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Second Sub-Harmonic Resonance in Vortex-Induced
Vibrations of a Marine Pipeline Close to the Seabed
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Abstract—In this paper, using the method of multiple scales, the
second sub-harmonic resonance in vortex-induced vibrations (VIV)
of a marine pipeline close to the seabed is investigated based on a
developed wake oscillator model. The amplitude-frequency equations
are also derived. It is found that the oscillation will increase all the
time when both discriminants of the amplitude-frequency equations
are positive while the oscillation will decay when the discriminants
are negative.
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1. INTRODUCTION

IPELINES play an important role in the offshore and

subsea engineering to transport oil and gas. To understand
the VIV characteristics of a pipeline close to a plane boundary,
a large number of experimental tests were performed and the
results show that the gap-to-diameter ratio plays an important
effect in both amplitudes and resonance ranges of the vibrating
pipeline [1]-[5]. Moreover, using various Computational Fluid
Dynamics (CFD) methods, the vortex has been studied [6]-[9],
and the VIV is also undertaken numerically [10]-[12].
However, such methods are limited by their extensive
computational requirements for simulations at realistic
Reynolds numbers [13].

To investigate the vortex shedding past a circular cylinder
near a wall, various models and methods were used, such as a
new wake oscillator model proposed by [14], two-dimensional
standard high Reynolds number k—¢ turbulence model [15],
Arbitrary Lagrangian Eulerian (ALE) scheme [16] and so on.
Especially, the model by Jin and Dong that extends the classic
Van der Pol equation in the wake oscillator model is capable
of capturing the different vortex shedding modes and
predicting variations of vibration amplitudes with the reduced
velocity at a much lower cost than that with other models.
Vibration characteristics of the cylinder for a range of gap
ratios were systematically studied by solving the model
equations numerically.

In this paper, the focus is on the second sub-harmonic
resonance in VIV of a pipeline close to the Seabed based on
the wake oscillator model of Jin and Dong [14].
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II. THE ANALYTICAL SOLUTION

A. Equations of Motion

To study the VIV of a marine pipeline close to the seabed,
the model of an elastically supported rigid circular cylinder of
diameter D, subjected to a stationary and uniform flow with
the free stream velocity U, is used as depicted in Fig. 1.
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Plane boundary

Fig. 1 Spring supported cylinder close to a plane boundary subjected
to current [14]

The general structure response equation in a plane cross-
flow is usually formulated in terms of a oscillator variable q as
[17]:

d? d 1
med—tjzl+(c+prZQf)d—3:+ky=ZpU2DCL0q. (1

The fluid wake effect around a cylinder with the influence
of'a boundary can be given as [14]:

2%q
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S+ 20:(¢2 - DI+ Qg + af, Qg2 = BA/D S (2)
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where y is the displacement of the cylinder in the cross-flow
direction with respect to time t, Qis the vortex-shedding
angular frequency, Qr = 2rS,U/D, the mass for unit length of
the cylinder, m, is taken into account both the mass of
structure m and the fluid-added mass m; = mcg, in which C,
is the added mass coefficient, p is the density of the fluid, U is
the flow velocity in the free stream, D is the diameter of the
cylinder, k is a spring constant and c is the structure damping
¢ = 2m,&Q, and § is the reduced damping, Q; is the structural
angular frequency Qg = (k/m,)%>. The damping of flow
y = Cp/4nS, and the drag coefficient €, = Cpo(1 + 2y/D)S,U,,
in whichCp, is reference drag coefficient, and the reduced
flow velocity U, = U/f,D. a and 8 are the coefficients and the
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functions of mass ratio and gap ratio [14],q=2C./Cy, is a
flow variable that is commonly referred to as a reduced vortex
lift coefficient in which Cj, is the lift coefficient and C, is the
reference lift coefficient, usually taken as a constant of 0.3.
€ and A are parameters which need to be determined
empirically and have typical values A = 0.3 and 4 = 12 [17].
For the ease of computation, the equations of motion can be
non-dimensionalised with the following scaled quantities:

y*=y/D;m' = 4m/mpD*w* = w/wg; Q" = Qp/ws ¢ =
c/(mwe); T = wet

where w, is a chosen arbitrary frequency. Introducing these
quantities into (1) and (2) gives the following on-dimensional
equations :

[ dy ? ydy dy
1-'2 -2 2 w dt Cd'r (3)

+wy 1"1qu

d‘[z SO = -0 (% - 1)__0‘fn9fq +'BA drz )

where I} = Cyo/(4m3S°m) ; I = Cpo/(m2S;m), and all the
asterisks in (3)and (4) are omitted for simplicity.

