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Abstract—Modern spatial database management systems require 

a unique Spatial Access Method (SAM) in order solve complex spatial 
quires efficiently. In this case the spatial data structure takes a 
prominent place in the SAM. Inadequate data structure leads forming 
poor algorithmic choices and forging deficient understandings of 
algorithm behavior on the spatial database. A key step in developing a 
better semantic spatial object data structure is to quantify the 
performance effects of semantic and outlier detections that are not 
reflected in the previous tree structures (R-Tree and its variants). This 
paper explores a novel SSRO-Tree on SAM to the Topo-Semantic 
approach. The paper shows how to identify and handle the semantic 
spatial objects with outlier objects during page overflow/underflow, 
using gain/loss metrics. We introduce a new SSRO-Tree algorithm 
which facilitates the achievement of better performance in practice 
over algorithms that are superior in the R*-Tree and RO-Tree by 
considering selection queries. 
 

Keywords—Outlier, semantic spatial object, spatial objects, 
SSRO-Tree, topo-semantic.  

I. INTRODUCTION 
HE naïve solution to answer any proximity problem (in any 
space) is the brute force approach that compares every 

object to every other object O(n2k) which is clearly 
unacceptable for few points. To allow for faster searching, 
objects must first be sorted somehow into some type of data 
structure. Such a structure is called an index or spatial access 
method (SAM). Here, k is the dimension of vector space, n is 
the number of points, and O is the Big O notation. The goal of 
spatial access methods is to organize spatial data in such a way 
that it will enable the efficient retrieval of relevant objects 
according to the topological properties of their spatial 
attributes. Solving a proximity problem using a SAM is 
typically divided into two phases: 
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1) Building the index: For each SAM, there may available 
several indexing algorithms to initially construct the 
structure. The algorithms to insert and delete objects at a 
later stage may be different again. For example, [26] 
describes how different reinsertion policies and metrics 
can be used in three common variations of the R-Tree 
(see Fig. 1) which is a popular tree-based SAM. 

2) Executing queries by searching the index: For each 
SAM there are several search algorithms that answer the 
various proximity problems. For example, algorithms to 
execute nearest neighbour and range search are usually 
quite different [21]. 

 
Coarsening Results: To improve performance, many search 

algorithms techniques have been used that 
approximate/coarsen their results for spatial queries; especially 
for queries in non-vector, and metric space [5]. Instead of 
returning an exact answer to a spatial query, they initially return 
a set of candidate elements i.e. actual results ⊆ candidate 
elements. For such indexes, the executing of each query is 
divided into two additional phases which are depicted in Fig. 1. 
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Fig. 1 Multi-step semantic spatial query processing [3] 

  
1) Filter step: searching for a set of candidate elements. The 

time this takes is called internal complexity. 
2) Refinement step: Checking candidate elements are 

exhaustively used for the required condition or relation. The 
time it takes is called external complexity. The more candidate 
elements returned (the more false objects which must be 
eliminated) the higher the external complexity. 
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The coarsening search results can reduce internal 
complexity, but typically increases external complexity in the 
process. Thus, optimizing spatial queries often involves finding 
an appropriate trade-off between internal and external 
complexity. 

Measuring Performance: In order to compare different 
solutions to proximity problems, it is necessary to use some 
measure of performance. This can be non-trivial. Performance 
can be divided into time performance and memory space 
requirements. According Chavez et al. [5], total time (T) to 
evaluate a query can be separated into: 
 

time I/O time CPU extra
()d_ofcomplexityionsceComputattandisT

+
+×=        (1) 

