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Abstract—The cup method is applied for the measurement of 

water vapor transport properties of porous materials worldwide. 
However, in practical applications the experimental results are often 
used without taking into account some secondary effects which can 
play an important role under specific conditions. In this paper, the 
effect of temperature on water vapor transport properties of cellular 
concrete is studied, together with the influence of sample thickness. 
At first, the bulk density, matrix density, total open porosity and 
sorption and desorption isotherms are measured for material 
characterization purposes. Then, the steady state cup method is used 
for determination of water vapor transport properties, whereas the 
measurements are performed at several temperatures and for three 
different sample thicknesses.  
 

Keywords—Water vapor transport, cellular concrete, cup 
method, temperature, sample thickness.  

I. INTRODUCTION 
ATER vapor transport and storage in porous building 
materials significantly affect the buildings performance 

and durability. Condensed water vapor can cause for example 
serious damage to thermally insulated building envelopes, roof 
structures, etc. Highly humid interior environment of buildings 
is also accompanied by negative health effects, related 
especially do mould growth. On the other hand, dry 
environment is also not very convenient for building 
occupants because of respiratory problems. Therefore, 
building engineers and researchers must deal with the problem 
of water vapor transport within the porous structure of 
building materials, and investigate the material parameters 
characterizing water vapor transport.   

Diffusion of water vapor in air is presently well understood 
phenomenon. On the other hand, in porous building materials 
diffusion is more complicated, and while it takes place in air 
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(in the pore space), it is impeded by the reduction of the 
accessible cross-section, adsorption effects on the pore walls 
and the tortuosity of the pore paths [1]. In modeling the water 
vapor transmission in porous building materials the methods 
of linear irreversible thermodynamics and linear theory of 
mixtures are usually employed. The simplest models applied 
in the practice reduce the generally n-component system to 
only two components, water vapor and the porous skeleton of 
the solid phase, and account for only one generalized 
thermodynamic force which is the gradient of either partial 
pressure or concentration of water vapor in the porous space 
[2]. We then have two relations for the flux of water vapor jv 
(kg/m2s) 
 

vv gradDj ρ⋅−=  ,                                                                  (1) 
 

vv gradpj ⋅−= δ  ,                                                                   (2) 
 
where ρv (kg/m3) is the partial density of water vapor, D (m2/s) 
the diffusion coefficient of water vapor in the porous material, 
pv (Pa) the partial pressure of water vapor, δ (s) the water 
vapor diffusion permeability. 

Assuming water vapor to be an ideal gas, we can write the 
equation of state in the form 

 

M
RTp v

v
ρ

=  ,                                                                          (3) 

             
where T (K) is the temperature, R the universal gas constant, 
M is the molar mass of water vapor. Under isothermal 
conditions we obtain from (1)-(3) the following relation 
between the water vapor diffusion coefficient and water vapor 
diffusion permeability 

 

Mn
RTD δ=  .                                                                           (4) 

             
Besides D and δ several other coefficients are used, for the 

sake of better clarity for the building practice. Among them, 
the water vapor diffusion resistance factor µ (-) defined as [3] 

 

D
Da=μ

                                                                              (5) 
 

is the most often used material parameter for description of 
water vapor transport properties of building components as 
thermal insulation boards, vapor-tight layers etc. Here,          
Da (m2/s) is water vapor diffusion coefficient in air.  
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The above given procedure for determination of water 
vapor transport properties was originally derived for 
isothermal conditions only. However, the building envelopes 
are worldwide exposed to severe weather fluctuation, whereas 
the variation of temperature between + 40°C and -30°C is a 
realistic possibility. Temperature is one of the main forces for 
moisture movement and influences sorption characteristics of 
the both organic and inorganic building materials [4, 5]. Quite 
naturally it is to be expected that temperature variations have 
distinct effects on the moisture management strategy of the 
building envelopes. Increase of temperature induces greater 
mobility in the water molecules in any form of moisture and it 
is widely accepted that water vapor transmission through any 
material is a function of temperature [6, 7]. Under non-
isothermal conditions, such as those prevailing in real 
environment of buildings, diffusion of water vapor may be 
enhanced as compared to isothermal conditions [8, 9]. Two 
main phenomena are responsible for this enhancement as 
described by Philip and deVries [10]. 