B. Second Sub-Harmonic Solutions

Clearly, due to the presence of the quadratic and cubic
nonlinearity terms, it is not possible to obtain the exact
analytical solutions of (3) and (4). However, for primary
resonance approximate solutions may be obtained using the
Method of Multiple Scales. Distinguishing the quadratic items
from the other ones in (3) and (4) with a parameter € (¢ < 1),
(3) and (4) can be written as [18]:

ZI"ZQf Y _ e )

+ w? y= rlqﬂf _E['Z__ dt dt

2
49 O%q = —szlﬂfq

= + s/lﬂf— —eaf,Qrq® + ﬂA 2 (6)

Let T, = &™t, then the approximate solutions to (5) and (6)
can be expressed as:

y(r,e) =3, giyi(To:TpTz' e Tr) @)

q(r,e) =X, gl qi(To, Ty, Ty, oo, Ty) (®)

To study the Second Sub-harmonic Resonance, the non-
dimensional ~shedding frequency () (representing the
frequency of external forcing) is expressed with the non-
dimensional structural frequency w and a detuning parameter
o as:

Qr =2w+eo ©)

After substituting (7)-(9) into (5) and (6) and equating the
coefficients of i(i = 0,1) on the both sides of the equations,
the system is expanded into six coupled equations, which can
be solved sequentially:

&
Dyyo + w2y, = ADy’y, (10)
Dy*qo + w?qy = 4I1qow? (1
el
Do’y + w2y, = —=2D D1y, + 4I1q,w? + 4woqo — 4wDyy, —
8I,wyDoyo — cDoyo (12)
Do%qq + w2qq = —2DyD;qo — 4woqq + 2AwDoqo — 2I3w2qe% +

ADy*y; + 2ADoD;y, (13)

where DO,Dl,Dz,DOZ,Dlz represent the first and second order

. . . a . a . 2 _ aZ .
derivatives, respectively, and D, = P D, = a5 Do” =507
aZ
D2 =2
1 3T12

The general solutions of (10) and (11) can be written in the
form:

Yo = Ya(Ty)eW@+To 4+ ¥, (T))e@=MTo 4y, (T;)eo+MTo 4
Y, (Ty)el-97MTo (14

{w? + (g + iR2Y, (T,)e@+MTo 4 [2 +

(g — ih)2]Y,(T)e@MTo 4
W2 + (—g + ih)2]Y, (T)e9+MTo 4 [w2 4 (—g —
ih)Z]Y_b(Ti)e(_g_h)To} (15)

Qo = 4rq, Wz

where Y, and Y, are the complex conjugates of Y and Y},
respectively. Then, substituting (14) and (15) into (12) and (13)
gives:

Do*yy + (=3w? — 4Lw?A)D, yy + 4wy, = {-2(g +in)*Y, +
ZYa[w? + (g +ih)?1(g + ih)? — 4Lw(g + ih)?Y, —

c(g + in)3Y, — 2(g + i)Y, + 4waY,[w? + (g + ih)?] —
16w3h(g + i)Y, — 2[w? + (g + iR)2](g + ih)Y, —
16w3aY,[w? + (g + ih)?] + 8ALw3[w? + (g + ih)?](g +
i)Y, — BLW2A(g + ih)Y,'}e@HTo 4+ {—2(—g + ih)3Y, +
;Yb[w + (=g + ih)?](—g + ih)? — 4Lw(—g + ih)3Y, —

c(—g + in)3Y, — 2(—g + k)Y, + d4waY,[w? + (—g + ih)?] —
16w3hL(—g + iR)Y, — 2[w? + (—g + ih)?](—g + i)Y, —
16w3aY, [w? + (—g + ih)?] + 8ALw3[w? + (—g + ih)?](—g +
ih)Y, — 8L,w2A(—g + i)Y, } e C9+MTo 4 NST (16)

where NST represents other terms, and (") means derivative
with respect to time T;.

It is recognized that the terms related to e@*™To and
e(-9+iMTo have the secular properties, which can cause a
disproportionate increase in the relative magnitude of the
additional correction generated at this order of perturbation
[18]. In order to eliminate the secular properties of final
solution, the terms related toe@+"MTo and e(-9+iMTo i (16)
have to be set equal to zero, then the solutions of (17) and (18)
can be obtained:
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~2(g + i)Yy + ZYa[w? + (g + ih)?1(g + ih)? — 4Lw(g +
ih)3Y, — c(g + ih)3Y, — 2(g + ih)Y," + 4waoY, [w? +

(g +ih)?] — 16wW3hL(g + ih)Y, — 2[w? + (g + ih)?](g + ih)Y, —
16wiaY,[w? + (g + ih)?] + 8ALw3[w? + (g + ih)?](g +
ih)Y, — 8w?A(g + in)Y, =0 17

=2(=g +in)3Y," + %Yb w2 + (=g + in)?](—g + ih)? —
aLw(—g + ih)3Y, — c(—g + ih)3Y, — 2(—g + iRV, +
Awo Y, [w? + (=g + ih)?] — 16w3L(—g + ih)Y, — 2[w? +

(=g + i)?)(—g + b)Y, — 16L,w3aY,[w? + (—g + ih)?] +
8Anw3[w? + (=g + ih)?](—g + ih)Y, — 8Lw2?A(—g + ih)Y,,' =
0 (18)

It is convenient to express Y, and Yjas:
Y, =4, +i4; (19)
Y, =B, +iB; (20)

