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functions of mass ratio and gap ratio [14], q ൌ ௅ܥ2 ⁄௅଴ܥ , is a 
flow variable that is commonly referred to as a reduced vortex 
lift coefficient in which ܥ௅ is the lift coefficient and ܥ௅଴ is the 
reference lift coefficient, usually taken as a constant of 0.3. 
ߝ	 and ܣ  are parameters which need to be determined 
empirically and have typical values ߣ ൌ 0.3 and	ܣ ൌ 12 [17]. 

For the ease of computation, the equations of motion can be 
non-dimensionalised with the following scaled quantities:  

 
∗ݕ ൌ y D⁄ ;	݉∗ ൌ 4݉ ⁄ଶܦߩߨ ∗ݓ ; ൌ w wୡ⁄ ; Ω௙

∗ ൌ Ω௙ wୡ⁄ ; ܿ∗ ൌ
c ሺmwୡሻ⁄ ; ߬ ൌ wୡt 

 
where wୡ  is a chosen arbitrary frequency. Introducing these 
quantities into (1) and (2) gives the following on-dimensional 
equations : 
 

ௗమ௬

ௗఛమ
൅	wଶy ൌ Ω௙ݍଵ߁

ଶ െ ଶ߁
Ω೑

మ

௪

ௗ௬

ௗఛ
െ ଶ߁2

Ω೑
మ

௪

௬ௗ௬

ௗఛ
െ ܿ

ௗ௬

ௗఛ
  (3)                

 
ௗమ௤

ௗఛమ
൅ Ω௙

ଶݍ ൌ െߣΩ௙ሺݍଶ െ 1ሻ ௗ௤
ௗఛ
െ ߙ ௡݂Ω௙ݍଶ ൅ ܣߚ ௗమ௬

ௗఛమ
    (4) 

 
where ߁ଵ ൌ C୐଴ ൫4ߨଷ ௧ܵ

ଶ݉൯⁄ ଶ߁ ; ൌ Cୈ଴ ሺߨଶ ௧ܵ݉ሻ⁄ , and all the 
asterisks in (3)and (4) are omitted for simplicity. 

B. Second Sub-Harmonic Solutions 

Clearly, due to the presence of the quadratic and cubic 
nonlinearity terms, it is not possible to obtain the exact 
analytical solutions of (3) and (4). However, for primary 
resonance approximate solutions may be obtained using the 
Method of Multiple Scales. Distinguishing the quadratic items 
from the other ones in (3) and (4) with a parameter ߝ	ሺߝ ≪ 1ሻ, 
(3) and (4) can be written as [18]: 

 
ௗమ௬

ௗఛమ
൅	wଶy ൌ Ω௙ݍଵ߁

ଶ െ ଶ߁ߝ
Ω೑

మ

௪

ௗ௬

ௗఛ
െ ଶ߁ߝ2

Ω೑
మ

௪

௬ௗ௬

ௗఛ
െ ܿߝ ௗ௬

ௗఛ
    (5) 

 
ௗమ௤

ௗఛమ
൅ Ω௙

ଶݍ ൌ െߝଶߣΩ௙ݍଶ
ௗ௤

ௗఛ
൅ Ω௙ߣߝ

ௗ௤

ௗఛ
െ ߙߝ ௡݂Ω௙ݍଶ ൅ ܣߚ ௗమ௬

ௗఛమ
  (6)  

            
Let T௡ ൌ  ௡߬, then the approximate solutions to (5) and (6)ߝ

can be expressed as:  
 

,ሺ߬ݕ ሻߝ ൌ ∑ ௜௡ߝ
௜ୀଵ ,௜ሺT଴ݕ Tଵ, Tଶ, … , T௡ሻ                      (7) 

 
,ሺ߬ݍ ሻߝ ൌ ∑ ௜௡ߝ

௜ୀଵ ,௜ሺT଴ݍ Tଵ, Tଶ, … , T௡ሻ                      (8)     
                                                     

