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Abstract—Wireless sensor network can be applied to both abom-
inable and military environments. A primary goal in the design of
wireless sensor networks is lifetime maximization, constrained by
the energy capacity of batteries. One well-known method to reduce
energy consumption in such networks is data aggregation. Providing
efcient data aggregation while preserving data privacy is a chal-
lenging problem in wireless sensor networks research. In this paper,
we present privacy-preserving data aggregation scheme for additive
aggregation functions. The Cluster-based Private Data Aggregation
(CPDA)leverages clustering protocol and algebraic properties of
polynomials. It has the advantage of incurring less communication
overhead. The goal of our work is to bridge the gap between
collaborative data collection by wireless sensor networks and data
privacy. We present simulation results of our schemes and compare
their performance to a typical data aggregation scheme TAG, where
no data privacy protection is provided. Results show the efficacy and
efficiency of our schemes.
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I. INTRODUCTION

A
Wireless sensor network (WSN) is an ad-hoc network

composed of small sensor nodes deployed in large num-

bers to sense the physical world. Wireless sensor networks

have very broad application prospects including both military

and civilian usage. Sensors are usually resource-limited and

power-constrained. They suffer from restricted computation,

communication, and power resources. Sensors can provide ne-

grained raw data.

Due to these limitations data aggregation is an important

consideration for sensor networks. The idea is to combined the

data coming from different sources and enroute it further, after

eliminating redundancy, minimizing number of transmissions

and thus saving energy. This being different from traditional

address centric approaches, shifts the focus to data centric

approaches.

They can be used for a wide variety of monitoring and research

applications, inventory maintenance, health care , military,

object recognition and tracking, research and study of bio-

logical and environmental phenomenon. All the applications

depend on the ability to extract data from the network. Sensor

networks generate a large amount of data. For extracting

information, we need to collect and query the data from sensor

networks. The primary focus is on aggregates- summarized

data.
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In many sensor network applications, the designer is usually

concerned with aggregate statistics such as SUM, AVERAGE,

or MAX/MIN of data readings over a certain region or period.

As a result, data aggregation in WSNs has received substantial

attention.

Consequently, providing a reasonable guideline on building

systems that perform private data aggregation is desirable. It

is well-known that end-to-end data encryption is able to protect

private communications between two parties (such as the data

source and data sink), as long as the two parties have agree-

ment on encryption keys. However, end-to-end encryption or

link level encryption alone is not a good candidate for private

data aggregation.

In this paper, we present privacy-preserving data aggrega-

tion schemes called Cluster-based Private Data Aggregation

(CPDA), for additive aggregation functions in WSNs. The

goal of our work is to bridge the gap between collaborative

data aggregation and data privacy in wireless sensor networks.

When there is no packet loss, the sensor network can obtain

a precise aggregation result while guaranteeing that no private

sensor reading is released to other sensors. Observe that this

is a stronger result than previously proposed protocols that

are able to compute approximate aggregates only (without

violating privacy). Our presented schemes can be built on

top of existing secure communication protocols. Therefore,

both security and privacy are supported by the proposed data

aggregation scheme.

The CPDA scheme, sensor nodes are formed randomly into

clusters. Within each cluster, our design leverages algebraic

properties of polynomials to calculate the desired aggregate

value. At the same time, it guarantees that no individual

node knows the data values of other nodes. The intermediate

aggregate values in each cluster will be further aggregated

(along an aggregation tree) on their way to the data sink.

The rest of the paper is organized as follows. Section II

summarizes the related work. Section III describes the problem

definition for data aggregation in wireless sensor networks.

Section IV provides our algorithm for private data aggregation.

Section V evaluates the proposed schemes. We summarize our

ndings and layout future research directions in Section VI.

II. RELATED WORK

In typical wireless sensor networks, sensor nodes are usually

resource-constrained and battery-limited. In order to save

resources and energy, data must be aggregated to avoid over-

whelming amounts of trafc in the network. There has been

extensive work on data aggregation schemes in sensor net-

works, including [1], [2]. These efforts share the assumption
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that all sensors are trusted and all communications are secure.

