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Abstract—The paper describes the use of subspace based
identification methods for auto tuning of a state space control system.
The plant is an unstable but self balancing transport robot. Because
of the unstable character of the process it has to be identified
from closed loop input-output data. Based on the identified model
a state space controller combined with an observer is calculated. The
subspace identification algorithm and the controller design procedure
is combined to a auto tuning method. The capability of the approach
was verified in a simulation experiments under different process
conditions.

Keywords—Auto tuning, balanced robot, closed loop identification,
subspace identification.

I. INTRODUCTION

THIS paper describes an auto tuning procedure for a class
of balanced transport robots. The auto tuning is based on

Subspace-based system identification (SSID) methods.
State space models and particularly linear time invariant

state space models are comfortable to use in control design
work. They have an apparent relation to the real process and
there are a number of approved methods available for the
controller and respectively the observer design. SSID-methods
are suitable to identify linear state-space model even for
multivariate and unstable processes by a number of ordinary
numerical operations. Therefore one can use this identification
methods in low-cost embedded control systems. In this paper
we investigate the application of SSID-methods on a class of
balanced transport robots.

In Fig. 1 the robot is shown in two configurations. The
left configuration is the parking respectively the load and
unload configuration. The right hand side shows the driving
configuration of the robot. The benefits of this robot are the
simple construction and the good maneuverability. A task
of the control system is to balance or stabilize the robot.
Thereby the controller has to handle the changes in the process
behavior caused by the varying payload. This means that
the controller has to be robust or adaptive. In this paper
we use SSID-Methods to identify the robot’s behavior after
a load change and calculate an observer based state space
controller for the system. In Section II we describe the used
SSID-method. A theoretical process model of the robot is
derived in Section III. This model is used for the investigations
of the implemented design procedures. In Section IV the test
experiments are declared and in Section V we present some
application results of the auto tuning procedure.
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Fig. 1 Configurations of the transport robot

II. SUBSPACE STATE SPACE IDENTIFICATION

Subspace state space identification methods are capable
of identifying linear discrete time state space models of a
process using only measured input and output data. One
advantage of subspace identification over other methods such
as prediction error methods [6] is their non-iterative behavior.
That helps to determine the computational effort and storage
requirements in advance which can be crucial when is comes
to implementation on low cost embedded systems. Another
advantage is the possibility of optimal system order selection
as an intermediate step of the algorithms so less system
knowledge is needed in advance.

The first subspace identification methods such as Numerical
Subspace State Space System IDentification (N4SID)
[4], Canonical Variate Analysis (CVA) [1] and MIMO
Output-Error State Space model identification (MOESP)
[3] developed in the ninetieth of the last century where
only capable of getting unbiased estimates from open loop
input-output data, due to the correlation between future input
and past innovation data [5].

Since the balanced transport robot is a naturally unstable
process it needs to be stabilized by some sort of feedback
controller during the identification experiment. Therefore,
Ljung and McKelvey [5] suggested to pre-estimate a high
order ARX model which gives an unbiased j-step ahead
predictor if there is at least a one step delay between the
plant output and the control input. Later Chiuso [9] used
this approach to come up with the Predictor based Subspace
IDentification method (PBSID). Using the high order ARX
model to estimate an innovation sequence and therefore get
uncorrelated data is proposed by Qin and Ljung [8].

In the following this section gives an explanation of the
used subspace state space identification algorithm which is of
the multi-stage class of the unified framework developed by
de Kort [10]. Initially the model is considered to be a state
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space model in innovation form:

xk+1 = Axk +Buk +Kek (1)
yk = Cxk +Duk + ek (2)

with A ∈ Rn×n the system matrix, B ∈ Rn×m the input
matrix, C ∈ Rl×n the output matrix and D ∈ Rl×m the
feedthrough matrix. K ∈ Rn×l represents the Kalman gain.
xk ∈ Rn, uk ∈ Rm, yk ∈ Rl and ek ∈ Rl are the state, input,
output and innovation vectors, respectively. Furthermore ek is
a zero-mean white Gaussian noise signal with the covariance
R (3), where δij is the Kronecker delta.

