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Abstract—This paper presents a procedure for estimating VAR
using Sequential Discounting VAR (SDVAR) algorithm for online
model learning to detect fraudulent acts using the telecommunications
call detailed records (CDR). The volatility of the VAR is observed
allowing for non-linearity, outliers and change points based on the
works of [1]. This paper extends their procedure from univariate
to multivariate time series. A simulation and a case study for
detecting telecommunications fraud using CDR illustrate the use of
the algorithm in the bivariate setting.
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I. INTRODUCTION

TELECOMMUNICATION companies are facing fraudu-
lent acts from time to time which greatly affecting the

industries’ revenue. Although the exact loss figures due to
fraud may not be made known to the public but the problems
has become global to most telecommunications companies.
One of the many ways to detect voice fraud is via the call
detailed records (CDR). CDR is a massive amounts of call
histories generated in real-time basis where it is among the
largest real-time [2]. Part of a larger research project to
detect fraudulent acts using the telecommunications CDR is
to locate the change points which could lead to detecting
suspicious (fraudulent) calls. The aim of this paper is to detect
change points from the CDRs (as indicative of fraudulent
acts) by incorporating unified detection scheme introduced
by [1] where the learning model algorithm is extended to
a multivariate time series. The algorithm, called Sequential
Discounting for Vector Autoregressive (SDVAR), is proposed
to detect fraud as soon as it occurs.

The remainder of this paper is organized as follows. The
following section reviews some previous works in change
points detection. Section III provides a basic concept of
vector autoregressive models. Section IV discusses the method
designed for the study. The discussion on the results from the
simulation and case studies are presented in Section V. The
last section gives some discussions and conclusions.

II. CHANGE POINTS

Change points detection has been used in diverse fields.
[3] proposed a geometric method for estimating linear state-
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space models for identifying change points in time-series data.
Whilst Bayesian change points is applied by [4] to detect
regions of genetic alteration in cancer research. It has also
been used in detecting change points of the number of annual
tropical cyclone [5]. In signal processing, change point based
on singular spectrum analysis was applied by [6]. In recent
study, [7] introduced the combination of wavelet denoising and
sequential approach to detect change points on mobile phone
based on the CDR. Network faulty monitoring is studied by
[1]. They introduced a two-learning stage to detect outliers
and change points in a unifying framework, ChangeFinder.
The scheme is applied by employing autoregressive process
where the model is learned using Sequential Discounting for
Autoregressive (SDAR) algorithm, also being used by [8].
Adaptive to non-stationary time series is the key advantage of
the algorithm. In this paper we study the call behaviour from
the CDR by developing growth profiles for unique subscribers.
The profiles are considered as the referenced profiles for
normal callers where deviation (change) from these normal
behaviours would lead to the identification of suspicious call
(act of fraud). To the authors’ best knowledge, the detection
scheme proposed by [1] has not been studied in the context
of multivariate time series. Due to the needs of using more
than one variate to describe the dynamic behaviour of a time
series especially when the aim is for detecting change points
from the CDR, such issue is warranted.

III. VECTOR AUTOREGRESSIVE (VAR) MODELS

Autoregressive (AR) model is the most typical time series
model to predict the current value from the past values in a
same univariate time series. The number of the past values
(or lag values) is referred to the order of the model. However,
with the increase interest in modelling a series with more than
one variable, multivariate time series model is required. In a
VAR, or also known as multivariate AR (MAR) model, the
value of each variable at each time point is predicted from the
values of the same series and those of all other time series,
depending on the variables used in the model. Consider the
VAR model with pth order where N be the length of m series.
Let xt = [x1,t, ..., xm,t]

T denote (mx1) vectors of time series
variables. Then VAR(p) model is given by:

xi,t = μ+Φ1xt−1 + ...+Φpxt−p + εi,t, (1)

where t = 1, ..., N , i = 1, ...,m, Φk, k = 1, ..., p is (mxm)
coefficient matrices, μ is (mx1) vector and εi,t is the (mx1)
vectors of i.i.d Gaussian noise with mean 0 and covariance
matrix Σε. The mean for the i-series is given as E[xi,t] = μi.
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Hence the mean vector is given by

μ = [μ1, μ2, , ..., μm]T . (2)

The covariance matrix function, Γ(h) of the vector process
xt, given by [9] is:

Γ(h) = Cov{xt, xt+h}
= E[(xt − μ)(xt+h − μ)T ]

=

⎛

⎜⎜⎜⎝

γ11(h) γ12(h) · · · γ1m(h)
γ21(h) γ22(h) · · · γ2m(h)

...
...

...
γm1(h) γm2(h) · · · γmm(h)

⎞

⎟⎟⎟⎠ . (3)

For i = j, γii(h) is the autocovariance function for the ith

components of xt. For i �= j, γij(h) is the cross-covariance
function between xi,t and xj,t. The cross-covariance γij(h) is
calculated by

γij(h) = E[(xi,t − μi)(xj,t+h − μj)].