Many SAM and search algorithms have been proposed to 
solve proximity problems [7]. These strategies have been 
validated and compared using various platforms, different 
testing methodologies, data sets and implementation choices. 
The lack of a commonly shared performance methodology and 
benchmarking makes it difficult to make a fair comparison 
between these numerous techniques [17]. Different papers have 
used different performance measures. Earlier papers, such as 
[21], have used the number of page accesses as their main 
performance measure (probably because main memory 
capacity and speed played a much larger factor in the past), 
while other papers [2],[9] prefer to use total CPU time, and still 
others use the number of I/O accesses [18]. For searches in 
metric space, it has been recently accepted that the number of 
distance computations is an appropriate measure of 
performance, since each metric distance computation is 
typically expensive [5]. A comprehensive cost model for query 
processing, with focus on high dimensions is provided in [4]. 
To the currently available literature, no one has attended one 
shot solution to semantic spatial quarries with detection of 
outlier objects for SAM to Topo-Semantic approach and 
Geographical Information system (GIS) for their efficiency 
maintenance. This research also focuses on research findings 
from [6],[27],[28]. Chen et al. [6] discussed semantic objects to 
the web base applications and Xia et al. [27] discussed Outlier 
object separation on the R*-Tree.  

The rest of the paper is organized as follows: in section II we 
provide taxonomy of popular dimension based indexes for 
vector space and discuss about Topo-Semantic concept to 
spatial relation integrity constraints. In section III we define 
novel SSRO-Tree with many required algorithms. In section IV 
we focus on the performance evaluation SSRO-Tree and other 
popular close tree structures. Finally, section V contains the 
concluding remarks.  

II. SEARCH SOLUTIONS FOR VECTOR SPACE 
Over the past twenty-five years, many different indexes have 

been proposed and investigated [7], [25], [28]. However, there 
is no consensus on the best spatial index structure is found. 
According to Gaede et at.[7] observations, these can be split 
into the following two major categories: 

1) Dimension-based indexes: indexes proposed specifically 
for vector space, which use distances along dimensions in 
their indexing of objects, and 

2) Distance-based indexes: indexes proposed for the more 
general metric space, which only use distances between 
points to index objects. 

This paper will only consider the dimension base indexing 
method for the SAM. Fig. 2 shows many spatial data structures.  

Trees is an obvious choice, because most trees have an O(n 
log n) build, occupy O(n) space, and have O(log n) search time 
(per element searched). All index structures presented here are 
dynamic, and allow inserting and deleting operations in O(log 
n) time. Most of the trees divide space into hyper-rectangles, 
which will be called cells. During the construction of all the 
trees, search space is split recursively using fan-out f until each 
cell contains at most minimum elements. Here, k is not included 
in any Big O notations. Since co-ordinate information must be 
stored and retrieved for all indexes, it is important to remember 
that all build and search times are (at least) linearly dependent 
on k [15]. 

 

 
However, the R-tree [9] and its variant the R*-tree [11] are 

widely implemented and have found their ways into 
commercial systems [1], [12], [14] that allows efficient 
accesses to the spatial data in a GIS system which is based on a 
heuristic optimization [8], [10], [13], [17]. Our discussion 
focuses on exploiting R-Trees for the efficient processing of 
spatial joins using Spatial Data Access Method (SAM). 
Previous approaches for processing joins are based on access 
methods others than R-Trees or address the problem in a quite 
different context. Orenstein [16] has proposed B+-Trees in 
combination with z-ordering as the underlying access method 
for performing spatial joins. For a class of Tree structures, 
Günther [8] has presented a general model for estimating the 
cost of spatial joins. In a different setting, Rotem [19] has 
discussed the number of facts of spatial join indices. 

Servigne et al. [22] introduced concept of Topo-Semantic 
and Udagepola et al. [23] developed a model for MSRIC 
(Model of Spatial Relation Integrity Constraint) but they have 
not given any solution to the semantic spatial object for the 
SAM. They only considered normal data structure of R-Tree 
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Fig. 2 Simplified taxonomy of popular dimension based indexes 
for vector space [11],[28] 
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(and variants). Udagepola et al. [23] have developed 
Topo-semantic integrity constraint rules (TSICRs). Those rules 
are used to find specified objects according to their relations to 
the base object as semantic spatial join queries. For an example, 
the semantic spatial join query is “Find a Building on the Roads 
within relationship Overlap.” In this query, the base object is 
query identification number the specified object (i.e., the 
semantic object) is “Building,” and the relationship is 
“overlap”. On the other hand, a query such as “Find an object 
on the Roads within relationship Overlap,” where no attribute 
of this object is specified, is a general spatial query. In 
comparing these two queries, a semantic spatial object is 
defined as an object with some information that a user asks for. 
In the above example, the system automatically wants to find a 
Building. This “Building” is one type of semantic spatial 
information a user may specify. If a spatial data structure can be 
built with this type of information, query performance can be 
greatly enhanced. Another problem is that our set of spatial data 
does not spread as symmetrically in the real world. For 
example, some regions have closely spread semantic spatial 
objects and some place exits very far distances between each 
other. If we use R-Tree (or its variant R*-Tree) structure the 
time for spatial access, it is more time consuming and the 
internal time complexity obtains are much higher. Xia et al. 
[27] introduced outlier handling technique with R*-Tree to 
help identify such kind of objects. We can then separate those 
objects with other normal semantic spatial objects because our 
research focuses on real world objects. Our tree structure 
adopts that technique for the semantic spatial objects, therefore 
the data structure called Semantic Spatial Rectangular outlier 
Tree (SSRO-Tree) is proposed for the MSRIC. 

