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Abstract—In this paper, we use Generalized Hamiltonian 

systems approach to synchronize a modified sixth-order Chua’s 

circuit, which generates hyperchaotic dynamics. Synchronization is 

obtained between the master and slave dynamics with the slave being 

given by an observer. We apply this approach to transmit private 

information (analog and binary), while the encoding remains 

potentially secure. 

Keywords—hyperchaos synchronization; sixth-order Chua’s 

circuit; observers; simulation; secure communication.

I. INTRODUCTION

OWADAYS, information transmission plays a crucial role, 

where an ever-growing capacity for communication 

services are required. Two of the major requirements in 

communication systems are privacy and security. 

Synchronization of chaotic systems, see e.g. [1]-[9] has been 

greatly motivated by the possibility of information encoding 

by using a chaotic carrier. Firstly explored with electronic 

circuits, see e.g. [10]-[13], where a small signal (the 

confidential information) was added to a chaotic voltage and 

transmitted to a receiver circuit. 

If chaotic synchronization is achieved between transmitter and 

receiver circuits, then with the chaotic carrier itself, and 

subtraction of the synchronized signal from the transmitted 

signal (carrier plus information signal) results in the recovery 

of the information. 

From synchrony of chaotic systems, there is opened the 

potential application of this principle to construct systems for 

encrypt that substitute the complicated conventional 
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algorithms, in order to transmit private information of a safe 

way. Some techniques of chaotic communication have 

proposed for this end: additive masking [10], commutation 

between two chaotic attractors [14], parametric modulation 

[15], etc. Nevertheless, some posterior works have showed 

that these techniques have a degree of slightly reliable safety 

([16], [17]). Recently some methods to increase the 

complexity of the dynamics of the chaotic systems have been 

proposed to do more difficult the information identification. 

For example, in [18] is used Hamiltonian forms and observer 

to synchronize two unidirectional coupled hyperchaotic 

Chua’s circuits, in [19] with Chua’s oscillator with time-delay, 

and in [20] with Chua’s circuit generating multi-scroll 

attractors.

The aim of this paper is study the encoding, transmission, 

and decoding of confidential information, in particular, analog 

and binary messages. This objective is achieved by 

synchronizing the Chua’s of sixth-order via Hamiltonian form 

and observer design. We show that the proposed approach is 

indeed suitable to transmit information encoding. 

The rest of this paper is arranged as follows: in Section II a 

summary on synchronization of chaotic systems in 

Generalized Hamiltonian forms is given. In Section III, the 

hyperchaotic Chua’s circuit (sixth-order) is described. In 

Section IV, the synchronization of two hyperchaotic Chua’s 

circuits is shown. In Section V, stability conditions are 

presented. In the Section VI an application to encoding, 

transmission, and decoding is given. Finally, in Section VII 

some concluding remarks are given. 

II. CHAOTIC  SYNCHRONIZATION  VIA  GENERALIZED 

HAMILTONIAN SYSTEMS

Consider the following n-dimensional system 

ntxxfx )(),(  (1) 

which represent a model exhibiting hiperchaotic behavior. 

Following the approach provided in [Sira-Ramirez y Cruz-

Hernández, 2001], many physical systems described by Eq. 

(1) can be written in “Generalized Hamiltonian” canonical 

form, 

,),()()( nxx
x

H
x

x

H
xx FSJ   (2) 

where H(x) denotes a smooth energy function which is 

globally positive definite in 
n

. The gradient vector of H, 

denoted by xH , is asumed to exist everywhere. We use 
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quadratic energy function xxxH T
M)2/1()(   with M being a 

constant, symmetric positive definite matrix; and xH =M .