To study the Second Sub-harmonic Resonance, the non-
dimensional shedding frequency Ω௙ (representing the 
frequency of external forcing) is expressed with the non-
dimensional structural frequency ݓ and a detuning parameter 
 :as ߪ
 

Ω௙ ൌ ݓ2 ൅      (9)                                	ߪߝ
                                                                 

After substituting (7)-(9) into (5) and (6) and equating the 
coefficients of ߝ௜(݅ ൌ 0,1) on the both sides of the equations, 
the system is expanded into six coupled equations, which can 
be solved sequentially: 
 

                 :଴ߝ
଴ܦ

ଶݕ଴ ൅ ଴ݕଶݓ ൌ Aܦ଴
ଶݕ଴                             (10)          

                                                                                               
଴ܦ

ଶݍ଴ ൅ ଴ݍଶݓ ൌ         ଶ                        (11)ݓ଴ݍଵ߁4
                                                                                               
  :ଵߝ

଴ܦ
ଶݕଵ ൅ ଵݕଶݓ ൌ െ2ܦ଴ܦଵݕ଴ ൅ ଶݓଵݍଵ߁4 ൅ ଴ݍߪݓ4 െ ଴ݕ଴ܦݓ4 െ

଴ݕ଴ܦ଴ݕݓଶ߁8 െ     (12)	଴ݕ଴ܦܿ
 
଴ܦ

ଶݍଵ ൅ ଵݍଶݓ ൌ െ2ܦ଴ܦଵݍ଴ െ ଴ݍߪݓ4 ൅ ଴ݍ଴ܦݓߣ2 െ ଴ଶݍଶݓଷ߁2 ൅
Aܦ଴

ଶݕଵ ൅ 2Aܦ଴ܦଵݕ଴	 (13) 
 

where ܦ଴,ܦଵ,ܦଶ,ܦ଴
ଶ,ܦଵ

ଶ represent the first and second order 

derivatives, respectively, and ܦ଴ ൌ
డ

డ బ்
ଵܦ ; ൌ

డ

డ భ்
଴ܦ ;

ଶ ൌ
డమ

డ బ்
మ ; 

ଵܦ
ଶ ൌ

డమ

డ భ்
మ. 

The general solutions of (10) and (11) can be written in the 
form: 
 

଴ݕ ൌ ௔ܻሺTଵሻ݁
ሺ௚ା௜௛ሻ୘బ ൅ ௔ܻሺTଵሻ݁

ሺ௚ି௜௛ሻ୘బ ൅ ௕ܻሺTଵሻ݁
ሺି௚ା௜௛ሻ୘బ ൅

௕ܻሺTଵሻ݁
ሺି௚ି௜௛ሻ୘బ            (14)   

                    

଴ݍ ൌ
ଵ

ସ௰భ௤భ௪మ ൛ሾݓ
ଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿ ௔ܻሺTଵሻ݁

ሺ௚ା௜௛ሻ୘బ ൅ ሾݓଶ ൅

ሺ݃ െ ݄݅ሻଶሿ ௔ܻሺTଵሻ݁
ሺ௚ି௛ሻ୘బ ൅

										ሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿ ௕ܻሺTଵሻ݁
ሺି௚ା௜௛ሻ୘బ ൅ ሾݓଶ ൅ ሺെ݃ െ

݄݅ሻଶሿ ௕ܻሺTଵሻ݁
ሺି௚ି௛ሻ୘బൟ (15) 

 

where ௔ܻ  and ௕ܻ  are the complex conjugates of ௔ܻ and ௕ܻ , 
respectively. Then, substituting (14) and (15) into (12) and (13) 
gives: 
 

଴ܦ
ସݕଵ ൅ ሺെ3ݓଶ െ ଴ܦሻܣଶݓଵ߁4

ଶ
ଵݕ ൅ ଵݕସݓ4 ൌ 	 ቄെ2ሺ݃ ൅ ݄݅ሻଷ ௔ܻ

ᇱ ൅

	ఙ
௪ ௔ܻሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅ ݄݅ሻଶ െ ሺ݃ݓଶ߁4 ൅ ݄݅ሻଷ ௔ܻ െ

