
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1021

Abstract—In general, algorithms to find continuous k-nearest

neighbors have been researched on the location based services,
monitoring periodically the moving objects such as vehicles and
mobile phone. Those researches assume the environment that the
number of query points is much less than that of moving objects and
the query points are not moved but fixed. In gaming environments, this
problem is when computing the next movement considering the
neighbors such as flocking, crowd and robot simulations. In this case,
every moving object becomes a query point so that the number of
query point is same to that of moving objects and the query points are
also moving. In this paper, we analyze the performance of the existing
algorithms focused on location based services how they operate under
gaming environments.

Keywords—Flocking behavior, heterogeneous agents, similarity,
simulation.

I. INTRODUCTION
HE process of finding the k-nearest neighbors (kNN) from
a given point have been studied focusing on spatial

databases. Most studies have indexed data objects using space
access methods like KD-tree, R-tree [1]. Heuristics were used
to reduce the searching space [2], [3], [8], [9]. Various methods
to find the kNN under circumstances where the object is
moving have also been studied [4]-[6], [9]. It is called as the
continuous k-nearest neighbors (CkNN). These methods
confront a time and space restraint in providing the necessary
information to search the kNN.

Based on the Location Based Service (LBS) [7], [11],
efficient methods to search the CkNN were proposed in [4]-[6].
In order to find the CkNN in moving objects, all conventional
algorithms have used the grid structure. The CkNN monitoring
method that uses object index and query index for moving
objects have been proposed in [4]. Specifically, the overhaul
method and the incremental method about the object index
were suggested. A hierarchical version of the object index was
also proposed to enhance the overall performance when
moving objects are not evenly distributed. Another efficient
algorithm was also brought up so called the conceptual
partitioning method (CPM) [6]. The CPM creates a virtual set
of cells inside a square that is close to the query points. This
algorithm utilizes these virtual squares to reduce the number of
accessing cells.

Conventional studies have been focused on algorithms that
work efficiently in an environment where the query point is
fixed to a moving object [4]-[6]. Also, the number of query
points was also set to a small number compared to the number

Jae Moon Lee is with the Dept. of Multimedia Engineering, Hansung
University, 389 Samsundong Sungbukgu Seoul Korea (e-mail:
jmlee@hansung.ac.kr).

of objects [4]-[6]. This is because conventional studies have all
been focused on LBS services. However, when the kNN is
required for the agent to make a decision about the surrounding
environment and the agent is a moving object like a robot,
flocking and crow simulation in a game, then the kNN must be
calculated with a certain basis [2], [3], [8], [10]-[12]. Thus, in
these environments, each of the objects becomes a query point.
Therefore the number of query points is identical to that of
objects and the object and the query point moves
simultaneously. This paper focuses on analyzing the
performance of conventional algorithms in gaming
environments such as the previously mentioned.

In Chapter III, conventional CkNN algorithms were
introduced. Chapter III analyzes the performance of the
algorithms in a game environment. Chapter IV focuses on the
conclusions.

II. RELATED WORKS

A. YPK-CkNN
All conventional algorithms used the grid structure when

searching CkNN in moving objects. Using the grid is a very
simple process. First, the space that one wishes to control must
be divided into a grid, . Every moving object must be
stored in the cell that includes its position. If the object is
continuously moving and had moved to a different cell
location, the object is deleted in the previous cell and is stored
in the new cell. By doing so, near neighbors of a given query
point is at a cell that stores the query point and neighboring
cells. In order to search the kNN, we will only have to evaluate
objects stored to the cell and the neighboring cells instead of all
objects.

Fig. 1 Grid method in YPK-CkNN

YPK-CkNN, proposed in [4], is the most basic method to use

the grid structure. Let's consider Fig. 1, where we assume that k
is 2. As shown in the left of Fig. 1, the searching begins with the
cell including query point q and sequentially expands to its
neighboring cells until 2 objects are founded. Then it finds the

Searching k-Nearest Neighbors to be Appropriate
under Gamming Environments

Jae Moon Lee

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1022

object p located furthest from q as shown in Fig. 1. It calculates
the distance |p-q| between the two objects. Let R be the
rectangle with the side length 2|p-q| centered at q. It evaluates
the objects in the cells which are contained in R and overlapped
with R and finds the k-nearest neighbors of the query point q.

overhaul(inputs: q, G, k output: kNN(t))

