(T, ‘owl’#‘equivalentClass’(C, EC) ←

 ‘owl’#‘equivalentClass’(C, EC1) ∧

 ‘owl’#‘equivalentClass’(EC1, EC)).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3069

IV. SINGLE SW AGENT ARCHITECTURE
An agent in our framework is denoted by <Meta-interpreter,
Knowledge Base, Communication, Historical Memory,
Transformation> whose components are depicted in Fig. 3.
The Transformation module transforms ontologies obtained
from SW to MPs, MMPs, and AMPs, and the knowledge base
stores them. The Meta-interpreter reasons with them in order to
answer queries posed by the user, and communicates with other
agents to get ontologies or answers for queries. The Historical
Memory stores information required for advance reasoning by
the meta-interpreter. The Communication module facilitates
communication with other agents.

Fig. 3 Single SW Agent Architecture

• Meta-language of the agent (AgentML)
AgentML is a meta-language we use to formulate the agent. It
discusses about the agent’s components, such as the demo(.)
definition, the agent’s name and resources, assumptions in
ontologies (this part is connected with MP and MMP),
communication methods and facilities, its locations used for
communication, other agents and their ontologies, and so on.

V. A COMMUNICATIVE DEMO
The demo predicate [7] is used as our meta-interpreter. Our
demo definition, which can reason with multiple distributed
ontologies and communicate with other agents proposed in [1,
2], has been extended here to reason with ontology and agent
locations in order to realize its task of communication of SW
information. For demo(Agent,T,A), it means an answer A can
be inferred from a theory T by an agent Agent. In [2] the
Vanilla is adapted for reasoning with multiple ontologies where
we identified three kinds of meta-level statements, (1)
statement(T,A ← B), (2) meta_statement(T,A ← B) for
the meta-level of an ontology, and (3) the mathematical axioms
axiom(T,A ← B). The definition of demo/3 is:

 demo(_,empty,true). (true)

 demo(Agent,T1∪T2,A ‘∧’ B) ← (conj)
 demo(Agent,T1,A) ∧ demo(Agent,T2,B).

 demo(Agent,T,demo(Agent’,T,A)) ← (ref)
 demo(Agent’,T,A).

 demo(Agent,T1∪T2,A) ← (ost)
 statement(T1,A ‘←’ B) ∧ demo(Agent,T2,B).

 demo(Agent,T1∪T2,A) ← (mst)
 meta_statement(T1,A ‘←’ B) ∧
 demo(Agent,T2,B).

 demo(Agent,T1∪T2,A) ← (ast)

 axiom(T1,A ‘←’ B) ∧ demo(Agent,T2,B).

The clauses (true), (ost), and (conj) form the Vanilla. The
clause (ref) states that when the meta-interpreter tries to prove
demo(Agent,T,demo(Agent’,T,A)), it will prove
demo(Agent’,T,A) by a reflection.

For distributed ontologies, some ontologies may be referred
to in others. In this case while demo is reasoning with an
ontology to derive an answer, this may require it to reason with
another unavailable ontology. So we add the following clause
to allow demo to retrieve that ontology from its location on the
web, transform it into MP and MMP, and then reason with it to
complete all the inference steps so that it can derive the answer.

 demo(Agent,T,demo(Agent’,T,A)) ← (retr)
 myName(Agent’) ∧ unavailable(T) ∧
 O:NS#Goal = A ∧
 meta_info_statement(
 O,Agent’’,Port,Channel,Location) ∧
 retrieve(O,Agent’’,Port,Channel,Location) ∧
 transform(O,P) ∧ demo(Agent,P,A).

 With this clause, demo can work analogously to a browser.