ܿሺ݃ ൅ ݄݅ሻଷ ௔ܻ െ 2ሺ݃ ൅ ݄݅ሻ ௔ܻ
ᇱ ൅ ߪݓ4 ௔ܻሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿ െ

ଶሺ݃߁ଷݓ16 ൅ ݄݅ሻ ௔ܻ െ 2ሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅ ݄݅ሻ ௔ܻ
ᇱ
െ

ߪଷݓଵ߁16 ௔ܻሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿ ൅ ଶݓଷሾݓଵ߁ߣ8 ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅

݄݅ሻ ௔ܻ െ ሺ݃ܣଶݓଵ߁8 ൅ ݄݅ሻ ௔ܻ
ᇱቅ ݁ሺ௚ା௜௛ሻ୘బ ൅ ቄെ2ሺെ݃ ൅ ݄݅ሻଷ ௕ܻ

ᇱ ൅

	
ఙ

௪ ௕ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅ ݄݅ሻଶ െ ሺെ݃ݓଶ߁4 ൅ ݄݅ሻଷ ௕ܻ െ

ܿሺെ݃ ൅ ݄݅ሻଷ ௔ܻ െ 2ሺെ݃ ൅ ݄݅ሻ ௕ܻ
ᇱ ൅ ߪݓ4 ௔ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿ െ

ଶሺെ݃߁ଷݓ16 ൅ ݄݅ሻ ௕ܻ െ 2ሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅ ݄݅ሻ ௕ܻ
ᇱ
െ

ߪଷݓଵ߁16 ௕ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿ ൅ ଶݓଷሾݓଵ߁ߣ8 ൅ ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅

݄݅ሻ ௕ܻ െ ሺെ݃ܣଶݓଵ߁8 ൅ ݄݅ሻ ௕ܻ
ᇱቅ ݁ሺି௚ା௜௛ሻ୘బ ൅ ܰܵܶ (16) 

 
where ܰܵܶ  represents other terms, and ሺ′ሻ means derivative 
with respect to time Tଵ. 

It is recognized that the terms related to ݁ሺ௚ା௜௛ሻ୘బ  and 
݁ሺି௚ା௜௛ሻ୘బ  have the secular properties, which can cause a 
disproportionate increase in the relative magnitude of the 
additional correction generated at this order of perturbation 
[18]. In order to eliminate the secular properties of final 
solution, the terms related to݁ሺ௚ା௜௛ሻ୘బ  and ݁ሺି௚ା௜௛ሻ୘బ  in (16) 
have to be set equal to zero, then the solutions of (17) and (18) 
can be obtained: 
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െ2ሺ݃ ൅ ݄݅ሻଷ ௔ܻ
ᇱ ൅ 	 ఙ

௪ ௔ܻሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅ ݄݅ሻଶ െ ሺ݃ݓଶ߁4 ൅

݄݅ሻଷ ௔ܻ െ ܿሺ݃ ൅ ݄݅ሻଷ ௔ܻ െ 2ሺ݃ ൅ ݄݅ሻ ௔ܻ
ᇱ ൅ ߪݓ4 ௔ܻሾݓଶ ൅

ሺ݃ ൅ ݄݅ሻଶሿ െ ଶሺ݃߁ଷݓ16 ൅ ݄݅ሻ ௔ܻ െ 2ሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅ ݄݅ሻ ௔ܻ
ᇱ
െ

ߪଷݓଵ߁16 ௔ܻሾݓଶ ൅ ሺ݃ ൅ ݄݅ሻଶሿ ൅ ଶݓଷሾݓଵ߁ߣ8 ൅ ሺ݃ ൅ ݄݅ሻଶሿሺ݃ ൅
݄݅ሻ ௔ܻ െ ሺ݃ܣଶݓଵ߁8 ൅ ݄݅ሻ ௔ܻ

ᇱ ൌ 0   (17) 
 