Work presented in [3], [4] investigates secure data aggregation

schemes in the face of adversaries who try to tamper with

nodes or steal the information.

To reduce computational overhead, Girao et al. [5] and

Castelluccia et al. [6] proposeusing homomorphic encryption

ciphers, which allow efcient aggregation of encrypted data

without decryption involved in the intermediate nodes. Though

these schemes are efcient to preserve data privacy in data

aggregation, they do not protect the the trend of private data

of a node from being known by its neighboring nodes. This

is because when the neighboring nodes can always overhear

the sum of the private data and an xed unknown number. In

contrast, the private data aggregation schemes we present in

this paper ensures that no trend about private data of a sensor

node is released to any other nodes.

In [7], the authors address the problem of data gathering and

compression at relay nodes by using the theory of concave

costs applied to single source aggregation. The authors develop

an elegant algorithm that finds good trees that simultaneously

maximize several concave cost functions of interest. Their

model is significantly different from ours in the sense that

their setting assumes information sources supply a constant

amount of information. Moreover, their model does not take

into account possible collaborations among nodes.

TAG [8] proposes the tag approach for sensor networks with

Mote nodes. It assumes that if a node A listens node B then

node B also listens node A. This may not be true always.

The spanning tree needs to be created for energy efcient

routing of messages. The root node starts the broadcast by

sending a message with level 0 and its sensor Id. All nodes

hearing the message increase the level eld attach their id and

broadcast it again. They select the source of the message as

their parent.The process continues down the tree.

The TAG offers a lot of advantages, saves energy, minimizes

the number of messages transfer, use of epoch allows nodes to

sleep during idle time thereby saving energy. In addition, fixed

tree structures also have the long stretch problem. A stretch

of two nodes u and v in a tree T on a graph G is the ratio

between the distance from node u to v in T and their distance

in G. Long stretch implies that packets from adjacent nodes

have to be forwarded many hops away before aggregation.

This problem has been studied as Minimum Stretch Spanning

Tree (MSST) and Minimum Average Stretch Spanning Tree

(MAST) [9].

In [10], the authors introduce the cluster based LEACH

algorithm. In their model, the cluster head nodes compress

data arriving from nodes that belong to the respective cluster,

and send an aggregated packet to the base station. The work in

[9] introduces the PEGASIS algorithm, that uses the energy X

delay metric over the routing tree; their algorithms find chains

of nodes instead of clusters.

In-networking processing can signicantly improve the scalabil-

ity and lifetime of microsensor networks. At each sensor, the

local raw data is rst combined with partially processed data

delivered from sensors farther away from the sink, and then

the aggregated result is transmitted to the sensor closer to the

sink or the sink itself for further processing. Intuitively, data

is routed along a reversed mul- ticast tree with the sink as the

root. Data aggregation hap- pens at each non-leaf node, which

summarizes the outputs based on the aggregation function

(SUM, AVG, MEAN, MAX, etc.) from all sensors in the

subtree rooted at it- self and transmits the aggregated data

to its parent. This process is termed data-centric routing [11],

[12].

III. PROBLEM DEFINITION

A. Sensor Networks and the Data Aggregation Model A

sensor network is modeled as a connected graph G(V, E),

where sensor nodes are represented as the set of vertices’s

V and wireless links as the set of edges E. The number of

sensor nodes is dened as |V | = N .

A data aggregation function is dened as y(t)=
f(d1(t), d2(t), , dN (t)), where di(t) is the individual

sensor reading at time t for node i. Typical functions of f

include sum, average, min, max and count. If di(i = 1, , N)
is given, the computation of y at a query server (data sink)

is trivial. However, due to the large data traffic in sensor

networks, bandwidth constraints on wireless links, and large

power consumption of packet transmition1 , data aggregation

techniques are needed to save resources and power.