E(eie
T
j ) = Rδij (3)

First some notations and formulations have to be declared
which are used throughout the identification algorithm. The
measured input and output data have to be rearranged into data
block Hankel matrices as shown in (4). The index k represents
the first data sample, τ is the number of block rows and σ the
number of columns of the block Hankel matrix.

Yk,τ,σ =

⎡
⎢⎣

yk · · · yk+σ−1
...

. . .
...

yk+τ−1 · · · yk+τ+σ−2

⎤
⎥⎦ (4)

For the subspace identification algorithm “past” and
“future” data Hankel matrices which are noted as Yp =
Y0,p,N for past data and Yf = Yp,f,N for future data have
to be constructed. With p and f the past and future horizon
respectively. The same notation is used for the input Up,Uf

and the innovation data matrices Ep,Ef . Given a sequence
of measured data consisting of N samples, the number of
columns in the Hankel matrices yields to

N = N − p− f + 1 (5)

Additionally we need a notation of only a part of a Hankel
matrix which is Yf i for the i-th block row and Yi for the
first i block rows of a future Hankel matrix.

Yi =

⎡
⎢⎣

Yf1

...
Yfi

⎤
⎥⎦ = Yp,i,N for 1 ≤ i ≤ f (6)

Furthermore the Markov state of the system at time step k
is:

xk =
(
qI− Ā

)−1 (
B̄ K

)( uk

yk

)
(7)

with Ā = A − KC and B̄ = B − KD. Now given a state
sequence as well as input and output data of N samples one
can construct a state sequence shifted about the past horizon
p as shown in (9).

Xp,N = [xp xp+1 . . . xp+N−1] = ĀpX0,N + K̄Zp (8)
≈ K̄Zp (9)

where

K̄ =
[
Āp−1B̄ . . . ĀB̄ B̄ Āp−1K . . . ĀK K

]
(10)

Zp =
[
UT

p YT
p

]T
(11)

If p is chosen large enough the first term of the right hand
side can be neglected as Āp tends to be zero and the state
sequence can be approximated using K̄Zp.

Using the Hankel matrices to construct the matrix output
equation of the system and substituting the state sequence
approximation into it leads to:

Yf ≈ ΓfK̄Zp +HfUf +GfEf +Ef (12)

with the extended observability matrix

Γf =

⎡
⎢⎢⎢⎣

C
CA

...
CAf−1

⎤
⎥⎥⎥⎦ (13)

and the lower triangular block Toeplitz matrices containing the
Markov parameters of the system.

Hf =

⎡
⎢⎢⎢⎣

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAf−2B CAf−3B · · · D

⎤
⎥⎥⎥⎦ (14)

Gf =

⎡
⎢⎢⎢⎣

0 0 · · · 0
CK 0 · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · 0

⎤
⎥⎥⎥⎦ (15)

So this defines the main problem of subspace identification
algorithms to get an estimate of ΓfK̄ to reconstruct a reduced
order state sequence using singular value decomposition as
shown in (16) and (17). Order reduction is done by using
only n left singular vectors to construct the state sequence
estimate. Choosing the optimal system order n can be done
either by observing the dominant singular values or using an
information criterion, e.g. the Akaike Information Criterion
(AIC).

Γ̂fK̄Zp = UΣVT ≈ UnΣnV
T
n (16)

X̂p,N = VT
n ∈ Rn×N (17)

After constructing the reduced order state sequence simple
least squares regression can be used to get an estimate of the
system matrices. First we use the first block row of the future
input and output data Hankel matrices together with state
sequence estimate and rearrange the system output equation
as shown in (18) and solve for C and D. Second the state
equation is also rearranged like in (21) and solved for A, B
and K. The innovation sequence EY needed to estimate the
Kalman gain matrix is the residual of the solution of the system
output equation (20).
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Yp,1,N = Y =
[
Ĉ D̂

]
︸ ︷︷ ︸

Θ

[
X̂p,N

Up,1,N

]
︸ ︷︷ ︸

W

+ EY (18)

Θ̂ = YW† (19)

ÊY = Y
(
I−W†W

)
(20)

X̂p+1,N−1 = [A B K]

⎡
⎣ X̂p,N−1

Up,N−1

ÊY

⎤
⎦ (21)

Under some conditions the Kalman gain matrix obtained
by (21) does not stabilize the system. A second approach to
estimate the Kalman gain matrix is to solve the state equation
only for A and B like in (22) and use the noise sequences
EX and EY to calculate the sample covariance (23). Now
K can be computed by solving the discrete algebraic Riccati
equations (24), (25). Using this approach results in a higher
computational effort but guarantees a stabilizing Kalman gain
matrix.