Additionally, when each server storing an ontology is
equipped with this demo definition, for demo (at the client) to
derive an answer from an unavailable ontology, this can be
done by that the demo sends the query (for an unavailable
ontology) to the server, which has that ontology, to answer the
query. For this to be done, we may add two more demo clauses:

 demo(Agent,T, (certain-agent-comm)
 demo(Agent’,T,A)) ←
 not myName(Agent’) ∧ known(Agent’) ∧
 unavailable(T) ∧
 agentLocation(Agent’,Location,
 Port,Channel) ∧
 connect(Location,Port,Channel,ConnectID) ∧
 communicate(ConnectID,demo(Agent’,T,A)) ∧
 disconnect(ConnectID).

 agentLocation(Agent,Addr,Port,Ch) ←
 connect(www.n2l.net,80,http,ConnectID) ∧
 communicate(ConnectID,demo(www.n2l.net,T,
 name_location(Agent,Addr,Port,Ch))) ∧
 disconnect(ConnectID).

 demo(Agent,T, (applicable-agent-comm)
 demo(Agent’,T,A)) ←
 unknown(Agent’) ∧ unavailable(T) ∧
 findAgent(Agent’,A) ∧
 demo(Agent,T,demo(Agent’,T,A)).

 findAgent(Agent,Goal) ←
 agentLocation(sa_sever,Location,
 Port,Channel) ∧
 connect(Location,Port,Channel,ConnectID) ∧
 communicate(ConnectID,demo(sa_server,_,
 agentCapability(Agent,Service))) ∧
 matchOK(Goal,Service) ∧

Meta-interpreter

memory

Knowledge
base

Transformation

Internet

Semantic Web Agent

Other Agents

Historical User

-

C
om

m
un

ic
at

io
n

Meta-interpreter

memory

Knowledge
base

Transformation

Internet

Semantic Web Agent

Other Agents

Historical User

-

C
om

m
un

ic
at

io
n

Meta-interpreter

memory

Knowledge
base

Transformation

Internet

Semantic Web Agent

Other Agents

Historical User

-

C
om

m
un

ic
at

io
n

Meta-interpreter

memory

Knowledge
base

Transformation

Internet

Semantic Web Agent

Other Agents

Historical User

-

C
om

m
un

ic
at

io
n

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3070

 disconnect(ConnectID).

In this clause, the demo searches for an agent who can
provide the service by asking a service advertising server (see
section VI).

Given all the above clauses, A can be inferred from demo in
different ways: firstly A may be inferred using statements in one
or many MPs, and/or using meta-statements in MMPs, and/or
using axioms in AMP. Alternatively, the inference may require
demo to retrieve some ontologies from different sources on SW
or to send demo(Agent,T,A) to other servers to request for
the answer.

• Agent creation and the agent’s life cycle
To create and start a new agent, we perform: (1) assign a unique
name to the agent by asserting myName(agentName); (2) set
up its communication channels; (3) register its name, locations,
ports, and channels to the Name2Location server; (4) start the
agent to do an endless observation—action cycle—listening to
the communication channels to get a request from the user or
other agent, and responsing to that request accordingly; when
the response is done it returns back to the observation stage
again.

VI. MULTI-AGENT COMMUNICATION
An individual agent created by our agent framework can
behave in two fashions. One is to work as an SW browser and
the other is to work as an SW server. The only difference is that
the former communicates with a human user and SW servers,
whilst the latter communicates with SW browsers and other
SW servers. Due to the usage of the current web, we expect that
a multi-agent community of SW would consist of SW
browsers, SW servers, Name2Location servers and Service
Advertising servers virtually linked together on the web (see
Fig. 1).

A Name2Location Server provides a communication
location of an agent when being asked with an agent name. It
has the fixed address: ‘www.n2l.net’. It possesses the facts
in the form of name_location(Agentname,
AgentAddress, Port, Channel).

A Service Advertising server has the name ‘sa_server’. It
maintains information telling which agent can provide which
service in the form of agentCapability(Agent,
Service), where Agent is a name of a registered agent and
Service is a service provided by the agent in the form of
OntologyName:Namespace#PredicateName(…).

VII. THE QUERY ANSWERING
To illustrate our framework, we use a book purchase scenario.
Suppose we have an online bookshop selling books supplied by
some publishers and providers. The bookshop, the publishers,
and the providers have their own SW servers which provide
information about the books able to be supplied by them. This
information is described by some ontologies and there are
differences between the ontologies in the servers of different
bookshops, different publishers, and different providers.