Normally, diffusive transport of water vapor is obstructed 
by the presence of liquid islands in the pore throats and 
diffusion is reduced at higher saturations. However, under a 
temperature gradient, a vapor pressure gradient develops in the 
gas phase and causes water to evaporate from one side of the 
liquid island, and diffuse in the gas phase to a liquid island of 
lower temperature where it condenses. Water flows through 
the liquid island as a result of differences in meniscus 
curvature between the two sides. The evaporation-
condensation process repeats itself on the other side of the 
liquid island and the result is an enhanced diffusive flux 
through the medium. See [10] for the schematic description of 
the process.  

The second enhancement mechanism proposed by Philip 
and deVries relates to the use of an average temperature 
gradient in Fick’s law. The thermal conductivity of the solid 
phase is greater than that of the liquid phase, which in turn is 
greater than the thermal conductivity of the air phase. 
Therefore, the mean temperature gradient averaged over all 
three phases is smaller than the temperature gradient across 
the vapor-filled pores. Water vapor moves primarily through 
the air spaces where the higher local temperature gradient 
provides a driving force for the diffusion of water vapor. 

Although the cup method was originally proposed for 
isothermal conditions only, it can be adapted for temperature 
dependent water vapor transport properties measurement 
easily. In [4] authors reported about application of “modified 
cup method“ for measurement of temperature dependency of 
water vapor transmission properties  of gypsum fireboard. 
They introduced simple and versatile technique that allows the 
user to vary the temperature condition of the cup test without 
altering the relative humidity. The five temperature levels 
under consideration were between 7°C and 43°C. The 
obtained results demonstrate that there is a steady exponential 
increase of water vapor transmission rate through both the 
materials tested with temperature. Since the applicability of 
the “modified cup method” was proved, we followed the 
similar procedure in our experiment.  

II.  EXPERIMENTAL 

A. Studied Material 
The measurements were performed on cellular concrete 

samples coming from company H+H Ltd., Czech Republic; its 
official product label is P2- 350.  

B. Determination of Basic Material Properties 
The experimental assessment of matrix density ρmat (kg/m3), 

bulk density ρb (kg/m3) and total open porosity ψ (-) was done 
at first, in order to characterize the studied material. The 
experiments were done on cubic samples of side dimension 50 
mm. The particular samples were firstly dried, and their 
dimensions and mass were precisely measured. In this way, 
the bulk density of the brick body was accessed. The matrix 
density was measured by helium pycnometry using the 
apparatus Pycnomatic ATC [11]. On the basis of the 
knowledge of the matrix density and bulk density, the total 
open porosity of the brick body was calculated [12]. 

C. Measurement of Sorption and Desorption Isotherms 
The dynamic device DVS-Advantage (Surface 

Measurement Systems Ltd.) was used for the measurement of 
adsorption isotherms of several types of building materials in 
this paper. The instrument measures the uptake and loss of 
vapor gravimetrically, using highly precise balances having 
resolution of 0.1 μg.  The partial vapor pressure around the 
sample is generated by mixing the saturated and dry carrier 
gas streams using electronic mass flow controllers [13]. The 
humidity range of the instrument is 0 – 98% with accuracy ± 
0.5% at temperatures 5 – 60°C.  

Before the measurements, the sample of studied material 
was dried at first, and maintained in desiccator during cooling.  
Then, the sample was put into the climatic chamber of the 
DVS-Advantage instrument and hung on the automatic 
balances in the special steel tube.  The experiment was 
performed at 25°C. The sample was exposed to the following 
partial water vapor pressure profile: 0; 10; 20; 30; 40; 50; 60; 
70; 80; 90 and 98% relative humidity. During the experiment, 
the DVS-Advantage instrument was running in dm/dt mode 
(mass variation over time variation) to decide when 
equilibrium was reached.  A fixed dm/dt value of 0.0000% per 
min was selected for all relative humidity segments. This 
criterion permits the DVS software to automatically determine 
when equilibrium has been reached and complete a relative 
humidity step. When the rate of change of mass fell below the 
threshold over a determined period of time, the relative 
humidity set point proceeded to the next programmed level 
[14]. 

D. Cup Method 
The sample size for the cup experiments was 100 x 100 

mm, whereas the samples thicknesses were 20, 30, and 50 
mm. The measurement was carried under isothermal 
conditions at temperature levels 10, 20, 30, 40, 50°C. It was 
based on one-dimensional water vapor diffusion and 
measuring the diffusion water vapor flux through the 
specimen and measuring partial water vapor pressure in the air 
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