III.  SSRO -TREE STRUCTURE   
A spatial data structure with built-in semantic spatial 

information is better able to answer semantic spatial join 
queries. In addition, it needs to identify outlier semantic spatial 
objects. For this purpose, a spatial data structure with built-in 
semantic information with facility for detection of outlier 
objects, called a SSRO-Tree, is proposed. The following way is 
a brief our SSRO-Tree (see the Fig. 3): Semantic R-Tree [6] + 
Outlier R*-Tree (RO-Tree) [27]  Semantic spatial-object 
outlier R-Tree (SSRO-Tree) [24]. 

 
Semantic
R-Tree RO-Tree

SSRO-Tree
 

Fig. 3 The taxonomy of SSRO-Tree 
 
Fig. 4 shows overview of SSRO-Tree which can be used with 

the SAM.  
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Fig. 4 Overview of SSRO-Tree architecture 

 
Without such built-in semantic information, a spatial data 

structure has difficulty in answering a query such as “Find all 
Buildings on the Roads within relationship Overlaps” 
efficiently. Searching the SSRO-Tree will get all the objects on 
the Roads within relationship Overlaps and further processing 
is then required to get the desired objects (i.e., the Buildings) in 
answer to this query. With built-in semantic information, some 
sub-trees containing unrelated information can be pruned, 
which makes semantic searching quite efficient. In our design, 
the semantic spatial object class (Example: the semantic spatial 
object is a road and its subclass is a highway, street cycle 
path…etc.) is used to build a part of SSRO-Tree and another 
part considers detection of outlier objects within the class. The 
algorithm used is based on R*-Tree (Because it has well re 
insert capabilities and minimum overlapping). For each node, 
its semantic information is assorted and organizes the semantic 
spatial objects that detect outlier objects (outlier identification) 
and divide small minimum bounding rectangle (MBR) so that a 
search will visit as few spatial objects as possible before 
returning the result. The decision on which nodes to visit is 
made based on the evaluation of spatial predicates. In addition, 
the MBRs are sorted on the x or y coordinates of one of the 
corners of the rectangle. Sorting MBRs is similar to the method 
proposed by Roussopoulos and others [20]. In each class, the 
most of the time is depicted on the levels one and the rest of 
level are shown on the same category node which satisfies m 
and M. Finally, leaf node has categorized objects that make the 
scan very simple. But there might be some underflow nodes 
(less than M/2 children). Since only a fixed number of elements 
exist in one semantic subset (usually this number is small), 
there might be only a few underflow nodes. The outlier 
identification is integrated throughout the construction/update 
of the SSRO-Tree, e.g. in the reinsertion process, in the 
overflow/underflow handing, splitting etc. An SSRO-Tree 
satisfies the following properties: 

1) Every leaf node contains between m and M index records 
and outlier objects unless it is the root, but the root can 
have less entry than m. 

2) For each index record in a leaf node, it is the smallest 
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rectangle that spatially contains the n-dimensional data 
object represented by the indicated tuple. 

3) Every non-leaf node has between m and M children and 
outlier objects unless it is the root. 

4) For each entry in a non-leaf node, it is the smallest 
rectangle that spatially contains the rectangles in the child 
node with/without outlier object/s. 

