
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

494

Selective min-terms based tabular method for
BDD Manipulations

P.W. C. Prasad1, A.Assi2, M. Raseen1 and A. Harb3

1United Arab Emirates University, College of Information Technology, U.A.E
2American University of Technology, Department of Computer Engineering, Lebanon

3United Arab Emirates University, Department of Electrical Engineering, U.A.E

Abstract— The goal of this work is to describe a new algorithm for
finding the optimal variable order, number of nodes for any order and
other ROBDD parameters, based on a tabular method. The tabular
method makes use of a pre-built backend database table that stores
the ROBDD size for selected combinations of min-terms. The user
uses the backend table and the proposed algorithm to find the
necessary ROBDD parameters, such as best variable order, number
of nodes etc. Experimental results on benchmarks are given for this
technique.

Keywords—Tabular Method, Binary Decision Diagram, BDD
Manipulation, Boolean Function.

I. INTRODUCTION

he
is
te

efficient approach for Boolean function manipulation
 the key factor in many areas, i.e.: synthesis, design and
sting of VLSI CAD circuits [1]. BDD are one of the

most commonly used synthesis tool for logic optimization of
digital systems [2]. Varieties of BDD are used in several
commercial applications. However the size and complexity of
functions some times make BDD beyond any acceptable limit
in terms of space and memory requirement. Hence most of the
applications are heavily relying on good variable ordering [3],
[4]. Many heuristics have been suggested to minimize the
space and memory complexity by providing a more effective
initial variable ordering for BDD [5], [6], [7], [8], [9]. But the
search for alternative solution still active in order to minimize
the problems caused by the variable ordering to the BDD size.

A new algorithm is discussed to address the variable
ordering problem. The proposed method is based on a table
that includes a number of variables, a number of min-terms for
BDD, and the corresponding BDD size. This paper is
structured as follow: In section II we recall definitions
pertaining to BDD. Proposed method with the algorithm is
explained in section III followed by the experimental results
for selective benchmark circuits in section IV. The section V
summarizes the advantages of this approach and we conclude
with section VI.

II. PRELIMINARIES

Basic definitions for binary decision diagrams are detailed in
[1], [2], [10], [11]. The following is a recall of some of these

definitions.

Definition 1: A BDD is a directed acyclic graph (DAG). The
graph has two sink nodes labeled 0 and 1 representing the
Boolean functions 0 and 1. Each non-sink node is labeled with
a Boolean variables v and has two out-edges labeled 1 (or
then) and 0 (or else). Each non-sink node represents the
Boolean function corresponding to its 1 edge if v=1, or the
Boolean function corresponding to its 0 edge if v=0.

Definition 2: An OBDD is a BDD in which each variable is
encountered no more than once in any path and always in the
same order along each path.

Definition 3: A reduced ordered binary decision diagram

(ROBDD) is an OBDD where each node represents a distinct
logic functions. It has the following two properties:

(i) There are no redundant nodes in which both of the two
edges leaving the node point to the same next node
present within the graph. If such a node exists it is
removed and the incoming edges redirected to the
following node.

(ii) If two nodes point to two identical sub-graphs (i.e.
Isomorphic sub-graphs) then one sub graph will be
removed and the remaining one will be shared by the
two nodes.

Variable Ordering

The size of a BDD is largely affected by the choice of the
variable ordering. This is illustrated by the following example:

Example: Let nn xxxxf 21221 If the variable

ordering is given by , i.e.),......,,(21 nxxx iixi)(, the size

of the resulting BDD is . On the other hand, if the variable

ordering is chosen as , the size

of the BDD is .

n2
)....,,,....,,(2,421231 nn xxxxxx

)2(n

Thus, the number of nodes in the graph varies from linear to
exponential depending on the variable ordering. Fig. 1 shows
the effect of the variable ordering on the size of BDDs.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

495

Figure 1: Effect of the variable ordering on the size of BDDs

III. PROPOSED METHOD

The proposed method is based on a table that acts as a
backend database. The user application uses the details in the
backend table to perform the necessary computations.

A. Backend BDD size table

The table is auto-generated by a program that utilizes the
Colorado University Decision Diagram (CUDD) package in
order to build the ROBDD. The program is automated and
records the ROBDD size for selected groups of min-terms.
The min-term groups are selected to cover all possible
combinations of Boolean functions. For each of the selected
min-term group, the ROBDD size is recorded for a fixed
variable ordering of nxxxx ,,,, 321

For example with 3 variables and 6 min-terms the programs

uses Boolean rules to generate only 28 (8C6) min-term groups
to cover all possible 262144 (86) min-term combinations. The
28 min-term group will also cover the non min-term SOPs i.e.

the non min-term SOP will be covered by

the min-term group

3221 xxxx

321321321 xxxxxxxxx .

The number of nodes for 3 variables with 6, 7 and 8 min-
term groups is illustrated in table 1. Consider the first record
in the table. Min-term group 0 1 2 3 4 5 is expressed in
decimal, these decimal representations correspond to the

actual min-terms 321 xxx , 321 xxx , 321 xxx ,

321 xxx , 321 xxx and 321 xxx .

