
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

389

Abstract—Modern spatial database management systems require

a unique Spatial Access Method (SAM) in order solve complex spatial
quires efficiently. In this case the spatial data structure takes a
prominent place in the SAM. Inadequate data structure leads forming
poor algorithmic choices and forging deficient understandings of
algorithm behavior on the spatial database. A key step in developing a
better semantic spatial object data structure is to quantify the
performance effects of semantic and outlier detections that are not
reflected in the previous tree structures (R-Tree and its variants). This
paper explores a novel SSRO-Tree on SAM to the Topo-Semantic
approach. The paper shows how to identify and handle the semantic
spatial objects with outlier objects during page overflow/underflow,
using gain/loss metrics. We introduce a new SSRO-Tree algorithm
which facilitates the achievement of better performance in practice
over algorithms that are superior in the R*-Tree and RO-Tree by
considering selection queries.

Keywords—Outlier, semantic spatial object, spatial objects,
SSRO-Tree, topo-semantic.

I. INTRODUCTION
HE naïve solution to answer any proximity problem (in any
space) is the brute force approach that compares every

object to every other object O(n2k) which is clearly
unacceptable for few points. To allow for faster searching,
objects must first be sorted somehow into some type of data
structure. Such a structure is called an index or spatial access
method (SAM). Here, k is the dimension of vector space, n is
the number of points, and O is the Big O notation. The goal of
spatial access methods is to organize spatial data in such a way
that it will enable the efficient retrieval of relevant objects
according to the topological properties of their spatial
attributes. Solving a proximity problem using a SAM is
typically divided into two phases:

Manuscript received February 28, 2007. This work was supported in part by

the by the High Technology Research and Development Program of China (No.
2006AA01A103) and the National Natural Science Foundation of China (No.
60503015).

K .P. Udagepola is with the School of Computer science and Technology,
Harbin Institute of Technology, Harbin, PR China.(phone: +86-45186400863;
fax: +86-45186414093; e-mail: kalum@ ftcl.hit.edu.cn).

Z. Decheng is with the School of Computer science and Technology, Harbin
Institute of Technology, Harbin, PR China (e-mail: zdc@ ftcl.hit.edu.cn).

W. Zhibo is with the School of Computer science and Technology, Harbin
Institute of Technology, Harbin, PR China (e-mail: wzb@ ftcl.hit.edu.cn).

Y. Ziaoxong is with the School of Computer science and Technology,
Harbin Institute of Technology, Harbin, PR China (e-mail: xzyang@
hit.edu.cn).

1) Building the index: For each SAM, there may available
several indexing algorithms to initially construct the
structure. The algorithms to insert and delete objects at a
later stage may be different again. For example, [26]
describes how different reinsertion policies and metrics
can be used in three common variations of the R-Tree
(see Fig. 1) which is a popular tree-based SAM.

2) Executing queries by searching the index: For each
SAM there are several search algorithms that answer the
various proximity problems. For example, algorithms to
execute nearest neighbour and range search are usually
quite different [21].

Coarsening Results: To improve performance, many search

algorithms techniques have been used that
approximate/coarsen their results for spatial queries; especially
for queries in non-vector, and metric space [5]. Instead of
returning an exact answer to a spatial query, they initially return
a set of candidate elements i.e. actual results ⊆ candidate
elements. For such indexes, the executing of each query is
divided into two additional phases which are depicted in Fig. 1.

Query

Spatial
Index

candidate set

load spatial extent

test on spatial
extent

false drop hits

query result

Filter step Refinement step

Fig. 1 Multi-step semantic spatial query processing [3]

1) Filter step: searching for a set of candidate elements. The

time this takes is called internal complexity.
2) Refinement step: Checking candidate elements are

exhaustively used for the required condition or relation. The
time it takes is called external complexity. The more candidate
elements returned (the more false objects which must be
eliminated) the higher the external complexity.

Semantic Spatial Objects Data Structure for
Spatial Access Method

Kalum Priyanath Udagepola, Zuo Decheng, Wu Zhibo, and Yang Xiaozong

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

390

The coarsening search results can reduce internal
complexity, but typically increases external complexity in the
process. Thus, optimizing spatial queries often involves finding
an appropriate trade-off between internal and external
complexity.