5) The root node has at least two children unless it is a leaf. 
6) All leaves appear on the same level. That means the tree is 

balanced. 
 
Variable m and M: M is the maximum number of entries 

which is usually given and m is the minimum of number entries 
in one node. 

a1 a3a2

m

M  
Fig. 5 Graphical representations of m and M 

 
The minimum number of entries in a node is dependent on M 

with mM
≥

2
. The maximum number of nodes is 12 ++

m
N

m
N . 

Here N stands for the number of index records of the R-Tree. m 
is jointly responsible for the height of an R-Tree and the speed 
of the algorithm. The choice of M depends on the hardware, 
especially on hard disk properties such as capacity and sector 
size. If nodes have more than 3 or 4 entries, the tree becomes 
very wide, and almost all the space is used for leaf nodes 
containing index records. 

The example: A Topo-Semantic spatial object (indexed by 
Semantic R*-Tree and SSRo-Tree) under Road sub class is 
depicted on the Cartesian space (see Fig. 6). 
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Fig. 6 The page layout of Water Body (a) All spatial Object (No 
subdivision to semantic object subclasses) Indexed by R*-Tree (b) 

indexed by SSRO-Tree 
 

 The (a) and (b) of Fig. 6 show an example of Road objects 
and how to index them by R*-Tree and SSRO-Tree. The R*-Tree 
is not capable of separating semantic objects class and outlier 
object (G) but SSRO-Tree has that facility. In the above 

example, we can see the root node is also split. Therefore, our 
motivation to the SSRO-Tree is that if an object G is far from all 
the rest of the objects, in R*-Tree it is inevitable that the leaf 
page that contains G will have a large MBR, and consequently 
all ancestor nodes of the leaf page also have large MBRs.  

 
Quality and Gain/Loss: 
Definition 1[28]: Given a rectangle r with width w and 

height h, the quality of the rectangle is defined as 

( )
α

⎟⎟
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⎞
⎜⎜
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=
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Where ∈α [0, 1] is a constant. 
 

But 1
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, therefore Q(r) is dependent 

only ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× }hw
1 . But ( )hw × is area of the rectangle. Then the 

small rectangle obtained is of good quality. 
 
Assume w ≥  h; where w and h are called width and height 

respectively.   

Let
h
wratio =  , Therefore 

Q
ratiaarea

α−

=   

Definition 2: If a rectangle r1 is shrunk to r2 (r1 spatially 
contains r2), the gain is defined as 

( )
( )2

1
21 rQ

rQ1)r,r(G −=         (3) 

Therefore if r1 is expanded to r2, then the loss is created at 

the ( )
( ) 1
rQ
rQ
2

1 > . 

Now, the threshold ( δ ) can be defined because the new 
rectangle does not need to be very close to previous one. 
Therefore Gain can be limited to very small value (eg. 0.001).  

 
Theorem1: A successful new rectangle needs 

satisfy δ>)r,r(G 21 . 
This research also uses four lines method [28] to build a new 

MBR. The four lines can be defined by their properties 
according to Fig. 7.    
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Fig. 7 Four lines on a MBR 
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The algorithm to handle the outlier object detection is shown 
in algorithm 1. It is adapted from the RO-Tree’s greedy-pick-p 
algorithm. 

 
Algorithm 1: pseudo-code of Greedy-pick-p Algorithm 

Greedy-pick-p ( ectsSpatialObjS ∈ , p,m: integer): MBR  
1. For each category 
2. Build the border structure of initial MBR. 
3. MBR(S)=M; 
4. P =0 ;. 
5. while { 
6. gmax = 0; 
7. Bmax = LEFT  
8. kmax = 0; 
9. For each border /* LEFT,BOTTOM,RIGHT,TOP*/ 
10. For each k /* k ∈ {1,..m} such that there exist k more un 

removed levels for B and the number of objects in these k 
levels plus |P| is no larger than p*/ 

11. Compute the g (gain) per removed object; 
12. If g > gmax then 
13. gmax = g; 
14. Bmax = B; 
15. kmax = k; 
16. end if/* end step 12*/ 
17. end for/* end step 10*/ 
18. end for/* end step 9*/ 
19. If gmax = 0 then stop; 
20. Adjust new MBR according border Bmax and add the 

removed objects to P (outlier object list) 
21. }/* end step 1*/ 
22. Endfor /* end step 5*/ 
23. End /* end Greedy-pick-p */ 

 
Search: Search algorithm accomplishes the following task: 

given an SSRO-Tree whose root node is T, find all index 
records whose rectangles overlap a search rectangle S. C is a 
subset of the semantic object class. An entry is denoted in a 
node as E(Ref, Mbr), where E.Mbr represents the smallest 
rectangle bounding the sub-tree or the spatial object, E.ref is the 
pointer to the sub-tree or the spatial object. 