An online book purchase begins with a customer wants to
buy some books from a bookshop. He then uses an SW browser
to get some book information—i.e. title, short description about
the book—(expressed in some ontologies) from a bookshop
SW server. This information helps him decide which titles to
buy. Sometimes, he may want to get more information of the
interested titles, such as publishers, book cover types (e.g.
paperback, hardcover), and prices before placing an order with
the bookshop server. Suppose this information is not stored in
the bookshop server, but the server can request it from some
(probably unknown) publisher servers and/or provider servers.
In Fig. 4, we list only some parts of the meta-programs, MP and
MMP, possessed by a publisher server, a provider server, the
bookshop server, and also a part of service advertising
information in a service advertising server, respectively.

A demonstration of the query answering of the SW browser
is shown in Fig. 5. To answer the first query, the SW browser
reasons with its ontologies obtained from the bookshop server.
However, for the second, the browser adopts BMP’s the fourth
statement, and this requires it to pass this query to the bookshop
server to answer. The bookshop server uses DMP’s fifth
statement to infer the ISBN from the title; and it then queries an
unknown publisher and the provider providerAgent for the
cover type and price respectively. That is, for the book cover,
the bookshop server does not know which agent to ask but for
the book price, the book shop server knows that it may ask the
providerAgent server. For both cases, the bookshop server
has to consult to the service advertising server to find the
locations and services of these servers and to post its
corresponding queries to them and get the answers back. The
bookshop server then returns all the answers to the SW browser
for presenting to the user.

Publish SW Server
PMP: Meta-program for the publication ontology
meta_info_statement(pmp,publisherAgent,80,http,location(‘/’,‘PublisherOnto.owl’)).
statement(pmp,‘pmp’:‘p’#‘bCover’(‘pmp’:‘p’#‘0262635828’,‘hard’) ← true).

Provider SW Server
PPMP: Meta-program for the publication provider ontology
meta_info_statement(ppmp,providerAgent,80,http,location(‘/’,‘PubProviderOnto.owl’)).
statement(ppmp,‘ppmp’:‘pp’#‘bPrice’(‘pmp’:‘p’#‘0262635828’,‘$40’) ← true).

Bookshop SW Server

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3071

BMP: Meta-program for the book ontology
meta_info_statement(bmp,browser,80,http,location(‘/’,‘BookOnto.owl’)).
meta_info_statement(dmp,bookShopAgent,80,http,location(‘/’,‘DocOnto.owl’)).
meta_statement(bmp,‘rdf’#‘type’(
 ‘Genetic Algorithm’,‘bmp’:‘b’#‘GeneticProgramming’) ← true).

statement(dmp u T,‘dmp’:‘d’#‘bookInfo’(Title,Cover,Price) ←
 demo(bookShopAgent,T,‘dmp’:‘d’#‘bookInfo’(Title,Cover,Price))).
DMP: Meta-program for the documentation ontology
meta_info_statement(dmp,bookshopAgent,80,http,location(‘/’,‘DocOnto.owl’)).
meta_info_statement(pmp,_,80,http,location(‘/’,‘PublicationOnto.owl’)).
meta_info_statement(ppmp,providerAgent,80,http,location(‘/’,‘PubProviderOnto.owl’)).
statement(dmp,‘dmp’:‘d’#‘bTitle’(‘pmp’:‘p’#‘0262635828’,‘Genetic Algorithm’) ← true).
statement(dmp u pmp u ppmp, ‘dmp’:‘d’#‘bookInfo’(Title,Cover,Price) ←
 ‘dmp’:‘d’#‘bTitle’(ISBN,Title) ∧
 demo(_,pmp,‘pmp’:‘p’#‘bCover’(ISBN,Cover)) ∧

demo(providerAgent,ppmp,‘ppmp’:‘pp’#‘bPrice’(ISBN,Price))).

Service Advertising Server
agentCapability(publisherAgent, ‘pmp’:‘p’#‘bCover’(ISBN,Cover)).
agentCapability(providerAgent, ‘ppmp’:‘pp’#‘bPrice’(ISBN,Price)).