Measuring Performance: In order to compare different
solutions to proximity problems, it is necessary to use some
measure of performance. This can be non-trivial. Performance
can be divided into time performance and memory space
requirements. According Chavez et al. [5], total time (T) to
evaluate a query can be separated into:

time I/O time CPU extra
()d_ofcomplexityionsceComputattandisT

+
+×= (1)

Many SAM and search algorithms have been proposed to
solve proximity problems [7]. These strategies have been
validated and compared using various platforms, different
testing methodologies, data sets and implementation choices.
The lack of a commonly shared performance methodology and
benchmarking makes it difficult to make a fair comparison
between these numerous techniques [17]. Different papers have
used different performance measures. Earlier papers, such as
[21], have used the number of page accesses as their main
performance measure (probably because main memory
capacity and speed played a much larger factor in the past),
while other papers [2],[9] prefer to use total CPU time, and still
others use the number of I/O accesses [18]. For searches in
metric space, it has been recently accepted that the number of
distance computations is an appropriate measure of
performance, since each metric distance computation is
typically expensive [5]. A comprehensive cost model for query
processing, with focus on high dimensions is provided in [4].
To the currently available literature, no one has attended one
shot solution to semantic spatial quarries with detection of
outlier objects for SAM to Topo-Semantic approach and
Geographical Information system (GIS) for their efficiency
maintenance. This research also focuses on research findings
from [6],[27],[28]. Chen et al. [6] discussed semantic objects to
the web base applications and Xia et al. [27] discussed Outlier
object separation on the R*-Tree.

The rest of the paper is organized as follows: in section II we
provide taxonomy of popular dimension based indexes for
vector space and discuss about Topo-Semantic concept to
spatial relation integrity constraints. In section III we define
novel SSRO-Tree with many required algorithms. In section IV
we focus on the performance evaluation SSRO-Tree and other
popular close tree structures. Finally, section V contains the
concluding remarks.

II. SEARCH SOLUTIONS FOR VECTOR SPACE
Over the past twenty-five years, many different indexes have

been proposed and investigated [7], [25], [28]. However, there
is no consensus on the best spatial index structure is found.
According to Gaede et at.[7] observations, these can be split
into the following two major categories:

1) Dimension-based indexes: indexes proposed specifically
for vector space, which use distances along dimensions in
their indexing of objects, and

2) Distance-based indexes: indexes proposed for the more
general metric space, which only use distances between
points to index objects.

This paper will only consider the dimension base indexing
method for the SAM. Fig. 2 shows many spatial data structures.

Trees is an obvious choice, because most trees have an O(n
log n) build, occupy O(n) space, and have O(log n) search time
(per element searched). All index structures presented here are
dynamic, and allow inserting and deleting operations in O(log
n) time. Most of the trees divide space into hyper-rectangles,
which will be called cells. During the construction of all the
trees, search space is split recursively using fan-out f until each
cell contains at most minimum elements. Here, k is not included
in any Big O notations. Since co-ordinate information must be
stored and retrieved for all indexes, it is important to remember
that all build and search times are (at least) linearly dependent
on k [15].

However, the R-tree [9] and its variant the R*-tree [11] are

widely implemented and have found their ways into
commercial systems [1], [12], [14] that allows efficient
accesses to the spatial data in a GIS system which is based on a
heuristic optimization [8], [10], [13], [17]. Our discussion
focuses on exploiting R-Trees for the efficient processing of
spatial joins using Spatial Data Access Method (SAM).
Previous approaches for processing joins are based on access
methods others than R-Trees or address the problem in a quite
different context. Orenstein [16] has proposed B+-Trees in
combination with z-ordering as the underlying access method
for performing spatial joins. For a class of Tree structures,
Günther [8] has presented a general model for estimating the
cost of spatial joins. In a different setting, Rotem [19] has
discussed the number of facts of spatial join indices.

Servigne et al. [22] introduced concept of Topo-Semantic
and Udagepola et al. [23] developed a model for MSRIC
(Model of Spatial Relation Integrity Constraint) but they have
not given any solution to the semantic spatial object for the
SAM. They only considered normal data structure of R-Tree

Dimension-based Indexing
Algorithms

Tree-based

Grid File Regional
Quadtree

Extendible
Hashing

Non-tree

K-D-tree
R-tree

Linear
Hashing

R*-tree

SS-tree

SR-tree

TV-tree

KEY
 Is a variation of

KDB-tree

Hibert
R-tree

Point
Quadtree

Twin
grid fileEXCELL

Two-level
grid file

Buddy
tree

BANG file

Multi-level
grid file

X-tree

Fig. 2 Simplified taxonomy of popular dimension based indexes
for vector space [11],[28]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

