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Abstract—In general, algorithms to find continuous k-nearest 

neighbors have been researched on the location based services, 
monitoring periodically the moving objects such as vehicles and 
mobile phone. Those researches assume the environment that the 
number of query points is much less than that of moving objects and 
the query points are not moved but fixed. In gaming environments, this 
problem is when computing the next movement considering the 
neighbors such as flocking, crowd and robot simulations. In this case, 
every moving object becomes a query point so that the number of 
query point is same to that of moving objects and the query points are 
also moving. In this paper, we analyze the performance of the existing 
algorithms focused on location based services how they operate under 
gaming environments.  
 

Keywords—Flocking behavior, heterogeneous agents, similarity, 
simulation. 

I. INTRODUCTION 
HE process of finding the k-nearest neighbors (kNN) from 
a given point have been studied focusing on spatial 

databases. Most studies have indexed data objects using space 
access methods like KD-tree, R-tree [1]. Heuristics were used 
to reduce the searching space [2], [3], [8], [9]. Various methods 
to find the kNN under circumstances where the object is 
moving have also been studied [4]-[6], [9]. It is called as the 
continuous k-nearest neighbors (CkNN). These methods 
confront a time and space restraint in providing the necessary 
information to search the kNN. 

Based on the Location Based Service (LBS) [7], [11], 
efficient methods to search the CkNN were proposed in [4]-[6]. 
In order to find the CkNN in moving objects, all conventional 
algorithms have used the grid structure. The CkNN monitoring 
method that uses object index and query index for moving 
objects have been proposed in [4]. Specifically, the overhaul 
method and the incremental method about the object index 
were suggested. A hierarchical version of the object index was 
also proposed to enhance the overall performance when 
moving objects are not evenly distributed. Another efficient 
algorithm was also brought up so called the conceptual 
partitioning method (CPM) [6]. The CPM creates a virtual set 
of cells inside a square that is close to the query points. This 
algorithm utilizes these virtual squares to reduce the number of 
accessing cells. 

Conventional studies have been focused on algorithms that 
work efficiently in an environment where the query point is 
fixed to a moving object [4]-[6]. Also, the number of query 
points was also set to a small number compared to the number 
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of objects [4]-[6]. This is because conventional studies have all 
been focused on LBS services. However, when the kNN is 
required for the agent to make a decision about the surrounding 
environment and the agent is a moving object like a robot, 
flocking and crow simulation in a game, then the kNN must be 
calculated with a certain basis [2], [3], [8], [10]-[12]. Thus, in 
these environments, each of the objects becomes a query point. 
Therefore the number of query points is identical to that of 
objects and the object and the query point moves 
simultaneously. This paper focuses on analyzing the 
performance of conventional algorithms in gaming 
environments such as the previously mentioned.  

In Chapter III, conventional CkNN algorithms were 
introduced. Chapter III analyzes the performance of the 
algorithms in a game environment. Chapter IV focuses on the 
conclusions. 

II. RELATED WORKS 

A. YPK-CkNN 
All conventional algorithms used the grid structure when 

searching CkNN in moving objects. Using the grid is a very 
simple process. First, the space that one wishes to control must 
be divided into a grid, . Every moving object must be 
stored in the cell that includes its position. If the object is 
continuously moving and had moved to a different cell 
location, the object is deleted in the previous cell and is stored 
in the new cell. By doing so, near neighbors of a given query 
point is at a cell that stores the query point and neighboring 
cells. In order to search the kNN, we will only have to evaluate 
objects stored to the cell and the neighboring cells instead of all 
objects. 

 

 
Fig. 1 Grid method in YPK-CkNN 

 
YPK-CkNN, proposed in [4], is the most basic method to use 

the grid structure. Let's consider Fig. 1, where we assume that k 
is 2. As shown in the left of Fig. 1, the searching begins with the 
cell including query point q and sequentially expands to its 
neighboring cells until 2 objects are founded. Then it finds the 
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object p located furthest from q as shown in Fig. 1. It calculates 
the distance |p-q| between the two objects. Let R be the 
rectangle with the side length 2|p-q| centered at q. It evaluates 
the objects in the cells which are contained in R and overlapped 
with R and finds the k-nearest neighbors of the query point q. 