െ2ሺെ݃ ൅ ݄݅ሻଷ ௕ܻ
ᇱ ൅ 	

ఙ

௪ ௕ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅ ݄݅ሻଶ െ

ሺെ݃ݓଶ߁4 ൅ ݄݅ሻଷ ௕ܻ െ ܿሺെ݃ ൅ ݄݅ሻଷ ௔ܻ െ 2ሺെ݃ ൅ ݄݅ሻ ௕ܻ
ᇱ ൅

ߪݓ4 ௔ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿ െ ଶሺെ݃߁ଷݓ16 ൅ ݄݅ሻ ௕ܻ െ 2ሾݓଶ ൅
ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅ ݄݅ሻ ௕ܻ

ᇱ
െ ߪଷݓଵ߁16 ௕ܻሾݓଶ ൅ ሺെ݃ ൅ ݄݅ሻଶሿ ൅

ଶݓଷሾݓଵ߁ߣ8 ൅ ሺെ݃ ൅ ݄݅ሻଶሿሺെ݃ ൅ ݄݅ሻ ௕ܻ െ ሺെ݃ܣଶݓଵ߁8 ൅ ݄݅ሻ ௕ܻ
ᇱ ൌ

0  (18) 
 

It is convenient to express ௔ܻ and ௕ܻas: 
 

௔ܻ ൌ ௥ܣ ൅  ௜                                     (19)ܣ݅
 

௕ܻ ൌ ௥ܤ ൅                                         (20)	௜ܤ݅
 
Then substituting (19) and (20) into (17) and (18) and 
separating real and imaginary parts leads to: 
 

௥ܣଵଵܯ
ᇱ ൅ ௜ܣଵଶܯ

ᇱ ൅ ௥ܣଵଷܯ ൅ ௜ܣଵସܯ ൌ 0                     (21) 
 

௥ܣଶଵܯ
ᇱ ൅ ௜ܣଶଶܯ

ᇱ ൅ ௜ܣଶଷܯ ൅ ௥ܣଶସܯ ൌ 0                     (22) 
 

௥ܤଷଵܯ
ᇱ ൅ ௜ܤଷଶܯ

ᇱ ൅ ௥ܤଷଷܯ ൅ ௜ܤଷସܯ ൌ 0                     (23) 
 

௥ܤସଵܯ
ᇱ ൅ ௜ܤସଶܯ

ᇱ ൅ ௜ܤସଷܯ ൅ ௥ܤସସܯ ൌ 0                     (24) 
 

The solutions of (21)-(24) can be expressed as: 
 

௥ܣ ൌ ܽ௥݁ఒభ భ்                                    (25) 
 

௜ܣ ൌ ܽ௜݁ఒభ భ்                                      (26) 
	

௥ܤ ൌ ܾ௥݁ఒమ భ்                                       (27) 
 

௜ܤ ൌ ܾ௜݁ఒమ భ்                                       (28) 
 

Substituting (25)-(28) into (21)-(24), it can be obtained: 
 

൤
ଵߣଵଵܯ ൅ ଵଷܯ ଵߣଵଶܯ ൅ ଵସܯ
ଵߣଶଵܯ ൅ ଶସܯ ଵߣଶଶܯ ൅ ଶଷܯ

൨ ቂ
ܽ௥
ܽ௜
ቃ ൌ 0                      (29) 

 

൤
ଶߣଵଵܯ ൅ ଵଷܯ ଶߣଵଶܯ ൅ ଵସܯ
ଶߣଶଵܯ ൅ ଶସܯ ଶߣଶଶܯ ൅ ଶଷܯ

൨ ൤
ܾ௥
ܾ௜
൨ ൌ 0                      (30)  

 
To get the trivial solutions, 

 

ฬ
ଵߣଵଵܯ ൅ ଵଷܯ ଵߣଵଶܯ ൅ ଵସܯ
ଵߣଶଵܯ ൅ ଶସܯ ଵߣଶଶܯ ൅ ଶଷܯ

ฬ ൌ 0                              (31) 

 
and 

ฬ
ଶߣଵଵܯ ൅ ଵଷܯ ଶߣଵଶܯ ൅ ଵସܯ
ଶߣଶଵܯ ൅ ଶସܯ ଶߣଶଶܯ ൅ ଶଷܯ

ฬ ൌ 0                              (32) 