1. By using the grid G, find the rectangle which centers the
cell including q and contains at least k objects.

2. Find the object p which is in the rectangle and is farthest
from q.

3. By using the grid G, find all the object in the rectangle
with the side length 2|p-q| centered at q.

4. Find and return the k-nearest neighbors from the objects
found in the step 3.

Fig. 2 YPK-Overhaul Algorithm

Fig. 2 is overhaul algorithm proposed in [4]. The advantage

of this method is that while searching for the kNN, it only
evaluates objects stored in cells that are adjacent to the query
point. Reference [4] proposed additional methods to enhance
the performance of the overhaul method; to find new kNN
using the previous kNN in time t. It is important to note that the
square in overhaul with an area of 2|p-q| is not the main focus,
but that in the rectangle with the side length 2|p-q| centered at
query point q, there is at least more than k number of objects.
Using this fact, the incremental method in proposed [4]
separately stores kNN evaluated in t-1 until time t. This
distance is then used to execute the step 3 and the step 4 of the
overhaul method. The following is the algorithm explained.

incremental(inputs: q, G, k, kNN(t-1) output: kNN(t))

1. Compute |kNN(t-1)-q|.
2. By using the grid G, find all the object in the rectangle

with the side length 2|kNN(t-1)-q| centered at q.
3. Find and return the k-nearest neighbors from the objects

found in the step 2.

Fig. 3 YPK-Incremental Algorithm

In this algorithm the kNN(t-1) is the kNN of q searched at
time t-1 and |kNN(t-1)-q| is the minimum radius of the circle
that includes all objects in the kNN(t-1) in time t. The
incremental method is simpler than the overhaul method. That
is, the procedure to find |p-q| in the overhaul algorithm was
replaced to computing |kNN(t-1)-q|. In most cases, the cost of
the step 1 in Fig. 2 is less than that of the step 1 and 2 in Fig 2.
When the moving speed of the objects is slow, this method
shows great performance. However, when the moving speed of
the objects are fast, the possibility of object to move further
increases rapidly and thus the value of |kNN(t-1)-q| increases
exponentially. In this case, the rectangle R shown in Fig. 1 is
bigger and number of cells and objects to evaluate increases
and consequentially the performance of the incremental method
will be bad. Reference [4] has experimentally showed this fact.

B. CPM-CkNN
In order to reduce unnecessary access of the cells in the

conventional YPK-CkNN method, [6] proposed a new method
CPM-CkNN. CPM-CkNN has defined a DIR(direction) that
includes various cells such as Fig. 4. In Fig. 4, U0, U1, ..., L2
are the DIR. The DIR has a level. As shown in the figure, the
DIR level is incremented by 1 and starts with DIR 0 closest
from the query point. In the CMP-CkNN method, every cell has
a distance from the query point. This distance is determined as
the closest distance between the query point and the random
points in the cell. Thus, this distance is the closest, without
exception of any objects included in the cell. The DIR also has
a distance from the query point. This distance is determined as
the closest distance among the cells included in the DIR. This
distance is expressed as mindist<DIRi, q>.

Fig. 4 Conceptual partitioning method

The algorithm suggested in [6] uses heap data structure about

cell and DIR. Thus, according to their distance, it stores cell or
DIR that are potentially searching cell in the heap and when
needed, it is deleted from the heap to evaluate necessary
objects. Fig. 5 is the NN_Computation algorithm suggested in
[6].

NN_Computation(inputs: q, G, k output: kNN(t))

1. Insert the cell <Cq, 0> to MinHeap.
2. For four directions based on cell Cq, insert <DIR0,

mindist(DIR0, q)> to MinHeap.
3. Remove the root from MinHeap.
3.1 If the root is a cell, store each object in the cell to

bestNN and compute best_dist if necessary.
3.2 Otherwise, insert all the cells in DIR(i) and DIR(i+1) to

MinHeap.
3.3 If the distance of the root in MinHeap is greater than

best_dist, return. Otherwise go to the step 3.

Fig. 5 CPM-NN_computation Algorithm

In Fig. 5, Cq is the cell to contain the query point q, and

bestNN is a priority queue that stores k objects. The initial value
of best_dist is infinite and when k objects are stored in bestNN
in the step 3.1, best_dist is the minimum radius that includes all
objects in bestNN. In [6], every cell used in the step 3.1 of Fig. 5
were made to maintain the <visit_list> for every fixed query
point. Thus, from hereafter, one may access the cell using the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1023

<visit_list> instead of the MinHeap. Because this does not use
additionally any heap data structure when the query point is
fixed, the performance is enhanced. Also in [6], each query
point maintains an influence region. This minimizes the
calculation cost by investigating objects that enter the influence
region and exit out of it. However in [6], for all moving query
points only the NN_computation algorithm must be repeatedly
used disregarding all influence regions or <visit_list>

III. PERFORMANCE ANALYSIS IN A GAMMING ENVIRONMENT
Through experiments, this paper analyzes the performance

of the previously introduced three algorithms in a gaming
environment; where all moving objects become the query point.
For this experiment C++ was used to implement the three
algorithms. Intel i7 CPU and a 8GB memory computer with
Windows 7 was used for this experiment. The parameters
applied to the experiment are like the following.