 

overhaul(inputs: q, G, k output: kNN(t) ) 

1. By using the grid G, find the rectangle which centers the 
cell including q and contains at least k objects.  

2. Find the object p which is in the rectangle and is farthest 
from q. 

3. By using the grid G, find all the object in the rectangle 
with the side length 2|p-q| centered at q. 

4. Find and return the k-nearest neighbors from the objects 
found in the step 3. 

Fig. 2 YPK-Overhaul Algorithm 
 
Fig. 2 is overhaul algorithm proposed in [4]. The advantage 

of this method is that while searching for the kNN, it only 
evaluates objects stored in cells that are adjacent to the query 
point. Reference [4] proposed additional methods to enhance 
the performance of the overhaul method; to find new kNN 
using the previous kNN in time t. It is important to note that the 
square in overhaul with an area of 2|p-q| is not the main focus, 
but that in the rectangle with the side length 2|p-q| centered at 
query point q, there is at least more than k number of objects. 
Using this fact, the incremental method in proposed [4] 
separately stores kNN evaluated in t-1 until time t. This 
distance is then used to execute the step 3 and the step 4 of the 
overhaul method. The following is the algorithm explained. 

 

incremental(inputs: q, G, k, kNN(t-1) output: kNN(t) ) 

1. Compute |kNN(t-1)-q|. 
2. By using the grid G, find all the object in the rectangle 

with the side length 2|kNN(t-1)-q| centered at q. 
3. Find and return the k-nearest neighbors from the objects 

found in the step 2. 

Fig. 3 YPK-Incremental Algorithm 
 

In this algorithm the kNN(t-1) is the kNN of q searched at 
time t-1 and |kNN(t-1)-q| is the minimum radius of the circle 
that includes all objects in the kNN(t-1) in time t. The 
incremental method is simpler than the overhaul method. That 
is, the procedure to find |p-q| in the overhaul algorithm was 
replaced to computing |kNN(t-1)-q|. In most cases, the cost of 
the step 1 in Fig. 2 is less than that of the step 1 and 2 in Fig 2. 
When the moving speed of the objects is slow, this method 
shows great performance. However, when the moving speed of 
the objects are fast, the possibility of object to move further 
increases rapidly and thus the value of |kNN(t-1)-q| increases 
exponentially. In this case, the rectangle R shown in Fig. 1 is 
bigger and number of cells and objects to evaluate increases 
and consequentially the performance of the incremental method 
will be bad. Reference [4] has experimentally showed this fact. 

B. CPM-CkNN 
In order to reduce unnecessary access of the cells in the 

conventional YPK-CkNN method, [6] proposed a new method 
CPM-CkNN. CPM-CkNN has defined a DIR(direction) that 
includes various cells such as Fig. 4. In Fig. 4, U0, U1, ..., L2 
are the DIR. The DIR has a level. As shown in the figure, the 
DIR level is incremented by 1 and starts with DIR 0 closest 
from the query point. In the CMP-CkNN method, every cell has 
a distance from the query point. This distance is determined as 
the closest distance between the query point and the random 
points in the cell. Thus, this distance is the closest, without 
exception of any objects included in the cell. The DIR also has 
a distance from the query point. This distance is determined as 
the closest distance among the cells included in the DIR. This 
distance is expressed as mindist<DIRi, q>. 

 

 
Fig. 4 Conceptual partitioning method 

 
The algorithm suggested in [6] uses heap data structure about 

cell and DIR. Thus, according to their distance, it stores cell or 
DIR that are potentially searching cell in the heap and when 
needed, it is deleted from the heap to evaluate necessary 
objects. Fig. 5 is the NN_Computation algorithm suggested in 
[6]. 