In this paper, we focus on additive aggregation functions,

ΣN
i=1

di(t). It is worth noting that using additive aggregation

functions is not too restrictive, since many other aggregation

functions, including average, count, variance, standard

deviation and any other moment of the measured data, can

be reduced to the additive aggregation function sum.

IV. SYSTEM DESIGN

A. Requirements of Private Data Aggregation

Protecting the data privacy in many wireless sensor network

applications is a major concern. The following criteria summa-

rize the desirable characteristics of a private data aggregation

scheme:

Privacy : Each nodes data should be only known to itself.

Furthermore, the private data aggregation scheme should be

able to handle to some extent attacks and collusion among

compromised nodes. When a sensor network is under a

malicious attack, it is possible that some nodes may collude

to uncover the private data of other node(s). Furthermore,

wireless links may be eavesdropped by attackers to reveal

private data. A good private data aggregation scheme should

be robust to such attacks.

Efficiency : The goal of data aggregation is to reduce the

number of messages transmitted within the sensor network,

thus reduce resource and power usage. Data aggregation

achieves bandwidth efciency by using in-network processing.

In private data aggregation schemes, additional overhead is

introduced to protect privacy. However, a good private data

aggregation scheme should keep that overhead as small as

possible.

Accuracy : An accurate aggregation of sensor data is desired,

with the constraint that no other sensors should know the exact

value of any individual sensor. Accuracy should be a crite-

rion to estimate the performance of private data aggregation

schemes.
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Fig. 1: Formation of Cluster.

B. Cluster-based Private Data Aggregation (CPDA)

In this section, we present private data aggregation protocols

focusing on additive data aggregation called Cluster-based

Private Data Aggregation(CPDA). It consists of three phases:

cluster formation, cal- culation of the aggregate results within

clusters, and cluster data aggregation.

1) Formation of Clusters: The rst step in CPDA is to

construct clusters to perform intermediate aggregations. We

propose a distributed protocol for this purpose. The cluster

formation procedure is illustrated in Figure 1. A query server

Q triggers a query by a HELLO message. Upon receiving the

HELLO message, a sensor node elects itself as a cluster leader

with a probability pc , which is a preselected parameter for

all nodes. If a node becomes a cluster leader, it will forward

the HELLO message to its neighbors; otherwise, the node

waits for a certain period of time to get HELLO messages

from its neighbors, then it decides to join one of the clusters

by broadcasting a JOIN message. As this procedure goes on,

multiple clusters are constructed.

2) Calculation within Clusters: The second step of CPDA

is the intermediate aggregations within clusters. To simplify

the discussion, we use a simple scenario, where a cluster

contains three members: A, B, and C. a, b and c represent

the private data held by nodes A, B and C, respectively. Let

A be the cluster leader of this cluster. Let B and C be cluster

members. Our privacy-preserving aggregation protocol based

on the additive property of polynomials. Figure 2 illustrates the

message exchange among the three nodes to obtain the desired

sum without releasing individual private data. First, nodes

within a cluster share a common (non-private) knowledge of

non-zero numbers, refer to as seeds, x, y, and z,

which are distinct with each other (as shown in Figure 2(a)).

Then node A calculates

vA
A = a + rA

1
x + rA

2
x2,

vA
B = a + rA

1
y + rA

2
y2,

vA
C = a + rA

1
z + rA

2
z2

where rA
1

and rA
2

are two random numbers generated by node

A, and known only to node A. Similarly, node B and C

calculate vB
A , vB

B , vB
C and vC

A , vC
B , vC

C independently as:

Node B:

vA
A = a + rA

1
x + rA

2
x2,

vA
B = a + rA

1
y + rA

2
y2,

vA
C = a + rA

1
z + rA

2
z2

Node C:

vA
A = a + rA

1
x + rA

2
x2,

vA
B = a + rA

1
y + rA

2
y2,

vA
C = a + rA

1
z + rA

2
z2

Then node A encrypts vA
B and sends to B using the shared

key between A and B. It also encrypts vA
C and sends to

C using the sharing key between A and C (Figure 2(b)).