B. ROBDD size for the variable order nxxxx ,..,,, 321

Given a Boolean function that is a sum of min-terms the

number of nodes for the order can be found

from the backend table directly. For a Boolean function that is
a SOP of non min-terms or combinations of min-terms and
non min-terms, the function can be expanded and simplified to
the min-terms form. Then the order can be found from the
table. For circuits that are multi level, synthesis tools can be
used to obtain a single level SOP. For example, a function
with three variables and 6 min-terms (4 3 7 2 0 5), the number
of nodes for variable order is obtained by arranging

the min-terms in ascending order (0 2 3 4 5 7) and then
comparing with the backend table. Consider the

function

nxxxx ,..,,, 321

321 ,, xxx

3221 xxxx , expanding the function will give

min-term SOP as 321321321 xxxxxxxxx . This min-

term group can be sorted in ascending order and the number
of nodes can be found by checking in the backend table.

TABLE 1
BDD SIZE TABLE FOR 3 VARIABLES WITH 6,7 AND 8 MIN-TERMS.

C. ROBDD Size for any variable order

For any Boolean function the min-term SOP form can be
obtained. Using the min-terms of the resulting function, the
ROBDD size for any order can be found as explained in the
algorithm below:

Step 1: Express the function as SOP of min-terms;
Step 2: Convert all the min-terms into binary form;
Step 3: Create a new group of min-terms with the bits mapped

from the old group according to the new variable
ordering;

Step 4: Convert the new group to decimal and sort them in
ascending order;

Step 5: Use the backend table to find the number of node for
the new group of min-terms.

The number of nodes obtained for the new group will be the
number of nodes for the original function but for the new
variable ordering. The following example explains the
procedure in details.

Example: Consider the function of three variables with min-
terms groups 6 3 0 1 4 5. To find the number of nodes for the

variable order of , the min-terms are first written in

binary form (110, 011, 000, 001, 100, 101). A new group of
min-term is then generated from the existing group according
to the variable order.

231 ,, xxx

Since the variable order is , the new group is

generated as follow:
231 ,, xxx

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

496

-- The first bit of the new group min-terms will be the
same as first bit of old group min-terms, since the new
variable order has x1 in first position;

-- The second bit of the new group min-terms will be the
third bits of old group min-terms, since the new
variable order has x3 in second position;

-- The third bit of the new group min-terms will be the
second bit of old group min-terms, since the new
variable order has x2 in third positions.

The new min-term group will be 101, 011, 000, 010, 100, 110
(5, 3, 0, 2, 4, 6). Sorting the new group in ascending order we
get 0 2 3 4 5 6. From the table, the number of nodes for the
new sorted group is 5. This gives the number of nodes for the
original function (6 3 0 1 4 5) but in the new variable order of

. This reflects the advantage of the proposed

method.
231 ,, xxx

D. Method to find the best variable ordering

Given a Boolean function, the best variable order can be
found using the Backend min-term table that has been
previously generated. The method to find the best variable
order is explained in the following algorithm:

Step 1: The given Boolean function is converted into SOP of
min-terms.

Step 2: The number of variables and the number of product
terms for the resulting min-terms SOP is noted.

Step 3: In the backend table the group that has the same
number of variables and same number of SOP terms is
marked.

Step 4: In the marked group, the SOP terms that have the least
number of nodes are selected.

Step 5: The bits in all the min-terms of the given function are
shuffled to match one of the selected min-term groups.
If the matching happens, then the shuffling order is the
best variable order for the given function. If not the
min-term group with next least number of nodes is
selected and matched.

Step 6: Step 5 is repeated continuously for min-term SOP,
with next least number of nodes, until a shuffle match
is found.

The shuffle order for the marching group is the best variable
ordering for the given function. The following example
explains the algorithm in detail.
Example: Consider a function with 3 variables and 2 min-
terms 3 and 6. Table 2 shows the number of nodes for the

default order for 2 min-term groups. From table 2

the number of nodes for the given function in the variable

order is 5. To find the best variable order, the table

is scanned for 2 min-terms SOPs with least number of nodes.
There are 11 SOPs (0 1, 0 2, 0 4, 1 3, 1 5, 2 3, 2 6, 3 7, 4 6, 5
7, 6 7) that have 2 as number of nodes. The bits of min-terms
3 6 are shuffled in the same order and compared with each of
the 11 SOPs. It is realized that none of the 11 SOPs matches
the after shuffling SOP; hence the group of SOPs with next
least number of nodes is selected. There are 9 (0 3, 0 6, 1 2, 1
7, 2 4, 3 5, 4 5, 4 7, 5 6) that have 4 as number of nodes. The

shuffling of bits is performed again. If we rearrange the bits of
original function min-terms 3 6 (011 110) in the order of

we get the min-terms 3 5 (011 101). The new min-

terms 3 5 is one of 9 newly selected SOPs. Since the shuffling
matches, the best variable ordering for the given function with

min-terms 3 6 is .

321 ,, xxx

321 ,, xxx

231 ,, xxx

231 ,, xxx

TABLE 2

BDD SIZE TABLE FOR 3 VARIABLES WITH 2 MIN-TERMS.