 
Then 

ሺܯଵଵܯଵଶ െܯଵଶܯଶଵሻߣଵ
ଶ ൅ ሺܯଵଵܯଶଷ ൅ܯଵଷܯଶଶ െܯଵଶܯଶସ െ

ଵߣଶଵሻܯଵସܯ ൅ ሺܯଵଷܯଶଷ െܯଵସܯଶସሻ ൌ 0  (33) 
 

ሺܯଷଵܯଷଶ െܯଷଶܯସଵሻߣଶ
ଶ ൅ ሺܯଷଵܯସଷ ൅ܯଷଷܯସଶ െ ସସܯଷଶܯ െ

ଶߣସଵሻܯଷସܯ ൅ ሺܯଷଷܯସଷ െܯଷସܯସସሻ ൌ 0    (34) 
 
The discriminants of the quadratic equations (33) and (34) 

can be obtained: 
 
ଵ߂ ൌ ሺܯଵଵܯଶଷ ൅ܯଵଷܯଶଶ െܯଵଶܯଶସ െ ଶଵሻଶܯଵସܯ െ 4ሺܯଵଵܯଵଶ െ

ଶଷܯଵଷܯଶଵሻሺܯଵଶܯ െܯଵସܯଶସሻ                 (35) 
 
ଶ߂ ൌ ሺܯଷଵܯସଷ ൅ܯଷଷܯସଶ െ ସସܯଷଶܯ െܯଷସܯସଵሻଶ െ 4ሺܯଷଵܯଷଶ െ

ସଷܯଷଷܯସଵሻሺܯଷଶܯ െܯଷସܯସସሻ                (36) 
 

If both of the discriminants are negative ( ଵ߂ ൏ 0  and 
ଶ߂ ൏ 0), then there are no real roots of (33) and (34). In the 
second sub-harmonic resonance in VIV of a marine pipeline 
close to the seabed, it means that the oscillation will decay 
with the increase of time. However, If both discriminants are 
positive (߂ଵ ൐ 0  and ߂ଶ ൐ 0 .), then there are two distinct 
roots of (33) and (34). In the second sub-harmonic resonance 
in VIV of a marine pipeline close to the seabed, it means that 
the oscillation will increase all the time. In this case, the 
attention has to be paid to the max allowable amplitude of the 
pipeline. When the amplitude of the pipeline exceeds the 
allowable one, the damage of pipeline will take place, which 
may lead to a big loss.  

III. CONCLUSION 

The second sub-harmonic resonance in VIV of a pipeline 
close to the seabed is studied using the wake oscillator method. 
The main purpose of this work was to derive the amplitude-
frequency equation with regard to second sub-harmonic 
resonance of the cylinder from a recently derived wake 
oscillator model and solve the equation analytically using the 
multiple scales method. Moreover, a method of predicting the 
trend of oscillation is proposed, which may be helpful in the 
engineering. 

APPENDIX 

ܼଵ ൌ ଶݓ5 െ  ܣଶݓଵ߁4
 

ܼଶ ൌ ට40ݓସ߁ଵܣ െ ସݓ9 െ ଵ߁16
ଶݓସܣଶ 

 

ఒܿ ൌ
െܼଵ
2

 

 

݀ఒ ൌ
ܼଶ
2

 

 

݃ ൌ െඨቆට ఒܿ
ଶ ൅ ݀ఒ

ଶ ൅ ܿఒቇ 2ൗ  
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݄ ൌ ඨቆට ఒܿ
ଶ ൅ ݀ఒ

ଶ െ ܿఒቇ 2ൗ  

 
ଵଵܯ ൌ െ2ሺ݃ଷ െ 3݄݃ଶሻ െ ଶ݃ݓ8 െ 2ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻ݃ െ 2݄݃ଶሿ