391

(and variants). Udagepola et al. [23] have developed
Topo-semantic integrity constraint rules (TSICRs). Those rules
are used to find specified objects according to their relations to
the base object as semantic spatial join queries. For an example,
the semantic spatial join query is “Find a Building on the Roads
within relationship Overlap.” In this query, the base object is
query identification number the specified object (i.e., the
semantic object) is “Building,” and the relationship is
“overlap”. On the other hand, a query such as “Find an object
on the Roads within relationship Overlap,” where no attribute
of this object is specified, is a general spatial query. In
comparing these two queries, a semantic spatial object is
defined as an object with some information that a user asks for.
In the above example, the system automatically wants to find a
Building. This “Building” is one type of semantic spatial
information a user may specify. If a spatial data structure can be
built with this type of information, query performance can be
greatly enhanced. Another problem is that our set of spatial data
does not spread as symmetrically in the real world. For
example, some regions have closely spread semantic spatial
objects and some place exits very far distances between each
other. If we use R-Tree (or its variant R*-Tree) structure the
time for spatial access, it is more time consuming and the
internal time complexity obtains are much higher. Xia et al.
[27] introduced outlier handling technique with R*-Tree to
help identify such kind of objects. We can then separate those
objects with other normal semantic spatial objects because our
research focuses on real world objects. Our tree structure
adopts that technique for the semantic spatial objects, therefore
the data structure called Semantic Spatial Rectangular outlier
Tree (SSRO-Tree) is proposed for the MSRIC.

III. SSRO -TREE STRUCTURE
A spatial data structure with built-in semantic spatial

information is better able to answer semantic spatial join
queries. In addition, it needs to identify outlier semantic spatial
objects. For this purpose, a spatial data structure with built-in
semantic information with facility for detection of outlier
objects, called a SSRO-Tree, is proposed. The following way is
a brief our SSRO-Tree (see the Fig. 3): Semantic R-Tree [6] +
Outlier R*-Tree (RO-Tree) [27] Semantic spatial-object
outlier R-Tree (SSRO-Tree) [24].

Semantic
R-Tree RO-Tree

SSRO-Tree

Fig. 3 The taxonomy of SSRO-Tree

Fig. 4 shows overview of SSRO-Tree which can be used with

the SAM.

INSERT DELETE

SEARCH

SSRO_Tree Interface

Overflow
treatment

Underflow
treatment

Split Re-Insert

Fig. 4 Overview of SSRO-Tree architecture

Without such built-in semantic information, a spatial data

structure has difficulty in answering a query such as “Find all
Buildings on the Roads within relationship Overlaps”
efficiently. Searching the SSRO-Tree will get all the objects on
the Roads within relationship Overlaps and further processing
is then required to get the desired objects (i.e., the Buildings) in
answer to this query. With built-in semantic information, some
sub-trees containing unrelated information can be pruned,
which makes semantic searching quite efficient. In our design,
the semantic spatial object class (Example: the semantic spatial
object is a road and its subclass is a highway, street cycle
path…etc.) is used to build a part of SSRO-Tree and another
part considers detection of outlier objects within the class. The
algorithm used is based on R*-Tree (Because it has well re
insert capabilities and minimum overlapping). For each node,
its semantic information is assorted and organizes the semantic
spatial objects that detect outlier objects (outlier identification)
and divide small minimum bounding rectangle (MBR) so that a
search will visit as few spatial objects as possible before
returning the result. The decision on which nodes to visit is
made based on the evaluation of spatial predicates. In addition,
the MBRs are sorted on the x or y coordinates of one of the
corners of the rectangle. Sorting MBRs is similar to the method
proposed by Roussopoulos and others [20]. In each class, the
most of the time is depicted on the levels one and the rest of
level are shown on the same category node which satisfies m
and M. Finally, leaf node has categorized objects that make the
scan very simple. But there might be some underflow nodes
(less than M/2 children). Since only a fixed number of elements
exist in one semantic subset (usually this number is small),
there might be only a few underflow nodes. The outlier
identification is integrated throughout the construction/update
of the SSRO-Tree, e.g. in the reinsertion process, in the
overflow/underflow handing, splitting etc. An SSRO-Tree
satisfies the following properties:

1) Every leaf node contains between m and M index records
and outlier objects unless it is the root, but the root can
have less entry than m.

2) For each index record in a leaf node, it is the smallest

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

392

rectangle that spatially contains the n-dimensional data
object represented by the indicated tuple.

3) Every non-leaf node has between m and M children and
outlier objects unless it is the root.

4) For each entry in a non-leaf node, it is the smallest
rectangle that spatially contains the rectangles in the child
node with/without outlier object/s.