Then substituting (19) and (20) into (17) and (18) and
separating real and imaginary parts leads to:

My A, + My, A + MysA, + My, A; = 0 1)
My, A, + MypA;' + MysA; + MyyA, = 0 (22)
Ms,B,’ + Ms,B;' + Ms3B, + M3,B; = 0 (23)
My,B,’ + My,B;' + My3B; + My,B, = 0 (24)

The solutions of (21)-(24) can be expressed as:

A, = a,eMTt (25)
A; = q;eMT (26)
B, = b,e%2Tt 27
B; = bjet" (28)

Substituting (25)-(28) into (21)-(24), it can be obtained:

Mys Ay + Myz Miphy + M14] ar
Myidy + My My + Mg [ai] =0 (29)
M2y + Mys Mipd, + M14] [br] —0 (30)
Ma1dy + Myy  Maa2; + Masl Lb;
To get the trivial solutions,

Myjdy + My Miphy + Myg| _ 0 3D
My Ay + My, MyyAy + Mys

and
Mydp + My Miphy + Mus| _ 0 32)
Ma1Ady + My Mapdy + My

Then

(My; My, — MyyMy) A% + (Myy Mys + MysMyy — My, Moy —
My4Ma1) A1 + (My3Ma3 — M14Mas) = 0 (33)

(M3 Mz — M3;My1) 5% + (M33Mys + MazMyy — Mgy M,y —
M34My1)As + (M33My3 — M34Myy) = 0 (34)

The discriminants of the quadratic equations (33) and (34)
can be obtained:

Al = (MllMZS + M13M22 - M12M24 - M14M21)2 - 4(M11M12 -
M12M21)(M13M23 - M14M24) (35)

AZ = (M31M43 + M33M42 - M32M4—4 - 1'4341‘/141)2 - 4(M31M32 -
M32M41)(M33M43 - M34M44) (36)

If both of the discriminants are negative (4; <0 and
A, < 0), then there are no real roots of (33) and (34). In the
second sub-harmonic resonance in VIV of a marine pipeline
close to the seabed, it means that the oscillation will decay
with the increase of time. However, If both discriminants are
positive (4; > 0 and 4, > 0.), then there are two distinct
roots of (33) and (34). In the second sub-harmonic resonance
in VIV of a marine pipeline close to the seabed, it means that
the oscillation will increase all the time. In this case, the
attention has to be paid to the max allowable amplitude of the
pipeline. When the amplitude of the pipeline exceeds the
allowable one, the damage of pipeline will take place, which
may lead to a big loss.

III. CONCLUSION

The second sub-harmonic resonance in VIV of a pipeline

close to the seabed is studied using the wake oscillator method.

The main purpose of this work was to derive the amplitude-
frequency equation with regard to second sub-harmonic
resonance of the cylinder from a recently derived wake
oscillator model and solve the equation analytically using the
multiple scales method. Moreover, a method of predicting the
trend of oscillation is proposed, which may be helpful in the
engineering.

APPENDIX
Zy = 5w? —4nw?A

Z, = \/40w41“1A —9w* — 16I;2w*A?

= 2
Zy

d; =—
)
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h= < /c,lz +d,* - cz>/2

My, = —2(g° — 3gh*) — 8w?g — 2[(w? + g% — h*)g — 2gh?]
+8Aw?I g

M;, = 2(3g%h — h®) + 8w?h + 2[(w? + g2 — h®)h + 2g°?h]
— 8AW2I}h

My = = [W? + g7 = h)(g? = 1) - 4g°H]
—4hLw(g® — 3gh?) — c(g® — 3gh?)
+ 4wo(w? + g% — h?) — 16w3lg — 4w?cg
— 160w3I (w? + g2 — h?)
— 8wl [(w? + g% — h?)g — 2gh?]

20gh
My = T‘g(w2 +2g7 — 2h?) + 45w (3g%h — h?)

+ c(3g%h — h®) — 8ghwao + 16w3TLh + 4w?ch

+ 320wl gh
+8Aw3 I [(w? + g% — h®)h + 2g2h]

My, = =My, My = My, Myz = —Myy, Myy = My3

M3, = —=2(—g% + 3gh?) + 8w?g + 2[(W? + g% — h?)g + 2gh?]

—84w?lg

Ms, = 2(3g%h — h3) + 8w?h + 2[(w? + g% — h®)h + 2g2h]
— 8AW2T}h
g

Mss = ——[w? + g% = h*)(g” = k) — 4g°h’]
+4Lw(g® — 3gh?) + c(g® — 3gh?)
+ 4wao(w? + g2 — h?) + 16wl g + 4w?cg
—160w3r (w? + g2 — h?)
— 8Aw3n [((W? + g% — h?)g + 2gh?]
—20gh
May = —229% (w2 4 297 — 212) + 4Lw(3g%h — h?)

w

+ c(3g%h — h®) + 8ghwa + 16w3TLh + 4w?ch

— 320wl gh
+8Awi I [(w? + g% — h?)h + 2g2h]

My = —M3y, My = M3y, Myz = —M3y4, Myy = M3z
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