Fig. 4 The MMP and MP programs for the demonstration

?- demo(browser,_,‘rdf’#‘type’(X,‘bmp’:‘b’#‘GeneticProgramming’)).
 X = ‘Genetic Algorithm’

?- demo(browser,_,‘dmp’:‘d’#‘bookInfo’(‘Genetic Algorithm’,Cover,Price)).
 Cover = ‘hard’, Price = ‘$40’

Fig. 5 Query answering with the multi-agent communication

VIII. IMPLEMENTATION ISSUES
To state an ontology location in our framework, in the
following we give an example of how the declaration looks like
(see section VII) in OWL as follows:
 <owl:Ontology rdf:about="dmp">
 <OntologyReferences>
 <Ontology rdf:resource="pmp">
 <path>/</path>
 <file>PublicationOnto.owl</file>
 <port>80</port>
 <protocol>http</protocol>
 </Ontology>
 <Ontology rdf:resource="bmp">
 <agentName
 rdf:resouce="providerAgent"/>
 <path>/</path>
 <file>PubProviderOnto.owl</file>
 <port>80</port>
 <protocol>http</protocol>
 </Ontology>
 </OntologyReferences>
 </owl:Ontology>

After the transformation, we get an MMP fragment:
 meta_info_statement(dmp,bookshopAgent,80,
 http,location(‘/’,‘DocOnto.owl’)).
 meta_info_statement(pmp,_,80,http,
 location(‘/’,‘PublicationOnto.owl’)).
 meta_info_statement(bmp,providerAgent,80,
 http,location(‘/’,‘PubProviderOnto.owl’)).

This kind of declaration is used throughout the paper to
support the meta-information concerning ontology locations.

IX. RELATED WORKS
Some works investigated a multi-agent system adopting SW
ontologies. In [3], Serafini et. Tamilin proposed a distributed
reasoning architecture for SW using Distributed Description
Logic (DDL) to formulate multiple ontologies interconnected
by semantic mappings and a tableau method for performing
inference in DDL. To compare it with our work, here we use
meta-logic to represent SW ontologies, and a demo(.)
predicate to perform the inference. We also formulate the
predicate to be able to reason with ontology and agent locations
in order to perform multi-agent communication for SW.

X. CONCLUSION
We have developed a meta-logical framework for agent
communication of SW information. Our agent can reason with
distributed ontologies while exchanging the SW information
with other agents. The agent can do this by adopting a demo
predicate which can reason with ontology and agent locations.

REFERENCES
[1] Hirankitti, V., and Tran, X. V. Meta-reasoning with Multiple Distributed

Ontologies on the Semantic Web. To appear in Proc. of the 6th Int. Conf.
on Intelligent Technologies, December 2005.

[2] Hirankitti, V., and Tran, X. V. A Meta-logical Approach for Multi-agent
Communication of the Semantic Web Information. In Proc. of the 16th
International Conference on Applications of Declarative Programming
and Knowledge Management, Japan, October 2005, pp. 7-16.

[3] Serafinil, L., and Tamilin, A. DRAGO: Distributed Reasoning
Architecture for the Semantic Web. In Proc. of the 2nd European
Semantic Web Conf.. LNCS, Vol. 3532, Springer-Verlag, pp. 361-376,
2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3072

[4] Zou, Y., Finin, T., Ding, L., Chen, H., and Pan, R. Using Semantic Web
technology in Multi-Agent systems: a case study in the TAGA Trading
agent environment. In Proc. of the 5th Int. Conf. on Electronic
Commerce. ACM Press, pp. 95-101, 2003.

[5] Grimnes, G. A., Chalmers, S., Edwards, P., and Preece, A. GraniteNights -
A Multi-agent Visit Scheduler Utilising Semantic Web Technology. In
Proc. of the 7th Cooperative Information Agents. LNCS, Vol. 2782,
Springer-Verlag, pp. 137-151, 2003.

[6] Payne, T. R., Singh, R., and Sycara, K. Processing Schedules using
Distributed Ontologies on the Semantic Web. In Proc. of the Int.
Workshop on Web Services, E-Business, and the Semantic Web. LNCS,
Vol. 2512, Springer-Verlag, pp. 203-212, 2002.

[7] Kowalski, R. A., and Kim, J. S. A Metalogic Programming Approach to
Multi-agent Knowledge and Belief. In AI and Mathematical Theory of
Computation, 1991, pp. 231-246.