5) The root node has at least two children unless it is a leaf.
6) All leaves appear on the same level. That means the tree is

balanced.

Variable m and M: M is the maximum number of entries

which is usually given and m is the minimum of number entries
in one node.

a1 a3a2

m

M
Fig. 5 Graphical representations of m and M

The minimum number of entries in a node is dependent on M

with mM
≥

2
. The maximum number of nodes is 12 ++

m
N

m
N .

Here N stands for the number of index records of the R-Tree. m
is jointly responsible for the height of an R-Tree and the speed
of the algorithm. The choice of M depends on the hardware,
especially on hard disk properties such as capacity and sector
size. If nodes have more than 3 or 4 entries, the tree becomes
very wide, and almost all the space is used for leaf nodes
containing index records.

The example: A Topo-Semantic spatial object (indexed by
Semantic R*-Tree and SSRo-Tree) under Road sub class is
depicted on the Cartesian space (see Fig. 6).

D E

d3d2d1 e1 e2 e3f1 f2

FD E

d3d2d1 e1 e2 e3f1 f2 G

D

E

e1
e2

e3

d1

d2
d3

f1
f2

G

Building RoadStreamWater BodyAA ADAC AB

D

E

e1
e2

e3

d1

d2
d3

f1
f2

G

F

AB
Water Body

G

(a) (b)

Fig. 6 The page layout of Water Body (a) All spatial Object (No
subdivision to semantic object subclasses) Indexed by R*-Tree (b)

indexed by SSRO-Tree

 The (a) and (b) of Fig. 6 show an example of Road objects
and how to index them by R*-Tree and SSRO-Tree. The R*-Tree
is not capable of separating semantic objects class and outlier
object (G) but SSRO-Tree has that facility. In the above

example, we can see the root node is also split. Therefore, our
motivation to the SSRO-Tree is that if an object G is far from all
the rest of the objects, in R*-Tree it is inevitable that the leaf
page that contains G will have a large MBR, and consequently
all ancestor nodes of the leaf page also have large MBRs.

Quality and Gain/Loss:
Definition 1[28]: Given a rectangle r with width w and

height h, the quality of the rectangle is defined as

()
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
=

}h,wmax{
}h,wmin{

hw
1rQ (2)

Where ∈α [0, 1] is a constant.

But 1
}h,wmax{
}h,wmin{

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

, therefore Q(r) is dependent

only ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× }hw
1 . But ()hw × is area of the rectangle. Then the

small rectangle obtained is of good quality.

Assume w ≥ h; where w and h are called width and height

respectively.

Let
h
wratio = , Therefore

Q
ratiaarea

α−

=

Definition 2: If a rectangle r1 is shrunk to r2 (r1 spatially
contains r2), the gain is defined as

()
()2

1
21 rQ

rQ1)r,r(G −= (3)

Therefore if r1 is expanded to r2, then the loss is created at

the ()
() 1
rQ
rQ
2

1 > .

Now, the threshold (δ) can be defined because the new
rectangle does not need to be very close to previous one.
Therefore Gain can be limited to very small value (eg. 0.001).

Theorem1: A successful new rectangle needs

satisfy δ>)r,r(G 21 .
This research also uses four lines method [28] to build a new

MBR. The four lines can be defined by their properties
according to Fig. 7.

MBR

X-Axis

Top border(T)

Bottom border(B)

Le
ft

bo
rd

er
(L

)

Ri
gh

t b
or

de
r(R

)Y
-A

xi
s

Fig. 7 Four lines on a MBR

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

393

The algorithm to handle the outlier object detection is shown
in algorithm 1. It is adapted from the RO-Tree’s greedy-pick-p
algorithm.

Algorithm 1: pseudo-code of Greedy-pick-p Algorithm

Greedy-pick-p (ectsSpatialObjS ∈ , p,m: integer): MBR
1. For each category
2. Build the border structure of initial MBR.
3. MBR(S)=M;
4. P =0 ;.
5. while {
6. gmax = 0;
7. Bmax = LEFT
8. kmax = 0;
9. For each border /* LEFT,BOTTOM,RIGHT,TOP*/
10. For each k /* k ∈ {1,..m} such that there exist k more un

removed levels for B and the number of objects in these k
levels plus |P| is no larger than p*/

11. Compute the g (gain) per removed object;
12. If g > gmax then
13. gmax = g;
14. Bmax = B;
15. kmax = k;
16. end if/* end step 12*/
17. end for/* end step 10*/
18. end for/* end step 9*/
19. If gmax = 0 then stop;
20. Adjust new MBR according border Bmax and add the

removed objects to P (outlier object list)
21. }/* end step 1*/
22. Endfor /* end step 5*/
23. End /* end Greedy-pick-p */

Search: Search algorithm accomplishes the following task:

given an SSRO-Tree whose root node is T, find all index
records whose rectangles overlap a search rectangle S. C is a
subset of the semantic object class. An entry is denoted in a
node as E(Ref, Mbr), where E.Mbr represents the smallest
rectangle bounding the sub-tree or the spatial object, E.ref is the
pointer to the sub-tree or the spatial object.