 
Algorithm 2: pseudo-code of SearchSubTree Algorithm 

SearchSubTree(C,T, S) 
1. If  T is under C category then 
2. If T is not a leaf then  
3. for E ∈ T do 
4.           if E.MBR ∩ S.MBR ≠ Ø  then  
5. if E is outlier object then 
6. output E 
7. else search(E,S) 
8. Endif/* end step 5*/ 
9. else  
10. read next entry of t /* recursive call to lower level */ 
11. Endif/* end step 4*/ 
12. end for/* end step 3*/ 

13. else 
14. if T.MBR ∩ S.MBR ≠ Ø then 
15. output T 
16. Endif/* end step 14*/ 
17. Endif/* end step 2*/ 
18. Endif/* end step 1*/ 
19. End. /* end Search*/ 
 

Insert: The insertion algorithm adds new index records to the 
leaves under the same category. Nodes that overflow are split 
and the reinsert changes propagate up the tree. The first 
operation is to select a category where the subset of insert is the 
object and check it to see if it’s either an outlier or not. If it is an 
outlier then the object is placed as an outlier object otherwise 
select a leaf where to place the new record at minimum loss. 
However, there is the possibility that an overflow situation can 
occur. This problem is solved by the overflow Treatment 
algorithm.   

 
Algorithm 3: pseudo-code of Insert Algorithm 

Insert (new O object under C category) 
/* new object O will be inserted into a given SSRO-Tree */ 

1. If  O is under C category then 
2. Start to select a leaf node L in which to place O /*Find 

position for new record*/ 
3. If O is not contained in any MBR of tree then  
4. Stored in top node 
5. Else 
6. If O is contained a MBRs and has enough space then select 

smallest MBR and add O. 
7. Else 
8. If O is contained a MBR and it has enough space(not exceed 

M) then 
9. amalgamate  into the MBR 
10. Else 
11. invoke overflowTreatment 
12. End if/* end step 8*/ 
13. End if/* end step 6*/ 
14. End if/* end step 3*/ 
15. End if/* end step 1*/ 
16. End/* end Insert*/ 

 
Delete: The deletion algorithm deletes existing index records 

from the leaves under the same category. Nodes that underflow 
are the reinsert changes that propagate up the tree. The first 
operation is to select a category where the subset of deletion 
object will be checked whether it is an outlier or not. If it is an 
outlier, then the object is deleted from the outlier object 
otherwise be selected as a leaf where and deleted it with adjust 
MBR according maximum gain.  After this step an underflow 
(less than m entries) can occur. This problem is solved by the 
underflowTreatment algorithm.  
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Algorithm 4: pseudo-code of Delete Algorithm 
Delete (O object under C category) 

/* an object O will be delete from a given SSRO-Tree */ 
1. If pointer is  in related category(/*  O is under C category 

*/)then 
2. Start to select a leaf node L in which place available O 

/*Find position for required record*/ 
3. If O is not contained in any MBR of tree then  
4. stop 
5. Else 
6. If O is contained a MBR and it possible to remove without 

satisfaction of  underflow condition then  
7. Remove the entry from the MBR and adjust MBR area using 

maximum gain 
8. Else 
9. invoke  underflow Treatment 
10. End if/* end step 6*/ 
11. End if/* end step 3*/ 
12. End if/* end step 1*/ 
13. End/* end Delete*/ 

 
Overflow Treatment: The overflow (see Fig. 8) treatment 

algorithm will first check whether it is the first time an 
overflow occurs in the current level. If so, then it will try to 
avoid a split by pushing down an outlier object from a parent 
node or reinserting some of the M+1 entries of the overfilled 
node. Otherwise, it will just invoke the split procedure. 