By mapping with the SDAR, the SDVAR algorithm is devel-
oped to estimate the model parameters using VAR estimations
by [9] and [10].

IV. METHOD

The detection flow, as displayed in Figure 1, shows the
unified scheme in change detection proposed by [1] called
ChangeFinder. It presents a two-stage learning scheme of the
data in detecting outliers and change points in a single frame-
work. We describe the unified scheme in change detection
using the two-stage learning framework but with an extension
of employing multivariate autoregressive representative of the
time series.

A. Unified Detection Scheme

Unified detection scheme is to detect multiple outliers and
change points in a time series. The estimation of parameters in
VAR(p) models is done after a series is observed. The SDVAR
algorithm in the flow of Figure 1 involves online estimation of
a time series data by introducing discounting parameter, r. The
value of r is between 0 and 1, where the smaller r indicates
higher influence of the past data.

The following describes the flow of the detection process
used in this study by combining the SDVAR and SDAR
algorithms to learn the model in the first and second detection
stage, respectively:

Step 1 . Read the series, where the elements of vector xt
denote the measurement of length of m at each time
t = 1, 2, ..., N .

Step 2 . First stage: Perform the SDVAR algorithm from 1-4
(in section IV-B), to produce the densities for pit.

Step 3 . Calculate the model prediction loss using either
logarithm loss function (or quadratic loss function).
The scores of xt in this paper is using the logarithmic
loss scoring technique where the series using the
joint probability densities of x1 and x2.

Fig. 1. Unified outliers and change points detection scheme proposed in the
study using the framework by [1]

Step 4 . Average the scores with arbitrary constant T to
isolate the outliers in the time series which yielding
a new series, yt.

Step 5 . Second stage: Learn the model again by using
SDAR [1], to produce the densities, qt.

Step 6 . Calculate the model prediction loss via quadratic
scoring.

The following section outlines the SDVAR algorithm intro-
duced in this paper to learn the multivariate time series by
employing vector autoregressive model.

B. Sequential Discounting VAR (SDVAR) Algorithm

Sequentially Discounting VAR (SDVAR) is introduced in
this paper to learn the model with VAR process. Let the
discounting parameter 0 < r < 1 and the parameters are
estimated after a set of data is observed.

1) Initialize the parameter estimates, μ̂0, Γj , Φ̂j , Σ̂ as
denoted in equations (1) - (3). The VAR model consists
of parameters for each series xt where the estimations
of these parameters are all represented by matrices.

2) Parameter update: For each new data arrives
(t=k + 1, k + 2, ...), read xt and update the mean, the
variances-covariances (and the cross-covariances) and
the model’s parameters:
μ̂=(1− r)μ̂0 + r ∗ xt,
which produces the mean vectors, μt, t=1,2,... The
parameter updates to produce the variance-covariance
matrix (Γ0) as well as variance-cross-covariance matrix
(Γ(h) for h > 0):
Γ(h)=(1−r)∗Γ(h)+r∗(xt−μ̂)(xt+h−μ̂)T , h=0,1,...,p.

3) Calculate x̂t and Σ̂ where
x̂t = Φ̂i(xt−i − μ̂) + μ̂ and
Σ̂ = (1− r)Σ̂ + r(xt − x̂t)(xt − x̂t)

T .
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C. Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a statistical dis-
tance measuring between two probability distributions. The
measure has been widely applied in control systems, com-
munication and information theory [11]. It is an intuitive
understanding from information theory that statistically mea-
sure the quantities in bits on how close a density p = pi
is to a candidate density q = qi, for i = 1, 2, .... The KL
divergence for two probability mass functions of p(x) and
q(x), KL(p ‖ q) is given by:

KL(p ‖ q) =

∫
pi(x)[log pi(x)− log qi(x)]dx

=

∫
pi(x)log

pi(x)

qi(x)
dx

= Eplog
pi(x)

qi(x)
, (4)

where Ep is the expectation with respect to the p distribution.
Eq.(4) is in the form of minimizing the divergence to obtain the
moment matching, i.e. the expectation. In this paper, we define
the divergence of two stochastic process at time t0, where
t0 indicates a change point occurs. Let pt be the stochastic
process of pt = p(xt|xt−1, ..., x1) at time t < t0, and qt =
p(xt|xt−1, ..., x1) at time t > t0. At time t = t0 is considered
as a change point if pt is different from qt, as measured using
Eq.(4). The KL divergence for two Gaussian distributions is
given as

1

2σ2
(μ1 − μ2)

2 +
1

2

[
σ2
1

σ2
2

− 1− log

(
σ2
1

σ2
2

)]
. (5)