Algorithm 2: pseudo-code of SearchSubTree Algorithm

SearchSubTree(C,T, S)
1. If T is under C category then
2. If T is not a leaf then
3. for E ∈ T do
4. if E.MBR ∩ S.MBR ≠ Ø then
5. if E is outlier object then
6. output E
7. else search(E,S)
8. Endif/* end step 5*/
9. else
10. read next entry of t /* recursive call to lower level */
11. Endif/* end step 4*/
12. end for/* end step 3*/

13. else
14. if T.MBR ∩ S.MBR ≠ Ø then
15. output T
16. Endif/* end step 14*/
17. Endif/* end step 2*/
18. Endif/* end step 1*/
19. End. /* end Search*/

Insert: The insertion algorithm adds new index records to the
leaves under the same category. Nodes that overflow are split
and the reinsert changes propagate up the tree. The first
operation is to select a category where the subset of insert is the
object and check it to see if it’s either an outlier or not. If it is an
outlier then the object is placed as an outlier object otherwise
select a leaf where to place the new record at minimum loss.
However, there is the possibility that an overflow situation can
occur. This problem is solved by the overflow Treatment
algorithm.

Algorithm 3: pseudo-code of Insert Algorithm

Insert (new O object under C category)
/* new object O will be inserted into a given SSRO-Tree */

1. If O is under C category then
2. Start to select a leaf node L in which to place O /*Find

position for new record*/
3. If O is not contained in any MBR of tree then
4. Stored in top node
5. Else
6. If O is contained a MBRs and has enough space then select

smallest MBR and add O.
7. Else
8. If O is contained a MBR and it has enough space(not exceed

M) then
9. amalgamate into the MBR
10. Else
11. invoke overflowTreatment
12. End if/* end step 8*/
13. End if/* end step 6*/
14. End if/* end step 3*/
15. End if/* end step 1*/
16. End/* end Insert*/

Delete: The deletion algorithm deletes existing index records

from the leaves under the same category. Nodes that underflow
are the reinsert changes that propagate up the tree. The first
operation is to select a category where the subset of deletion
object will be checked whether it is an outlier or not. If it is an
outlier, then the object is deleted from the outlier object
otherwise be selected as a leaf where and deleted it with adjust
MBR according maximum gain. After this step an underflow
(less than m entries) can occur. This problem is solved by the
underflowTreatment algorithm.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

394

Algorithm 4: pseudo-code of Delete Algorithm
Delete (O object under C category)

/* an object O will be delete from a given SSRO-Tree */
1. If pointer is in related category(/* O is under C category

*/)then
2. Start to select a leaf node L in which place available O

/*Find position for required record*/
3. If O is not contained in any MBR of tree then
4. stop
5. Else
6. If O is contained a MBR and it possible to remove without

satisfaction of underflow condition then
7. Remove the entry from the MBR and adjust MBR area using

maximum gain
8. Else
9. invoke underflow Treatment
10. End if/* end step 6*/
11. End if/* end step 3*/
12. End if/* end step 1*/
13. End/* end Delete*/

Overflow Treatment: The overflow (see Fig. 8) treatment

algorithm will first check whether it is the first time an
overflow occurs in the current level. If so, then it will try to
avoid a split by pushing down an outlier object from a parent
node or reinserting some of the M+1 entries of the overfilled
node. Otherwise, it will just invoke the split procedure.

.

a1 a3a2

m

M

a6a4 a5 +

Fig. 8 Representation of overflow

The algorithm to handle the overflow is shown in algorithm

2. It is adapted from the RO-Tree’s Overflow Treatment
algorithm.

Theorem 1: SSRO-Tree can overflow either new object insert

to the non leaf node or leaf node.