. 

a1 a3a2

m

M

a6a4 a5 +

 
Fig. 8 Representation of overflow 

 
The algorithm to handle the overflow is shown in algorithm 

2. It is adapted from the RO-Tree’s Overflow Treatment 
algorithm. 

 
Theorem 1: SSRO-Tree can overflow either new object insert 

to the non leaf node or leaf node. 
 
Algorithm 5: pseudo-code of OverflowTreatment Algorithm 
 

OverflowTreatment() 
1. If (M+ 1) entries include only index entries or M+ 1 entries 

include index entries and outlier object and reinsert possible 
then 

2. Invoke reinsert 
3. Else 

4. If
2
Mmchildren_of_num +<  and outlier object 

available then  
5. Pushdawn outlier object 
6. Else 
7. Invoke Split 
8. Endif/* end step 4*/ 

9. Endif/* end step 1*/ 
10. End. /* end overflowtreatment*/ 
 

Split: The node splitting uses a routine for partitioning a 
region containing a set of rectangles into two sub-regions that 
satisfy a maximum gain. In the case of node splitting this 
routine takes as input the MBRs of the entries in the node (N). 
If all the M+1 entries are index entries, the only choice is to 
split N. To the other extreme, if N has less than 2m index 
entries, splitting is not a choice. Otherwise one of the resulting 
pages will violate the minimum fan-out requirement. Xia et 
al.[27] experimental results show (for RO-Tree) that a good 
breaking point is m + M=2. That is, if num of children(N) < m 
+ M=2, push down an outlier, it will otherwise split. To push 
down an outlier object, we choose the sub-tree which has 
minimum loss to accommodate the new object. The way of 
these also is followed to SSRO-Tree. 

 
Algorithm 6: pseudo-code of Split Algorithm 

Split() 
1. Compute the distance between the centers of their rectangles 

and the center of the bounding rectangle of N and identify 
longest distance two MBR. 

2. Start the create new MBR from one corner with satisfy 
minimum loss until total number of object entries m+1 

3. Check outlier objects availability in this New created MBR 
and adjust according either outlier object and small MBR or 
minimum loss MBR    

4. Start the create new MBR from other corner with satisfy 
minimum loss until touch previous created MBR 

5. Check outlier objects availability in this New created MBR 
and adjust according either outlier object and small MBR or 
minimum loss MBR    

6. Insert this two seed to parent node 
7. End. /* end split*/ 

 
Underflow Treatment: The underflow (Fig. 9) treatment 

algorithm will first check whether or not it is the first time an 
overflow occurs in the current level. If so, then it will try to 
avoid a split by pushing down the outlier object from parent 
node or reinserting some of the M+1 entries of the overfilled 
node. Otherwise, it will just invoke the split procedure. 

. 

a1 a3a2

m

M

_ a3

 
Fig. 9 Representation of underflow 

 
The algorithm to handle the overflow is shown in algorithm 

2. It is adapted from the RO-Tree’s Underflow Treatment 
algorithm. 
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Algorithm 6: pseudo-code of UnderflowTreatment 
Algorithm 
UnderflowTreatment(underflow leaf node L) 
1. N = L;  
2. S =0; 
3. If N is root, re-insert all entries in S into the tree (Notice that 

if an entry is an index entry, it should be inserted into a 
proper level); 

 
4. If N is a leaf node and there exists an outlier object O in N's 

parent node which could be pushed down into the entry 
pointed to N then Insert O into N and adjust its MBR 
accordingly 

5. else  
6. invoke reinsert; 
7. End if/* end step 4*/ 
8. If N is an index node then 
9. While num of children(N) < m and N contains some outlier 

object{ 
10. Find an outlier O in N which, if pushed down to a lower 

level, introduces the minimum loss; 
11. Insert O to the next lower level; 
12. Propagate and adjust the subtree rooted by N properly; 
13. }/*end while*/ 
14. End if/* end step 8*/ 
15. If N has less than m entries then 
16. Remove the index entry EN in the parent node P; 
17. Add N's entries to S; 
18. N = P 
19. Goto step 3; 
20. End if/* end step 15*/ 
21. End./*end UnderflowTreatment */ 