TABLE I

PARAMETERS USED IN EXPERIMENTS
Parameter Range

Number of Objects (n) 100, 500, 1000, 5000, 10000
Number of query Points same to number of objects
Number of Neighbors(k) 2, 4, 8, 16, 32, 64
Velocity of Objects(v) slow, normal, fast

The size of the space used for this experiment was fixed to a

1000x1000 pixel area. The speed of the objects were set as
slow, normal, and fast as shown in Table I. The speed of slow,
normal, and fast were defined as each 4 pixels, 20 pixels, 100
pixels per frame. The experiment data was generated by
creating random numbers for the 2 dimensional space for each
object. These objects were then programmed to move to a
certain direction in a defined speed and fixed time interval. In
the performance analysis, overhaul method, incremental
method and CPM were named as YOH, YIN, CPM
respectively. In every experiment each algorithm was repeated
100 times, and the running time was measured by seconds as
the unit of measurement. For instance, if YOH is 76, it indicates
the sum of time elapsed in a certain environment where YOH
was repeated 100 times and its unit is also seconds.

The first experiment is the performance comparison
according to the change in number of objects. Thus, we will
measure the change in performance according to the change of
the number of objects such as shown in Table I. Here, the
number of neighboring agents was fixed to 16 and the speed of
the objects was fixed to slow and normal. Fig. 6 illustrates the
results of the experiment. In cases where the value of n is small,
the incremental method shows the greatest performance.
However, rapid decrease of performance was observed as the
number of objects increased. In general, YIN has worse
performance than the other algorithms when the speed of
objects is fast [4], [6]. It is because the number of objects
contained in the circle with the radius |kNN(t-1)-q| centered at q
increases. This is the same reason why YIN has bad
performance when the number of objects increases. That is, if
the number of objects increases in the fixed size of the space,

there will be more objects per area and the number of objects
that can be calculated through the step 2 of Fig. 3 will surpass
greatly the number of k. The performance of the overhaul and
CPM has the difference when the number of objects is 2500. As
shown in Fig. 6, when the number of objects is less than 2500,
CPM performs better, whereas the overhaul method
outperforms when the number of objects increases.

Fig. 6 Performance comparison versus n with k=16 and v= slow,

normal

TABLE II
PERFORMANCE COMPARISONS VERSUS K WITH N=1000, 5000 AND V=NORMAL

k
n=1000 n=5000

YOH YIN CPM YOH YIN CPM
2 1.1 1.5 1.4 2.9 22.3 5.4
4 2.3 2.0 2.1 4.3 30.9 7.2
8 3.8 3.1 3.2 7.1 42.4 9.5
16 6.5 4.8 4.8 11.6 58.8 13.2
32 11.2 7.2 7.9 20.2 143.6 18.5
64 18.8 10.9 14.0 35.0 176.3 34.0

The second experiment is the performance comparison

according to the change in number of neighboring objects. The
number of objects was fixed as 1000 and 5000, and the speed of
objects was fixed to normal. The results of the experiment are
illustrated in Table II. When the number of objects is 1000 and
the value of k is small, the performance of all three methods is
similar. As the value of k increases, the incremental method
displays the best performance, followed by the CPM. When the
number of objects is 5000, the incremental method shows the
worst performance. As mentioned in the previous analysis, this
is because as the number of objects per area increases, more
objects detected in the step 2 of Fig. 3. When the number of
objects is 5000 and as k increases, the performance of CPM and
YOH is similar.

The last experiment is the performance comparison
according to the change in speed of objects. As shown in Table
I, the speed of objects was divided into slow, normal, and fast.
Fig. 7 explains the results of this experiment, where the value of
k is fixed as 16 and the values of n are fixed to 100 and 1,000.
As one can know from the characteristics of the algorithms,
YOH and CPM are not related to the speed of objects. Thus, as
shown in Fig. 7, YOH and CPM have constant values. On the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

1024

other hand, YIN illustrates a rapid decrease in performance as
the speed of the objects rises. This is because the value of
|kNN(t-1)-q| in Fig. 3 increases. However, in the case that the
value of n is 100, notice that even if the speed of objects is fast,
the running time of YIN also is constant. It means that YIN has
always the greatest performance when the number of objects is
low.