 

NN_Computation(inputs: q, G, k output: kNN(t) ) 

1. Insert the cell <Cq, 0> to MinHeap. 
2. For four directions based on cell Cq, insert <DIR0, 

mindist(DIR0, q)> to MinHeap. 
3. Remove the root from MinHeap. 
3.1 If the root is a cell, store each object in the cell to 

bestNN and compute best_dist if necessary. 
3.2 Otherwise, insert all the cells in DIR(i) and DIR(i+1) to 

MinHeap. 
3.3 If the distance of the root in MinHeap is greater than 

best_dist, return. Otherwise go to the step 3. 

Fig. 5 CPM-NN_computation Algorithm 
 
In Fig. 5, Cq is the cell to contain the query point q, and 

bestNN is a priority queue that stores k objects. The initial value 
of best_dist is infinite and when k objects are stored in bestNN 
in the step 3.1, best_dist is the minimum radius that includes all 
objects in bestNN. In [6], every cell used in the step 3.1 of Fig. 5 
were made to maintain the <visit_list> for every fixed query 
point. Thus, from hereafter, one may access the cell using the 
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<visit_list> instead of the MinHeap. Because this does not use 
additionally any heap data structure when the query point is 
fixed, the performance is enhanced. Also in [6], each query 
point maintains an influence region. This minimizes the 
calculation cost by investigating objects that enter the influence 
region and exit out of it. However in [6], for all moving query 
points only the NN_computation algorithm must be repeatedly 
used disregarding all influence regions or <visit_list> 

III. PERFORMANCE ANALYSIS IN A GAMMING ENVIRONMENT 
Through experiments, this paper analyzes the performance 

of the previously introduced three algorithms in a gaming 
environment; where all moving objects become the query point. 
For this experiment C++ was used to implement the three 
algorithms. Intel i7 CPU and a 8GB memory computer with 
Windows 7 was used for this experiment. The parameters 
applied to the experiment are like the following. 

 
TABLE I 

PARAMETERS USED IN EXPERIMENTS 
Parameter Range 

Number of Objects (n) 100, 500, 1000, 5000, 10000 
Number of query Points same to number of objects 
Number of Neighbors(k) 2, 4, 8, 16, 32, 64 
Velocity of Objects(v) slow, normal, fast 

 
The size of the space used for this experiment was fixed to a 

1000x1000 pixel area. The speed of the objects were set as 
slow,  normal, and fast as shown in Table I. The speed of slow, 
normal, and fast were defined as each 4 pixels, 20 pixels, 100 
pixels per frame. The experiment data was generated by 
creating random numbers for the 2 dimensional space for each 
object. These objects were then programmed to move to a 
certain direction in a defined speed and fixed time interval. In 
the performance analysis, overhaul method, incremental 
method and CPM were named as YOH, YIN, CPM 
respectively. In every experiment each algorithm was repeated 
100 times, and the running time was measured by seconds as 
the unit of measurement. For instance, if YOH is 76, it indicates 
the sum of time elapsed in a certain environment where YOH 
was repeated 100 times and its unit is also seconds.  

The first experiment is the performance comparison 
according to the change in number of objects. Thus, we will 
measure the change in performance according to the change of 
the number of objects such as shown in Table I. Here, the 
number of neighboring agents was fixed to 16 and the speed of 
the objects was fixed to slow and normal. Fig. 6 illustrates the 
results of the experiment. In cases where the value of n is small, 
the incremental method shows the greatest performance. 
However, rapid decrease of performance was observed as the 
number of objects increased. In general, YIN has worse 
performance than the other algorithms when the speed of 
objects is fast [4], [6]. It is because the number of objects 
contained in the circle with the radius |kNN(t-1)-q| centered at q 
increases. This is the same reason why YIN has bad 
performance when the number of objects increases. That is, if 
the number of objects increases in the fixed size of the space, 

there will be more objects per area and the number of objects 
that can be calculated through the step 2 of Fig. 3 will surpass 
greatly the number of k. The performance of the overhaul and 
CPM has the difference when the number of objects is 2500. As 
shown in Fig. 6, when the number of objects is less than 2500, 
CPM performs better, whereas the overhaul method 
outperforms when the number of objects increases.  