Algorithm 5: pseudo-code of OverflowTreatment Algorithm

OverflowTreatment()
1. If (M+ 1) entries include only index entries or M+ 1 entries

include index entries and outlier object and reinsert possible
then

2. Invoke reinsert
3. Else

4. If
2
Mmchildren_of_num +< and outlier object

available then
5. Pushdawn outlier object
6. Else
7. Invoke Split
8. Endif/* end step 4*/

9. Endif/* end step 1*/
10. End. /* end overflowtreatment*/

Split: The node splitting uses a routine for partitioning a
region containing a set of rectangles into two sub-regions that
satisfy a maximum gain. In the case of node splitting this
routine takes as input the MBRs of the entries in the node (N).
If all the M+1 entries are index entries, the only choice is to
split N. To the other extreme, if N has less than 2m index
entries, splitting is not a choice. Otherwise one of the resulting
pages will violate the minimum fan-out requirement. Xia et
al.[27] experimental results show (for RO-Tree) that a good
breaking point is m + M=2. That is, if num of children(N) < m
+ M=2, push down an outlier, it will otherwise split. To push
down an outlier object, we choose the sub-tree which has
minimum loss to accommodate the new object. The way of
these also is followed to SSRO-Tree.

Algorithm 6: pseudo-code of Split Algorithm

Split()
1. Compute the distance between the centers of their rectangles

and the center of the bounding rectangle of N and identify
longest distance two MBR.

2. Start the create new MBR from one corner with satisfy
minimum loss until total number of object entries m+1

3. Check outlier objects availability in this New created MBR
and adjust according either outlier object and small MBR or
minimum loss MBR

4. Start the create new MBR from other corner with satisfy
minimum loss until touch previous created MBR

5. Check outlier objects availability in this New created MBR
and adjust according either outlier object and small MBR or
minimum loss MBR

6. Insert this two seed to parent node
7. End. /* end split*/

Underflow Treatment: The underflow (Fig. 9) treatment

algorithm will first check whether or not it is the first time an
overflow occurs in the current level. If so, then it will try to
avoid a split by pushing down the outlier object from parent
node or reinserting some of the M+1 entries of the overfilled
node. Otherwise, it will just invoke the split procedure.

.

a1 a3a2

m

M

_ a3

Fig. 9 Representation of underflow

The algorithm to handle the overflow is shown in algorithm

2. It is adapted from the RO-Tree’s Underflow Treatment
algorithm.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

395

Algorithm 6: pseudo-code of UnderflowTreatment
Algorithm
UnderflowTreatment(underflow leaf node L)
1. N = L;
2. S =0;
3. If N is root, re-insert all entries in S into the tree (Notice that

if an entry is an index entry, it should be inserted into a
proper level);

4. If N is a leaf node and there exists an outlier object O in N's

parent node which could be pushed down into the entry
pointed to N then Insert O into N and adjust its MBR
accordingly

5. else
6. invoke reinsert;
7. End if/* end step 4*/
8. If N is an index node then
9. While num of children(N) < m and N contains some outlier

object{
10. Find an outlier O in N which, if pushed down to a lower

level, introduces the minimum loss;
11. Insert O to the next lower level;
12. Propagate and adjust the subtree rooted by N properly;
13. }/*end while*/
14. End if/* end step 8*/
15. If N has less than m entries then
16. Remove the index entry EN in the parent node P;
17. Add N's entries to S;
18. N = P
19. Goto step 3;
20. End if/* end step 15*/
21. End./*end UnderflowTreatment */

Re-Insert: The reinsertion consists of an algorithm for

determining the list of entries that are to be removed from the
current node and reinserted in the tree. The number p of entries
in the list is a parameter that can be determined experimentally
as part of performance tuning. For all M+1 entries, the
distances di between the centers of their MBRs and the center of
the MBR of the node is calculated. Then, the entries are sorted
in descending order of the values di. The first p entries on the
sorted list are removed from the current node and its MBR is
adjusted in the parent node. The p entries are the list of entries
to be reinserted in the tree. In [2] it has been determined that
reinsertion in the decreasing order of the distances di (close
reinsert) outperforms reinsertion in the ascending order (far
reinsert).

Algorithm 7: pseudo-code of ReInsert Algorithm

ReInsert()
1. For all M+l entries of a node N, compute the distance

between the centers of their rectangles and the center of the
bounding rectangle of N

2. Sort the entries in decreasing order of their distances
computed in step1

3. Remove the first p entries from N and adjust the bounding

rectangle of N
4. In the sort, defined step 2, starting with the maximum

distance (= far reinsert) or minimum distance (= close
reinsert), invoke Insert to reinsert the entries

5. End. ./*end re insert */

IV. SELECTION QUERY PERFORMANCE
We used three data structures to find the spatial objects of the

building subclass where the area of the object is less than or
equal 100m2 on the different size of rectangles. Table I shows
the information which is used for the experiment. The
experiment has been done on three types of tree structures
because the performance evaluation test needs to compare
SSRO-Tree with most famous tree structures.