 
Re-Insert: The reinsertion consists of an algorithm for 

determining the list of entries that are to be removed from the 
current node and reinserted in the tree. The number p of entries 
in the list is a parameter that can be determined experimentally 
as part of performance tuning. For all M+1 entries, the 
distances di between the centers of their MBRs and the center of 
the MBR of the node is calculated. Then, the entries are sorted 
in descending order of the values di. The first p entries on the 
sorted list are removed from the current node and its MBR is 
adjusted in the parent node. The p entries are the list of entries 
to be reinserted in the tree. In [2] it has been determined that 
reinsertion in the decreasing order of the distances di (close 
reinsert) outperforms reinsertion in the ascending order (far 
reinsert). 

 
Algorithm 7: pseudo-code of ReInsert Algorithm 

ReInsert() 
1. For all M+l entries of a node N, compute the distance 

between the centers of their rectangles and the center of the 
bounding rectangle of N 

2. Sort the entries in decreasing order of their distances 
computed in step1 

3. Remove the first p entries from N and adjust the bounding 

rectangle of N 
4. In the sort, defined step 2, starting with the maximum 

distance (= far reinsert) or minimum distance (= close 
reinsert), invoke Insert to reinsert the entries 

5. End. ./*end re insert */ 

IV. SELECTION QUERY PERFORMANCE 
We used three data structures to find the spatial objects of the 

building subclass where the area of the object is less than or 
equal 100m2 on the different size of rectangles.  Table I shows 
the information which is used for the experiment. The 
experiment has been done on three types of tree structures 
because the performance evaluation test needs to compare 
SSRO-Tree with most famous tree structures.  

 
TABLE I 

NUMBER OF SPATIAL OBJECTS IN ELEVEN SIZE OF RECTANGLE  

Total 
Spatial 
Objects of  
Building 
subclass 

Total 
Spatial 
Objects of  
Path 
subclass 

Total 
Spatial 
Objects of  
Landuse 
subclass 

Total 
Spatial 
Objects 

After 
selection 
query 
execute 
(Find 
number of 
Buildings) 

179 13 196 388 74 

628 42 459 1129 250 

1030 52 750 1832 375 

2171 84 981 3236 738 

3540 113 1413 5066 1468 

5274 129 1827 7230 2189 

6228 163 2188 8579 2535 

8858 193 2563 11614 3497 

10366 219 2889 13474 3983 

11216 271 3174 14661 4163 

12036 301 3531 15868 4494 

 
The experiment uses Spatial database (SD) which contains 

three type of semantic spatial objects (Building, Path, and 
Landuse).We have used 11 data sets for the selection query 
(select * from SD where building area <= 100m2). Fig. 10 
shows the significant deference of the SSRO-Tree among the 
other two trees. It is seen that the results of I/O time are always 
less than that of the other two trees. Fig. 10 shows a higher 
response time of R*-Tree for finding while  satisfying the 
requirements but SSRO-Tree shows the opposite response 
because it has two facilities which are semantic object 
categorization and outlier detection. But RO-tree has only 
outlier separation facility that performs better when compared 
with R*-Tree but shows less performance when compared with 
SSRO-Tree. After the number of objects becomes 5066 in 
R*-Tree it has shown a significant performance (increased 
gradient but rest of the tree shows a less gradient) because those 
rectangles contains more outlier objects. According to the 
results of the experiment, the better performance of SSRO-Tree 
over the other two trees is obvious.  
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Fig. 10 I/O time of finding objects according a building object’s area 

<=100m2 under SSRO-Tree, RO-Tree, and R*-Tree 
 

V. CONCLUSION 
A novel SSRO-Tree was created in this research by using 

some properties of Semantic R-Tree and RO-Tree because this 
model needs an efficient semantic spatial object access method 
that guarantees the better performance. Eight new algorithms 
have been described with proper notations. Semantic spatial 
selection query performances were discussed and the 
experimental results revealed that that the SSRO-Tree 
outperforms over RO-Tree and R*-Tree in the I/O time. 
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