Similarly node B encrypts and sends vB
A to A and vB

C

to C; node C encrypts and sends vC
A to A and vC

B to B.

When node A receives vB
A and vC

A , it has the knowledge

of vA
A = a + rA

1
x + rA

2
x2, vB

A = b + rB
1

x + rB
2

x2 and

vC
A = c + rC

1
x + rC

2
x2 .

Next, node A calculates assembled value FA =
vA

A + vB
A + vC

A = (a + b + c) + rx
1

+ r2x
2 , where

r1 = rA
1

+ rB
1

+ rC
1

and r2 = rA
2

+ rB
2

+ rC
2

. Similarly node

B and C calculate their assembled values

FB = vA
B + vB

B + vC
B = (a + b + c) + r

y
1

+ r2y
2,

FC = vA
C + vB

C + vC
C = (a + b + c) + rz

1
+ r2z

2

respectively. Then node B and C broadcast FB and FC to

the cluster leader A (Figure 2(c)). Then the cluster leader A

can deduce the aggregate value (a + b + c). This is because

x, y, z, FA, FB , FCare known to A.

It is necessary to encrypt vA
B, vb

C , vB
A , vB

C , vC
A , and vC

B . For

example, if node C overhears the value vB , then C knows

vA
B, vA

C , and FA , then C can deduce vA
A = FAvA

BvA
C , and

further it can obtain a ifx, vA
A , vA

B, vA
Care known. However, if

node A encrypts vA
B and sends it to node B, then node C

cannot get vA
B . With only va

C , FA and xfrom node A, node

C cannot deduce the value of a. However, if nodes B and C

collude by releasing As information (vA
B and vA

C)to each other,

then As data will be disclosed. To prevent such collusion, the

cluster size should be large. In a cluster of size m, if less than

(m − 1) nodes collude, the data wont be disclosed.

3) Cluster Data Aggregation: A common technique for

data aggregation is to build a routing tree. We implement

CPDA on top of the TAG Tiny AGgregation [9] protocol. Each

cluster leader routes the derived sum within the cluster back

towards the query server through a TAG routing tree rooted at

the server.

4) Discussions on Parameter Selection in CPDA: In CPDA,

a larger cluster size introduces a larger computational over-

head. However, a larger cluster size is preferred for the sake

of improved privacy under node collusion attacks. In CPDA,

we should guarantee a cluster size m ≥ 3. Generally, lets

dene mc as the minimum cluster size. We should set mc ≥ 3.

Next, we discuss how to ensure every cluster has a cluster

size larger than mc , and how to tune parameter pc to reduce
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communication overhead in cluster formation phase.

If a cluster Ci has a size smaller than mc, (|Ci| < mc), the

cluster leader of Ci needs to broadcast a merge request to join

another cluster.

V. EVALUATION

In this section we evaluate the private-preserving data

aggregation schemes presented in this paper. We evaluate

how our schemes perform in terms of privacy-preservation,

efciency, and aggregation accuracy. We use TAG, a typical

data aggregation scheme as the baseline. Since the design

of TAG does not take privacy into consideration, no data

privacy protection is provided. We only use it to evaluate

the efciency and aggregation accuracy compared with our

proposed schemes.

A. Privacy-preservation Analysis of CPDA

In the CPDA scheme, private data may be disclosed to

neighbors only when the sensor nodes exchange messages

within the same cluster. Given a cluster of size m, a node

needs to send m1 encrypted messages to other m 1 members

within the cluster. Only if a node knows all m 1 keys of

a given member, can it crack the private data of the member.

Otherwise, the private data cannot be disclosed. Consequently,

P(q) is estimated as

P (q) = Σdmax

k=mc

P (m = k)(1 − (1 − qk−1)k)
where dmax is the maximum cluster size. mc is the required

minimum cluster size. P (m = k) represents the probability

that a cluster size is k.