The matrices, J( ) and S( ) satisfy, for all x � n, the 

properties: J( ) + J T( ) = 0 and S( ) = ST( ). The vector field

J( ) xH exhibits the conservative part of the system and it 

is also referred to as the workless part, or work-less forces of 

the system; and S(x)  depicting the working or 

nonconservative part of the system. For certain systems, S( ) is 

negative definite or negative  semidefinite. Thus, the vector 

field is considered as the dissipative part of the system. If, on 

the other hand, S( ) is positive definite, positive semidefinite, 

or indefinite, it clearly represents, respectively, the global, 

semi-global, and local destabilizing part of the system. In the 

last case, we can always (although nonuniquely) descompose 

such an indefinite symmetric matrix into the sum of a 

symmetric negative semidefinite, matrix R( ) and a symmetric 

positive semidefinite matrix N( ). Finally, F( ) represents a 

locally destabilizing vector field. 

In the context of observer design, we consider a special class

of Generalized Hamiltonian forms with linear output map y(t),

given by 
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 (3) 

where S is a constant symmetric matrix, not necessarily of 

definite sign.  The matrix I is a constant skew symmetric 

matrix. The matrix C is a constant matrix.  

A nonlinear state observer for the Generalized Hamiltonian 

form (3) is given by 

m
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K  is the observer gain. 

The state estimation error, defined as )(ˆ)()( txtxte  and the 

output estimation error, defined as )()()( ttyte y
 are 

governed by 
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where the vector eH /  actually stands, with some abuse 

of notation, for the gradient vector of the modified energy 

function, exxexHxHeeH MM )ˆ(ˆ///)( .

We set, when needed, WSI

Definition 1 (Chaotic synchronization) ([22]) The slave system (4)

(nonlinear state observer) synchronizes with the chaotic 

master system in the special class of Generalized Hamiltonian 

form (3), if 

0)(ˆ)(lim txtx
t

(6)

no matter which initial conditions )0(x and )0(x̂  have.

A necessary and sufficient condition for global asymptotic 

stability to zero of the estimation error (5) is given by the 

following theorem. 

Theorem 1 ( [6]) The state x(t) of the nonlinear system (3) can 

be globally, exponentially, asymptotically estimated, by the 

state )(ˆ tx of the observer (4) if and only if, there exists a 

constant matrix K such that the symmetric matrix

)(2
2

1 TT

TT

KKS

KKKK

CC

CSCSCWCW

is negative definite. 

III. HYPERCHAOTIC CHUA CIRCUIT (SIXTH-ORDER)

Consider the modified sixth-order Chua’s circuit described by 

[Suykens et al., 1997]: 

66
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 (7) 

with nonlinear function given by 
12

1

1112
1

1121 ))(()(
n

i

iiiin cxcxmmxmxh  (8) 

where n = 3, Kp = 0.01,  = 9,  = 14.28, m = [0.9/7, -3/7, 

3.5/7, 2.7/7, 4/7, -2.4/7], and c = [1, 2.15, 3.6, 6.2, 9],  the 

modified sixth-order Chua’s circuit (7)-(8) exhibits 

hyperchaotic behavior, with two positive Lyapunov 

exponents. Figure 1 shows the attractors x1 vs x2, x1 vs x3, x1 vs

x5, and x1 vs x6.
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Fig.1. Different hyperchaotic attractors: (a) x1 vs x2,  (b) x1 vs 

x3, (c) x1 vs x5 (c), and (d) x1 vs x6.

IV. SYNCHRONIZATION OF TWO HYPERCHAOTIC CHUA’S

CIRCUITS

Taking as Hamiltonian energy function to 
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The modified sixth-order Chua’s circuit (7)-(8) in 

Hamiltonian form (master circuit according to Eq. (3)) is 

given by 
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The destabilizing vector field calls for x1 (t) and x4 (t) to be 

used as the outputs of the master circuit (10). The matrices C,

S, and I are given by 
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The nonlinear state observer (slave circuit) for 
(10) is designed as

,
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Where the error is .
ˆ

ˆ

44

11
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From (10) and (11) we have that the  synchronization error dynamics is 
governed by 
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One may now choose the observer gain K =(k1, k2, k3, k4, k5,

k6)
T  in order to guarantee asymptotic exponential stability to 

zero of the synchronization error )(ˆ)()( txtxte , as will be 

shown in next section.

V. STABILITY CONDITIONS

In this section, we examine the stability of the 

synchronization error (12) between the master (10) in 

Hamiltonian form and slave (11) nonlinear state observer.  