X̂p+1,N−1 = [A B]

[
X̂p,N−1

Up,N−1

]
+ EX (22)[

Q̂ Ŝ

ŜT R̂

]
= lim

N→∞
1

N − 1

[ EX

EY

]
[EX EY ] (23)

P̂ = ÂP̂ÂT + Q̂

−
(
Ŝ+ ÂP̂ĈT

)(
ĈP̂ĈT

)−1 (
Ŝ+ ÂP̂ĈT

)T

(24)

K̂ =
(
Ŝ+ ÂP̂ĈT

)(
R̂+ ĈP̂ĈT

)−1

(25)

As mentioned before the main goal of subspace
identification algorithms is to get an estimate of the ΓfK̄ for
construction of the reduced order state estimate. In literature
there are several different methods to get this estimate.
Following the method used in the simulation experiments is
explained in detail. This method is of the class of multi-stage
procedures as classified in [10].

A. Multi-Stage Procedure

The used multi-stage type algorithm is based on the
innovation estimation pre-estimate procedure described by
Qin and Ljung [8]. Here the matrix output equation (12) is
solved for each block row separately for i = 1 . . . f , so
at least f least squares problems have to be solved which
results in higher computational effort compared to single- or
double-stage procedures described in [10], [11].

Yfi = ΓfiK̄Zp +HfiUi +GfiÊi−1 +Efi (26)

For the estimate of ΓfK̄ each ΓfiK̄ is extracted out of
the least squares solutions and stacked on top of each other.
Having constructed ΓfK̄ the reduced order state sequence and
the system matrices can be estimated using (16)-(21).

[
Γ̂fiK̄ Ĥfi Ĝfi

]
= Yfi

⎡
⎣ Zp

Ui

Êi−1

⎤
⎦
†

(27)

B. System Order Determination

Since the measured data are corrupted by noise the singular
values do not become zero. This makes it quite difficult to
identify the dominant singular values and therefore to get the
optimal system order n. An information criterion like the AIC
can be helpful to determine the system order since it gives a
good tradeoff between fitting performance and complexity of
the model with respect to the order n.

AIC(n) = −2 log p(YN |UN , θ̂(n)) + 2Mn (28)

According to [7], the number of independent parameters for
estimating a system model in state space representation is:

Mn = n(2l +m) + lm+
l(l + 1)

2
(29)

Since the AIC is designed for a large number of samples a
correction term for a smaller number of samples is

f =
N

N − Mn

n + n+1
2

(30)

According to [2], the calculation of the AIC is simplified
to (31) for Gaussian distributed innovation ek.

AIC(n) = N(l(1 + ln(2π)) + ln |cov(EY )|) + 2Mnf (31)

III. BALANCED WHEELED ROBOT PROCESS MODEL

In this section, the mathematical model of the balanced
wheeled robot process is described. Fig. 2 shows a sketch of
the robot. For simplicity the robot is only capable of moving in
the x-y-plane. The gravity vector which causes the pendulum
to fall over is pointed in the negative y-direction.

Fig. 2 2-D sketch of the balanced wheeled robot
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Fig. 3 Free body model of the pendulum and the wheel

A. Dynamics

First the dynamic equations of the free body models of the
pendulum and the wheel are formed. In Fig. 3, the forces and
torques acting on the pendulum and the wheel are shown. To
calculate the motion of the pendulum the coordinates about its
center of mass are needed and shown in (32) and (33), with l
the distance between the center of mass and the pivot point of
the pendulum and x the horizontal position of the pivot point.

xp = x+ lsin(ϕ) (32)
yp = lcos(ϕ) (33)

Using the coordinates the balance of forces in x and y
direction with respect to the center of mass is given by (36)
and (39) with mp the mass of the pendulum.