B. Communication Overhead

CPDA use data-hiding techniques and encrypted communi-

cation to protect data privacy. This introduces some commu-

nication overhead. In order to investigate bandwidth efciency

of these schemes, we implemented CPDA in ns2 on top of the

data aggregation component of TAG. We did extensive sim-

ulations and collected results to compare these two schemes

together with TAG (no privacy protection). In our experiments,

we consider networks with 600 sensor nodes. These nodes are

randomly deployed over a 400meters X 400meters area. The

transmission range of a sensor node is 50 meters and data rate

is 1 Mbps.

At the beginning of each simulation, a query is delivered from

the query server to the sensor nodes. Similar to TAG, the query

species an epoch duration E, which is the amount of time for

the data aggregation procedure to nish. Upon receiving such

a query, a parent node on the aggregation tree subdivides the

epoch such that its children are required to deliver their data

(protected data in CPDA, or unprotected data in TAG) in this

parent-dened time interval.

C. Accuracy

In ideal situations when there is no data loss in the network,

CPDA should get 100 percent accurate aggregation results.

However, in wireless sensor networks, due to collisions

over wireless channels and processing delays, messages may

get lost or delayed. Therefore, the aggregation accuracy is

affected. We dene the accuracy metric as the ratio between

the collected sum by the data aggregation scheme used and

the real sum of all individual sensor nodes. A higher accuracy

value means the collected sum using the specic aggregation

scheme is more accurate. An accuracy value of 1.0 represents

the ideal situation.

Figure 3 shows the communication overhead of TAG, CPDA

with pc = 0.3 under different epoch durations. We use the

total number of bytes of all packets communicated during

the aggregation as the metric. Each point in the gure is the

average result of 50 runs of the simulation. In each run, one

randomly generated sensor network topology is used. The

vertical line of each data point represents the 95 percent

condence interval of the data collected.

Simulation results can be explained by analyzing the number

of exchanged messages in each scheme. In TAG, each node

needs to send 2 messages for data aggregation: one Hello

message to form an aggregation tree, and one message

for data aggregation. In our implementation of CPDA, a

cluster leader sends roughly 4 messages and cluster members

sends 3 messages for private data aggregation. Accordingly,

4pc + 3(1 − pc) = 3 + pc is the average number of messages

sent by a node in CPDA. Thus, the message overhead in

CPDA is less than twice as that in TAG.

Now let us further study the effect of pc on the communication

overhead in CPDA. Figure 4 shows the result with

pc = 0.1, 0.2, 0.3 respectively. As we can see, the larger the

pc value, the larger the communication overhead. It is very

interesting to notice that when pc = 0.1, communication

overhead is much lower than TAG. This is because when pc

is too small, many nodes cannot be covered due to insufcient

number of cluster leaders.

Figure 5 shows the accuracy of TAG, CPDA (with pc = 0.3)

from our simulation. Here we have two observations. First,

the accuracy increases as the epoch duration increases. Two

reasons contribute to this: 1) With a larger epoch duration,

the data packets to be sent within this duration will have less
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Fig. 4: Communication overhead of CPDA with respect to pc.

chance to collide due to the increased average packet sending

intervals; 2) With a larger epoch duration, the data packets will

have a better chance of being delivered within the deadline.

The second observation is that TAG has better accuracy than

CPDA. That is because without the communication overhead

introduced by privacy-preservation, there will be less data

collisions.

VI. CONCLUDING REMARKS

Providing efficient data aggregation while preserving data

privacy is a challenging problem in wireless sensor networks.

Many civilian applications require privacy, without which

individual parties are reluctant to participate in data collec-

tion. In this paper, we propose aggregation scheme CPDA,

focusing on additive data aggregation functions. We compare

the performance of our presented schemes to a typical data

aggregation scheme TAG. Simulation results and theoretical

analysis show the efficacy of our scheme. Our future work in-

cludes designing private-preserving data aggregation schemes

for general aggregation functions.
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