Invoking to Theorem 1 and applying the Sylvester’s criterion -

which provides a test for negative definite of a matrix- thus, 

we have that the matrix 2[S-(1/2)(KC+C T K T)] will be 

negative definite matrix, if we choose k1, k2, k3, k4, k5, and k6

such that the following condition are satisfied:
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For next numerical simulations, we have used the gains k3, k 4

and k 6 are equal to zero, k 1 = 1, k2 = 2, and k 4 = 1.82. The 

initial conditions: x (0) = (0.1, 0.1,0, 0.1,0.1,0) and  x(0) = (0, 

0, 0, 0, 0, 0). Fig. 2 shows the synchronization between master 

(10) and slave (11) with sixth-order Chua’s circuits. 

Fig. 2. Synchronization between hyperchaotic Chua’s circuits (10) 

and (11). 

VI. APPLICATION  TO  ENCODING,  TRANSMISSION,  AND 

DECODING

Synchronization of two six-order Chua’s circuits allows us 

to design secret communication systems, where the 

confidential information is hidden into the transmitted 

hyperchaotic signal. In this paper, we present two cases, 

encoding, transmission, and decoding of analog and binary 

signals. 

A. Trasmission of analog message 

Two channels are used to synchronize master and slave 

modified Chua’s circuits (10) and (11) via coupling 

hyperchaotic signals x1(t) and x4(t). Meanwhile, the other 

channel is used to transmit hidden message m(t) = 0.01 sin(t) 

(see Fig. 4), which is added to signal x3(t) of the transmitter 

Tx, the transmitted signal to receiver Rx is s(t). At the receiver 

end, the recovered message m’(t) is given.  

Fig. 4. Secret communication scheme to transmit analog messages. 

The information signal m(t) is added to channel x3(t) of the 

transmitter Tx (Fig.5a). The transmitted signal s(t) (Fig. 5b)) is 

received the receiver end Rx. The signal s(t) is subtracted to 

the output )(ˆ
3 tx generates in Rx, then we recovery the 

information )(' tm  (see Figure 5c).  Finally,  Fig. 5d shows the 

error between original and recovery messages.

Fig. 5. (a) Confidential message, (b) transmitted hyperchaotic signal, 

(c) recovered message, and (d) error between original and recovered 

messages. 

B. Transmission of binary message 

The binary message m(t) (see Fig. 6) is modulated by using 

the parameter . By commutating from  = 9 (for encoding a 
“0” bit) to ’ = 13 (for encoding a “1” bit). The state signals 

x1(t) and x4(t) are used to synchronize transmitter and receiver, 

moreover is possible to recovery the message using parametric 

commutation. This technique is based on if there exists 

synchrony or not.  

Fig. 6 Secret communication scheme to transmit binary messages. 
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Figure 7 shows the encoding, transmission, and decoding of 

binary signal. Fig. 7(a) shows the original binary message. 

Fig. 7(b) shows the hyperchaotic transmitted signal, and Fig. 7 

(c) shows the recovery binary message. 

Fig. 7. (a) Confidential message, (b) transmitted hyperchaotic signal, and (c) 

recovered message. 

VII. CONCLUSION

In this work, we have synchronized hyperchaotic dynamics 

in a modified sixth-order Chua’s circuit through the 

Generalized Hamiltonian forms and observer approach. Based 

on this synchronization property, it is achieved secret 

transmission of confidential information. In addition, has been 

shown the quality of the recovered information, and at the 

same time, we have increased the encryption security by using 

extremely complex dynamics. 

We overcame the low security objections against low 

dimensional chaos-based communication schemes, we 

confronted two problems: make the transmitted signal more 

complex, and reduce the redundancy in the transmitted signal. 

To achieve the first goal, it was necessary to use hyperchaos 

to generate very complex transmitted signals by using a 

modified sixth-order Chua’s circuit. 

To achieve the second goal, Generalized Hamiltonian forms 

and observer methodology for hyperchaos synchronization 

offers a very promising approach. The approach can be 

implemented on experimental setup, and shows great potential 

for actual communication systems in which the encoding is 

required to be secure. 
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