 

 
Fig. 6 Performance comparison versus n with k=16 and v= slow, 

normal 
 

TABLE II 
PERFORMANCE COMPARISONS VERSUS K WITH N=1000, 5000 AND V=NORMAL 

k 
n=1000 n=5000 

YOH YIN CPM YOH YIN CPM 
2 1.1 1.5 1.4 2.9 22.3 5.4 
4 2.3 2.0 2.1 4.3 30.9 7.2 
8 3.8 3.1 3.2 7.1 42.4 9.5 
16 6.5 4.8 4.8 11.6 58.8 13.2 
32 11.2 7.2 7.9 20.2 143.6 18.5 
64 18.8 10.9 14.0 35.0 176.3 34.0 

 
The second experiment is the performance comparison 

according to the change in number of neighboring objects. The 
number of objects was fixed as 1000 and 5000, and the speed of 
objects was fixed to normal. The results of the experiment are 
illustrated in Table II. When the number of objects is 1000 and 
the value of k is small, the performance of all three methods is 
similar. As the value of k increases, the incremental method 
displays the best performance, followed by the CPM. When the 
number of objects is 5000, the incremental method shows the 
worst performance. As mentioned in the previous analysis, this 
is because as the number of objects per area increases, more 
objects detected in the step 2 of Fig. 3. When the number of 
objects is 5000 and as k increases, the performance of CPM and 
YOH is similar. 

The last experiment is the performance comparison 
according to the change in speed of objects. As shown in Table 
I, the speed of objects was divided into slow, normal, and fast. 
Fig. 7 explains the results of this experiment, where the value of 
k is fixed as 16 and the values of n are fixed to 100 and 1,000. 
As one can know from the characteristics of the algorithms, 
YOH and CPM are not related to the speed of objects. Thus, as 
shown in Fig. 7, YOH and CPM have constant values. On the 
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other hand, YIN illustrates a rapid decrease in performance as 
the speed of the objects rises. This is because the value of 
|kNN(t-1)-q| in Fig. 3 increases. However, in the case that the 
value of n is 100, notice that even if the speed of objects is fast, 
the running time of YIN also is constant. It means that YIN has 
always the greatest performance when the number of objects is 
low. 

 

 
Fig. 7 Performance comparison versus v with k=16 and n=100, 1,000 

 
Analyzing the results of the previous three experiments, the 

YIN method shows greatest performance when there is less 
number of objects. However, when the number of objects is 
high, the overhaul method displays best performance. This 
partially contradicts the results in [6]. It is possibly due to the 
difference in the number of query points. In gaming 
environments, the number of moving objects is not infinitely 
increased. Also, in gaming environments, the calculation for 
the movement of the objects is not only time consuming, but 
also it also is very time consuming for the rendering of each 
object. Thus, there are not many cases where over 1,000 objects 
are applied. Therefore in gaming environments, the incremental 
method is most applicable when the objects are slow. If not, the 
CPM method and the YOH method are applicable. 

IV. CONCLUSIONS 
Finding the k-nearest neighbor problem is studied 

throughout various fields of researches. Location based 
services are a representative example. Focusing on these 
services, many studies have been conducted. Although most of 
these cases are researched for moving objects, query points of 
them are mostly fixed, not moving. Thus, it is a different 
environment from gaming environments such as flocking, 
crowd simulation, and robot where query points are also 
moving. For the algorithms which are originally developed to 
suit location based services, this paper showed which algorithm 
is best applicable to gaming environments. The experimental 
analysis showed that the YPK-incremental method is most 
appropriate in cases where the speed of objects is slow or the 
number of objects is low, and the CPM method is more 
applicable when the moving object is fast. Finally, 

YPK-overhaul method outperforms rather than the others when 
the number of objects is high.  
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