E. Functions with equal ROBDD complexity

One of the major applications of the backend table is the
detection of equal complexities for different functions, with
any number of variables. From table 1 and table 2 we can
infer that a function with 3 variables and 6 min-terms 0 1 3 5 6
7 (5 nodes), has the same complexity as the function with 3
variables and 2 min-terms 1 4 (5 nodes too). From the tables
and from the methods explained in section III-D we can find
functions that have equal complexities for any variable order.
Referring to last example, a function of three variables with

min-terms 3 6 has 4 nodes for the variable order ,

which has equal complexity with the function with min-terms

0 6 but with the different order .

231 ,, xxx

321 ,, xxx

IV. EXPERIMENTAL RESULTS

The results presented in this section were observed using
the Colorado University Decision Diagram (CUDD) package,
on a Pentium IV machine with 512 MB RAM and measured
by the number of nodes. Runtime entries refer to the time
taken for reordering by the CUDD and finding the best order
using our method. The results have been obtained as average
of 50 executions of each benchmark circuits for three CUDD
methods and the proposed method.

In Table 3, the first column provides to the names of the
ISCAS benchmark circuits. Columns 2-9 illustrate the results
obtained by three of the CUDD variable reordering methods
(i.e. Reorder Random, Symmetric Sift and window coverage
2) and the proposed method. Columns 3, 5, 7, and 9 show the
number of nodes required to construct the ROBDD for the
benchmarks using the above reordering methods. Columns 2,
4, 6, and 8 show the CPU time in seconds..

The results indicate the efficiency of the proposed
method compared to the selected CUDD ones in term of
number of nodes, especially for circuits C17, alu2, cm42a,
5xp1, pm1. For all the benchmark circuits the run time for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

497

proposed method decreases drastically compared with the
three CUDD methods.

TABLE 3

RESULTS FOR SELECTED BENCHMARK CIRCUITS.

V. ADVANTAGES

The proposed algorithms for ROBDD manipulation have the
following advantages:

-- The backend table needs to be built only once and it
can be used for any Boolean function and any
algorithm.

-- The algorithm will be more effective compared to the
traditional methods since the backend table is already
built and ready. The time to build the backend table
will not be a factor since it is not accounted for the
algorithm execution.

-- Knowing the number of nodes for the default order,
the proposed algorithm will enable to calculate the
number of nodes for any other heuristic order, without
building the ROBDD.

-- The best variable ordering for a given function can be
found without checking all possible combinations of
the variable order.

VI. CONCLUSION

In this work, we address the problem of variable ordering
based on tabular method which consists of a table including
the number of variables, the number of min-terms, and the
size of the BDD. The algorithm will be more effective
compared to the traditional methods since it uses a backend
table that includes the results of all calculations. The
experimental results prove the superiority of the new method
over 3 selected CUDD methods in terms of number of nodes
and calculation time. Our future development will be to apply
the new method on more complex benchmark circuits.

ACKNOWLEDGMENTS

The authors would like to thank the financial support of the
American University of Technology (AUT).

REFERENCES

[1] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties &
Applications of Binary Decision Diagrams,” Department of Electrical
and Computer Engineering University of Utah, Salt Lake City, UT
84112.

[2] R. E. Bryant, "On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer
multiplication," IEEE Trans. Computers, Vol. 40, pp. 203 213, 1991.

[3] R. E. Bryant, "Graph Based Algorithm for Boolean Function
Manipulation," IEEE Trans. Computers, Vol. 35, pp. 677-691, 1986.

[4] S. Malik, A. Wang, R. Brayton, A. Sangiovanni,, “Logic Verification
using Binary Decision Diagrams in Logic Synthesis Environment”.
International Conference on Computer Aided Design, 1988.

[5] K.M. Butler, D.E. Ross, R. Kapur. and M. R. Mercer, “Heuristics to
Compute Variable Ordering for Efficient Manipulations of Ordered
Binary Decision Diagrams", DAC-90, pp. 52-57, 1990.

[6] P.W.C. Prasad and A. K. Singh, "Representation of Boolean Function
using Partial Binary Decision Diagram," contribution talk, 5th

International Congress on Industrial and Applied Mathematics,
Australia, 2003.

[7] P.W.C. Prasad, A. Assi, and M. Raseen, ”BDD Minimization Using
Graph Parameter Permutation”, The 2004 International Conference on

VLSI, 2004, pp. 491-494.
[8] P.W.C. Prasad, and A. K. Singh, "An Efficient Method for Minimization

of Binary Decision Diagrams," 3rd International Conference on

Advances in Strategic Technologies (ICAST), pp. 683-688, 2003..
[9] C. Yang and, M. Ciesielski, “BDS: A BDD Based Logic Optimization

System,” IEEE Trans. On CAD of IC and Systems, Vol.21, pp. 866 876,
2002.

[10] S. B. Akers, "Binary Decision Diagram," IEEE Trans. Computers, Vol.
27, pp. 509-516, 1978.

[11] K. Brace, “Efficient implementation of a BDD package,” in Proceedings

of Design and Automation conference, pp 40-45, 1993.