TABLE I

NUMBER OF SPATIAL OBJECTS IN ELEVEN SIZE OF RECTANGLE

Total
Spatial
Objects of
Building
subclass

Total
Spatial
Objects of
Path
subclass

Total
Spatial
Objects of
Landuse
subclass

Total
Spatial
Objects

After
selection
query
execute
(Find
number of
Buildings)

179 13 196 388 74

628 42 459 1129 250

1030 52 750 1832 375

2171 84 981 3236 738

3540 113 1413 5066 1468

5274 129 1827 7230 2189

6228 163 2188 8579 2535

8858 193 2563 11614 3497

10366 219 2889 13474 3983

11216 271 3174 14661 4163

12036 301 3531 15868 4494

The experiment uses Spatial database (SD) which contains

three type of semantic spatial objects (Building, Path, and
Landuse).We have used 11 data sets for the selection query
(select * from SD where building area <= 100m2). Fig. 10
shows the significant deference of the SSRO-Tree among the
other two trees. It is seen that the results of I/O time are always
less than that of the other two trees. Fig. 10 shows a higher
response time of R*-Tree for finding while satisfying the
requirements but SSRO-Tree shows the opposite response
because it has two facilities which are semantic object
categorization and outlier detection. But RO-tree has only
outlier separation facility that performs better when compared
with R*-Tree but shows less performance when compared with
SSRO-Tree. After the number of objects becomes 5066 in
R*-Tree it has shown a significant performance (increased
gradient but rest of the tree shows a less gradient) because those
rectangles contains more outlier objects. According to the
results of the experiment, the better performance of SSRO-Tree
over the other two trees is obvious.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

396

0

2

4

6

8

10

12

14

388 1129 1832 3236 5066 7230 8579 11614 13474 14661 15868
Number of Semantic Spatial Objects

I/O
 T

im
e

(S
ec

on
ds

)

SSRO-Tree
R*-Tree
RO-Tree

Fig. 10 I/O time of finding objects according a building object’s area

<=100m2 under SSRO-Tree, RO-Tree, and R*-Tree

V. CONCLUSION
A novel SSRO-Tree was created in this research by using

some properties of Semantic R-Tree and RO-Tree because this
model needs an efficient semantic spatial object access method
that guarantees the better performance. Eight new algorithms
have been described with proper notations. Semantic spatial
selection query performances were discussed and the
experimental results revealed that that the SSRO-Tree
outperforms over RO-Tree and R*-Tree in the I/O time.

ACKNOWLEDGMENT
The authors extend sincere gratitude to Dr. Li Xiang, Mr.

A.W. Wijeratne, Dr. Liu Hongwei and Miss Bethany
LoPiccolo.

REFERENCES
[1] N. An, K. Kanth, and S. Ravada, “Improving Performance with

Bulk-Inserts in Oracle R-Trees,” In VLDB, 2003.
[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:

An efficient and robust access method for points and rectangles,” In
Proceedings of the ACM SIGMOD international conference on
Management of data, pp.322-331, 1990.

[3] T. Brinkhoff, H. Kriegel, and R. Schneider, “Comparison of
Approximations of Complex Objects Used for Approximation-based
Query Processing in Spatial Database Systems,” IEEE, 1993.

[4] C. Böhm, “A cost model for query processing in high-dimensional data
spaces,” ACM Transactions on Database Systems,vol. 25, no. 2,
pp.129-178,2000.

[5] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin, “Searching in
metric spaces,” Technical Report TR/DCC-99-3, Dept. of Computer
Science, Univ. of Chile, 1999.

[6] S. Chen, X. Wang, N. Rishe, and M.A.W. Weiss, “A Web Based spatial
data access system using semantic R-Trees,” Elsevier Science, 2003.

[7] V. Gaede, and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys, vol. 30, no. 2, pp.170-231,1998.

[8] Günther, O.: ‘Efficient Computations of Spatial Joins’, Proc. 9th Int.
Conf. on Data Engineering, Vienna, Austria, 1993.

[9] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” In
proceedings of the ACM SIGMOD International Conference on
Management of Data, pp.47-57, 1984.

[10] I. Kame, and C. Faloutsos, “On Packing RTrees,” CIKM, pp. 490-499,
1993.