൅  ଵ݃߁ଶݓܣ8
 

ଵଶܯ ൌ 2ሺ3݃ଶ݄ െ ݄ଷሻ ൅ ଶ݄ݓ8 ൅ 2ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻ݄ ൅ 2݃ଶ݄ሿ
െ  ଵ݄߁ଶݓܣ8

 

ଵଷܯ ൌ െ
ߪ
ݓ
ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻሺ݃ଶ െ ݄ଶሻ െ 4݃ଶ݄ଶሿ

െ ሺ݃ଷݓଶ߁4 െ 3݄݃ଶሻ െ ܿሺ݃ଷ െ 3݄݃ଶሻ
൅ ଶݓሺߪݓ4 ൅ ݃ଶ െ ݄ଶሻ െ ଶ݃߁ଷݓ16 െ ଶܿ݃ݓ4
െ ଶݓଵሺ߁ଷݓߪ16 ൅ ݃ଶ െ ݄ଶሻ
െ ଶݓଵሾሺ߁ଷݓߣ8 ൅ ݃ଶ െ ݄ଶሻ݃ െ 2݄݃ଶሿ 

 

ଵସܯ ൌ
݄݃ߪ2
ݓ

ሺݓଶ ൅ 2݃ଶ െ 2݄ଶሻ ൅ ሺ3݃ଶ݄ݓଶ߁4 െ ݄ଷሻ

൅ ܿሺ3݃ଶ݄ െ ݄ଷሻ െ ߪݓ8݄݃ ൅ ଶ݄߁ଷݓ16 ൅ ଶ݄ܿݓ4
൅ ଵ݄݃߁ଷݓߪ32
൅ ଶݓଵሾሺ߁ଷݓߣ8 ൅ ݃ଶ െ ݄ଶሻ݄ ൅ 2݃ଶ݄ሿ 
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ଷଵܯ ൌ െ2ሺെ݃ଷ ൅ 3݄݃ଶሻ ൅ ଶ݃ݓ8 ൅ 2ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻ݃ ൅ 2݄݃ଶሿ

െ  ଵ݃߁ଶݓܣ8
 

ଷଶܯ ൌ 2ሺ3݃ଶ݄ െ ݄ଷሻ ൅ ଶ݄ݓ8 ൅ 2ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻ݄ ൅ 2݃ଶ݄ሿ
െ  ଵ݄߁ଶݓܣ8

 

ଷଷܯ ൌ െ
ߪ
ݓ
ሾሺݓଶ ൅ ݃ଶ െ ݄ଶሻሺ݃ଶ െ ݄ଶሻ െ 4݃ଶ݄ଶሿ

൅ ሺ݃ଷݓଶ߁4 െ 3݄݃ଶሻ ൅ ܿሺ݃ଷ െ 3݄݃ଶሻ
൅ ଶݓሺߪݓ4 ൅ ݃ଶ െ ݄ଶሻ ൅ ଶ݃߁ଷݓ16 ൅ ଶܿ݃ݓ4
െ ଶݓଵሺ߁ଷݓߪ16 ൅ ݃ଶ െ ݄ଶሻ
െ ଶݓଵሾሺ߁ଷݓߣ8 ൅ ݃ଶ െ ݄ଶሻ݃ ൅ 2݄݃ଶሿ 

 

ଷସܯ ൌ
െ2݄݃ߪ
ݓ

ሺݓଶ ൅ 2݃ଶ െ 2݄ଶሻ ൅ ሺ3݃ଶ݄ݓଶ߁4 െ ݄ଷሻ

൅ ܿሺ3݃ଶ݄ െ ݄ଷሻ ൅ ߪݓ8݄݃ ൅ ଶ݄߁ଷݓ16 ൅ ଶ݄ܿݓ4
െ ଵ݄݃߁ଷݓߪ32
൅ ଶݓଵሾሺ߁ଷݓߣ8 ൅ ݃ଶ െ ݄ଶሻ݄ ൅ 2݃ଶ݄ሿ 
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