Fy = mpg +mpÿp (34)

= mpg +mpl
d2

dt2
cos(ϕ) (35)

= mpg −mplϕ̈sin(ϕ)−mplϕ̇
2cos(ϕ) (36)

Fx = mpẍp (37)

= mpẍ+mpl
d2

dt2
sin(ϕ) (38)

= mpẍ+mplϕ̈cos(ϕ)−mplϕ̇
2sin(ϕ) (39)

The rotational motion of the pendulum is caused by these
forces and the torque TM from the drive mechanism mounted
at the pivot point, e.g. a dc motor.

Ipϕ̈ = Fylcos(ϕ)− Fxlsin(ϕ)− TM (40)

Substituting (36) and (39) into (40) gives the first equation
of motion for the pivot angle ϕ of the pendulum.

ϕ̈ =
TM +mpglsin(ϕ)−mplẍcos(ϕ)

Ip +mpl2
(41)

For the free body model of the wheel the balance of forces
and moments is given by (42) and (43), respectively. With
mw the mass, Iw the moment of inertia, and r the radius of

the wheel. Furthermore the force Ff acts as a counter force
which constraints the motion of the wheel to a rolling motion
without slipping.

mwẍ = Ff − Fx (42)

Iwθ̈ = TM − Ffr (43)

Now substituting (39) and (43) into (42) gives the second
equation of motion for the horizontal movement of the wheel.

ẍ =
TM −mplrϕ̈cos(ϕ) +mplrϕ̇

2sin(ϕ)

Iw + (mw +mp)r2
r (44)

B. DC Motor Model

Since in practice the driving torque can not be applied
directly as the system’s input the balanced wheeled pendulum
model is extended by the model of a dc motor.

V = Ri+ Li̇+ VBEMF (45)

VBEMF = keωM = ke(ϕ̇+
ẋ

r
) (46)

i̇ = −R

L
i− ke

L
(ϕ̇+

ẋ

r
) +

1

L
V (47)

On the mechanical side the balance of moments is given
by:

IM ω̇ + kfω = kM i (48)

Since the motor is rigidly connected to the pendulum and
the wheel its moment of inertia is integrated into Jp and Jw
respectively. The frictional term is also integrated into the
equations of motion of the whole assembly which leaves the
expression of the driving torque to be

TM = kM i (49)

C. Friction

Two types of friction are added to the equations of motion
(41) and (44). First the viscous friction of the motor bearings
with respect to the motor’s angular velocity ϕ̇+ ẋ

r . So the term

−μ(ϕ̇+
ẋ

r
)

is added to (41) and (44). Second type of friction is the
rolling friction between the wheel and the ground with respect
to the angular velocity ẋ

r of the wheel. As a result a second
term

−f
ẋ

r

is added to the horizontal motion equation (44).
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D. Measurement Filter

As described in the next section the is some noise
added to the system’s output. To make some more practical
considerations the measured pitch angle of the pendulum is
filtered through a discrete first order lowpass filter. Cut-off
frequency of the filter is chosen to be 10 Hz, with a sample
time of 0.01 s and Butterworth characteristic the filter transfer
function is given by (50).

F (z−1) =
0.2452 + 0.2452z−1

1− 0.5095z−1
(50)

IV. SIMULATION EXPERIMENT

The following experiment is build up to test the capability
of the presented subspace algorithm to identify a system model
for the described robot process. Since balancing the pendulum
is an unstable process there is need for a stabilizing feedback
controller before the identification experiment can take place.
This is done via simple proportional control of the pitch angle.
As mentioned above the plant’s output signal is corrupted by
additive white Gaussian noise with zero mean and a covariance
of 1e-6.

Fig. 4 Block scheme of the closed loop experiment

After the proportional controller has stabilized the plant, it is
excited by a PRBS sequence of period M = 1023 samples and
amplitude of ±0.5V at the voltage input of the system. Two
sets of parameters are used for this experiment whereas Table
I lists the parameters common in both sets and Table II lists
the parameters which differ in each set. The parameter change
should simulate a change in payload which the robot carries,
so the mass and inertia of the pendulum changes as well as the
position of the center of mass. For the identification algorithm
the past and future horizon are chosen to be p = f = 20 and
the system order is either selected by the AIC minimum or the
number of dominant singular values which is further discussed
in the next section.