Fig. 7 Performance comparison versus v with k=16 and n=100, 1,000

Analyzing the results of the previous three experiments, the

YIN method shows greatest performance when there is less
number of objects. However, when the number of objects is
high, the overhaul method displays best performance. This
partially contradicts the results in [6]. It is possibly due to the
difference in the number of query points. In gaming
environments, the number of moving objects is not infinitely
increased. Also, in gaming environments, the calculation for
the movement of the objects is not only time consuming, but
also it also is very time consuming for the rendering of each
object. Thus, there are not many cases where over 1,000 objects
are applied. Therefore in gaming environments, the incremental
method is most applicable when the objects are slow. If not, the
CPM method and the YOH method are applicable.

IV. CONCLUSIONS
Finding the k-nearest neighbor problem is studied

throughout various fields of researches. Location based
services are a representative example. Focusing on these
services, many studies have been conducted. Although most of
these cases are researched for moving objects, query points of
them are mostly fixed, not moving. Thus, it is a different
environment from gaming environments such as flocking,
crowd simulation, and robot where query points are also
moving. For the algorithms which are originally developed to
suit location based services, this paper showed which algorithm
is best applicable to gaming environments. The experimental
analysis showed that the YPK-incremental method is most
appropriate in cases where the speed of objects is slow or the
number of objects is low, and the CPM method is more
applicable when the moving object is fast. Finally,

YPK-overhaul method outperforms rather than the others when
the number of objects is high.

ACKNOWLEDGMENT
This research was supported by Basic Science Research

Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2012R1A1A2001091).

REFERENCES
[1] Guttman, A., "R-trees: a dynamic index structure for spatial searching",

ACM SIGMOD Rec., 14(2), 1984, pp. 47-57.
[2] Reynolds, C. W., "Flocks, Herds, and Schools: A Distributed Behavioral

Model", SIGGRAPH, 21(4), 1987, pp. 25-34.
[3] Mat Buckland, "Programming Game AI by Example", ISBN

1556220782, Wordware Publications, 2005.
[4] Yu, X., Pu, K.Q., Koudas, N., "Monitoring k-Nearest Neighbor Queries

over Moving Objects", 21st Int. Conf. on Data Engineering, 2005, pp.
631-642.

[5] Xiong, X., Mokbel, M.F., Aref, W.G., "SEA-CNN: Scalable Processing
of Continuous K-Nearest Neighbor Queries in Spatio-Temporal
Databases. 21st Int. Conf. on Data Engineering, 2005, pp. 643-654.

[6] Mouratidis, K., Hadjieleftheriou, M., Papadias, D., "Conceptual
Partitioning: an Efficient Method for Continuous Nearest Neighbor
Monitoring", Proc. ACM SIGMOD Int. Conf. on Management of Data,
2005, pp. 634-645.

[7] Junglas, I.A., Watson, R.T., "Location-based services", Commun. ACM,
51(3), 2008, pp. 65-69.

[8] Jae Moon Lee, "An Efficient Algorithm to Find k-Nearest Neighbors in
Flocking Behavior", Information Processing Letters, 110, 2010, pp.
576-579.

[9] Jun Min Park, Jae Moon Lee, "Performance Analysis for finding
continuous k-nearest neighbors of moving objects under game
environments", Proc. of Korea Game Society, Spring, 2013.

[10] Jae Moon Lee, Young Mee Kwon, "A Model of Pursuing Energy of
Predator in Single Predator-Prey Environment", Journal of Korea Game
Society, 13(1), 2013, pp. 41-48.

[11] Sangchul Kim and Zhong Yong Che, "A Method for Tennis Swing
Recognition Using Accelerator Sensors on a Smartphone", Journal of
Korea Game Society, 13(2), 2013, pp. 29-38.

[12] Seongdong Kim, Jae Moon Lee, Varun Ramachandran and Seongah
Chin, "A biological simulation game using Prey-Predator model",
Information - An international interdisciplinary journal, 16(4), 2013,
pp.2607-2618.

Jae Moon Lee received M.S. (1988) and Ph.D.(1992) degree from the Korea
Advanced Institute of Science and Technology (KAIST), Republic of Korea.
He is currently a professor at department of multimedia engineering, Hansung
University, Seoul, Republic of Korea. He has published several research papers
in the areas of flocking systems, evolutionary computation, machine learning
and AI.