[11] K. V. R. Kanth, A. E. Abbadi, D. Agrawal, and A. K. Singh, “Indexing
Non-Uniform Spatial Data,” In Proceedings of International Database
Engineering & Applications Symposium,1997.

[12] K. V. R. Kanth, S. Ravada, J. Sharma, and J. Banerjee. “Indexing
Medium-dimensionality Data in Oracle,” In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data,
pp.521–522, 1999.

[13] K. V. R. Kanth, S. Ravada, and D. Abugov, “Quadtree and R-tree Indexes
in Oracle Spatial: A Comparison using GIS Data,” In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data, pp.
546–557, 2002.

[14] S. T. Leutenegger, and M. A. Lopez, “The Effect of Buffering on the
Performance of R-Trees,” International IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 1, pp. 33-44, 2000.

[15] A. Noske, “Dynamic Range Queries in Vector Space,”
http://www.andrewnoske.com/professional/publications/Lit_Review_-_
Dynamic_Range_Queries_in_Vector_Space.doc.

[16] Orenstein J. “A.: ‘Spatial Query Processing in an Object-Oriented
Database System,” Proc. ACM SIGMOD Int. Conf. on Management of
Data, pp. 326-333, 1986.

[17] A. Papadopoulos, P. Rigaux, and M. Scholl, “A performance evaluation
of spatial join processing strategies,” Proceedings of the 6th International
Symposium on Advances in Spatial Databases, pp.286-307,1999.

[18] S. Prabhakar, Y. Xia, D. V. V. Kalashnikov, W. G. G. Aref and S. E. E.
Hambrusch, “Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects,” IEEE
Transactions on Computers archive, vol. 51, no.10, pp.1124-1140, 2002.

[19] D. Rotem,”Spatial Join Indices,” Proc. Int. Conf. on Data Engineering,
pp. 500-509,1991.

[20] N. Roussopoulos, D. Leifker, Direct Spatial Search on Pictorial Database
Using Packed R-Trees, Proceeding ACM SIGMOD, 1985.

[21] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries*,”
Proceedings of ACM SIGMOD, 1995.

[22] S. Servigne, T. Ubeda, A. Puricell, and R. Laurini, “A Methodology for
Spatial Consistency Improvement of Geographic Databases,”
Geoinformatica, vol. 4, no. 1, pp. 7-34, 2000.

[23] K.P. Udagepola, L. Xiang, A.W. Wijeratne, and Y. Xiaozong, “MSRIC:
A Model for Spatial Relations and Integrity Constraints in Topographic
Databases,” 5th Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Database. Research conference, 2006.

[24] K.P. Udagepola, L. Xiang, A.W. Wijeratne, and Y. Xiaozong, “Semantic
Integrity Constraint Violations Check for Spatial Database,” MMT-2007,
to be published.

[25] J. S. Vitter, “External Memory Algorithms and Data Structures,” ACM
Computing Surveys, vol. 33, no. 2, pp.209–271, 2001.

[26] S. Wang, J. M. Hellerstein, and I. Lipkind, “Near-neighbor query
performance in search trees,”, http://citeseer.ist.psu.edu/92931.html.

[27] T. Xia, , and D. Zhang, “Improving the R*-tree with Outlier Handing
Techniques,” GIS’05, 2005.

[28] D. Zhang, and T. Xia, “A Novel Improvement to the R*tree Spatial Index
using Gain/Loss Metrics,” GIS’04, 2004.

Kalum Priyanath Udagepola is a Ph.D. candidate at the School of Computer
Science and Technology, Harbin Institute of Technology, PR China. His
research interests are GIS, Spatial database and Mobile GIS. Zuo Decheng is a
Professor and senior lecturer of School of Computer Science and Technology,
Harbin Institute of Technology, PR China. His research interests are mobile
computing, mobile ad hoc network, Bluetooth technology and Mobile GIS. Wu
Zhibo is a Professor and doctoral supervisor of the School of Computer Science
and Technology, Harbin Institute of Technology. His research interests are
Computer architecture, Mobile computing, Dependable computing, Fault
tolerant computing and Mobile GIS. Yang Xiao Zong is a Professor, Director
and doctoral supervisor of the School of Computer Science and Technology,
Harbin Institute of Technology. His research interests are Computer
architecture, Mobile computing, Dependable computing, Fault tolerant
computing and Mobile GIS.
 Mr. Udagepola is a member of the British Computer society, the Computer
Society of Sri Lanka, the Royal Institute of Charted Surveyors and the
Surveyors’ Institute of Sri Lanka