TABLE I
MECHANICAL CONSTANTS OF THE BALANCED WHEELED ROBOT

mw 0.5kg mass of the wheel
f 0.1Nms

rad
rolling friction coefficient

μ 0.1Nms
rad

viscous friction coefficient
Iw 0.003 kg ·m2 wheel moment of inertia
r 0.01m radius of the wheel
g 9.81m

s2
gravitational acceleration

R 8Ω resistance of the motor winding
L 0.1H inductance of the motor winding
kM 2Nm

A
mechanical motor constant

ke 4.8 V s
rad

back EMF constant

Goal of the experiment is to identify a linear state space
model of the plant - including the measurement filter - at

TABLE II
VARIABLE SYSTEM PARAMETERS

set 1 set 2
mp 0.2 kg 0.5 kg mass of the pendulum
l 0.3m 0.4m distance to center of mass
Ip 0.006 kg ·m2 0.008 kg ·m2 pendulum moment of inertia

the balanced upright position of the pendulum and using the
identified model to construct a state controller which stabilizes
the pendulum. Since only the measured pitch angle of the
pendulum is used as output the model also has to be used to
build an observer to get a state estimate for the controller. Fig.
5 shows the Luenberger type observer with the state control
vector K which is designed via LQR method. The weight
matrices in the LQR design are chosen to be Q = In and
R = 0.01 for both variable sets in the experiment.

Fig. 5 Block scheme of the observer and state controller

V. SIMULATION RESULTS

As results of the experiments two different aspects are
analyzed. First is the capability of the identified model to
estimate the system output around the upright pendulum
position when used in an observer structure. Second is the
ability to stabilize the nonlinear system with a state controller
using the estimated state.

Since in a practical implementation the system order is
supposed not to be known the AIC criterion is used during
the identification procedure to give an estimate of an optimal
system order. Fig. 6 shows the AIC for a system order of
n = 1 . . . 20 from the system identification of the set 2
experiment. One can see a sharp bend at system order n = 3
but the overall minimum AIC value is at 5 so the algorithm
chooses n = 5 to be the optimal system order. The lower
diagram shows the singular values of the same identification
run, but it is hard to determine between 2 or 3 dominant
singular values.

To examine the model fitting capability the observer
is designed using the identified model but still using the
proportional controller to stabilize the system around its
operating point and without any noise injected at the system
output. In Figs. 7 and 8 it can be seen that the estimated output
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Fig. 6 AIC and singular values

Fig. 7 Filtered and estimated pitch angle of set 1 experiment

is a pretty good match to the filtered system output after a short
settling time for the observer for both variable sets.

After proving stable behavior and good model fitting ability
of the observer the proportional control is replaced by the
state control. Fig. 9 shows the stabilization of the system
with the state control from an initial pitch angle deflection of
0.01 rad. Although the pendulum starts with an initial angle
deflection the system output starts at zero since the filters
internal state is initialized to zero. The state control shows a

good control response with fast decay and little oscillations in
both cases since the controller is designed for each parameter
set separately, a drawback of that is the lack of robustness
which may cause instability if abrupt changes in payload
occur.

All results where performed with a system order of n = 5
for both parameter sets given from the AIC criterion. Further
investigations have shown that an order of n = 3 gives nearly
the same behavior for model fit as well as control performance.
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Fig. 8 Filtered and estimated pitch angle of set 2 experiment

Fig. 9 Comparison of proportional control and state control

Therefore, the sharp bend at order 3 as observed in the AIC
diagram can be used as indication to chose the optimal order
as it would reduce the complexity of the model which leads
to reduction of computation effort.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discussed the application of identifying
a time discrete linear state space model of a self balancing
robot in order to design a state observer and a state space
controller to stabilize the robot in its upright position. For
identification an SSID method has been used which is able to

identify the system from input-output data obtained by a closed
loop experiment. Two sets of parameters for the robot were
used to simulate a change in payload and it was shown that in
both cases a stable and unbiased observer could be constructed
out of the identified system model and a stabilizing state space
controller was designed using the LQR design method.

Future work will be to construct a real life self balancing
robot and implement the shown identification and controller
design methods onto low cost embedded hardware in order to
get a system which auto tunes its control system depending
on different payload conditions to get optimal control
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performance. Furthermore, the observer part of the system
could be used to tell the system that dynamics have changed
and initiate a retuning procedure.
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