Following the works of [1], the detection of multiple change
points in a time series is done by considering a sliding window
indicating an approximately stationary stochastic process. The
sudden occurrence of changing point in that particular sliding
window can be measured using KL divergence where they
defined two main cases:

1) Jumping Mean
Consider two i.i.d Gaussian densities of p and q, with
identical variances. The mean for p is μ1 and 2 is μ2.
Therefore Eq. (5) becomes

KL(p ‖ q) =
1

2σ2
(μ1 − μ2)

2 +
1

2
[0]

=
1

2σ2
(μ1 − μ2)

2. (6)

2) Jumping Variance
Two i.i.d Gaussian densities of p and q, with both means
are 0 and the variances are σ2

1 and σ2
2 , respectively. The

divergence is calculated using,

KL(p ‖ q) =
1

2σ2
(0)2 +

1

2

[
σ2
1

σ2
2

− 1− log

(
σ2
1

σ2
2

)]

=
1

2

[
σ2
1

σ2
2

− 1− log

(
σ2
1

σ2
2

)]
. (7)

D. Scoring

In this study, the VAR is stochastic process used to predict
the next observation and after the prediction is made, a loss
will be incurred. Among common methods for calculating the
prediction loss (or scores) are via logarithmic loss function
and quadratic loss function.

1) Logarithmic Loss Function:

Score(xt) = −log pt−1 (xt | xt−1), (8)

where the score for xt is based on the data generated
from the probability density of pt−1 (where pt−1= xt |
x1...xt−1).

2) Quadratic Loss Function:

Score(xt) = (xt − x̂t)
2, (9)

where x̂t is the prediction of xt given xt−1 based on the

learned model pt−1, and x̂t =
∫

xpt−1(xt | xt−1)dx.

Eq.(8) refers to the predicted probability of the likelihood
of the observation and the conventional least squares error
criterion is as given in Eq.(9).

V. RESULTS

A. Simulation Study

Following the examples demonstrated by [1], three
simulation studies are run to illustrate the use of the SDVAR
algorithm to learn the three stochastic models in the context of
multivariate autoregressive process: jumping mean, jumping
mean with varying variance and jumping variance. This study
focuses on the VAR(1) process with bivariate system. Hence
2-variate of 1st order VAR (two variables of x1 and x2) with
Gaussian white noise are simulated using R version 2.13.
The scoring rule used is logarithmic loss function for the first
detection stage whilst quadratic loss function for the second.
Moreover, using the joint probability density function of x1

and x2 ([12], [13]), SDAR is used to learn the new series in
the second stage.

1) Jumping mean: Using mAr.sim function of mAr package
in R, as given in Eq. (10) and Eq. (11) respectively, a 2-
dimensional VAR(1) with N = 10, 000 induced with KL
divergence (Eq. (6)) is simulated. The change points are set
to occur at each t0 x 1000 (for t0 = 1, ..., 9) using Eq. (6).

x1,t = μ1 + φ11x1,t−1 + φ12x2,t−1 + ε1,t, (10)

x2,t = μ2 + φ21x2,t−1 + φ22x2,t−1 + ε2,t, (11)

where ε is the normally distributed white noise and
ε ∼ N(0,Σε). The simulated series is generated using the
following parameters:

Φ =

(
0.4 −0.5
−0.3 0.4

)
, μ =

(
0
0

)
, and Σε =

(
1.0 0
0 1.0

)
.

With r = 0.02 and T = 5, R is run for learning the
10,000 data using the SDVAR algorithm (the speed of the run
time is highly depending on the processor of the computer
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Fig. 2. Simulated VAR(1) series of jumping mean

Fig. 3. Predicted series of jumping mean using the SDVAR algorithm

Fig. 4. Change points detected in the first simulated series

machine). In Figure 4, the plot shows the change points
detected for the first simulated series. The sudden jumps are
appropriately detected by the detection scheme using SDVAR
learning model.

Fig. 5. Simulated VAR(1) series of jumping mean and varying variance

Fig. 6. Predicted series of jumping mean and varying variance using SDVAR
algorithm

2) Jumping mean with varying variance: Following the
previous simulation set-up for sudden jumps of mean at each
t0 x 1000 (for t0 = 1, ..., 9) simulated data is generated with
varying variance, as displayed in Figure 5. The variance of the
white noise is set to change gradually over time as defined as
follows:

εi,t =
0.1

0.01+(N−t)
N

, (12)

where t = 1, ..., N and i = 1, 2.

The predicted series using SDVAR are as given in Figure 6
where the parameters used in the simulation are as follows:

Φ =

(
0.4 −0.5
−0.3 0.4

)
, μ =

(
0
0

)
, and Σε =

(
1.0 0.5
0.5 1.0

)
.

The scores for the second simulated series is displayed
in Figure 7 indicating the 7 change points detected but no
change points detected after that. This simulation shows the
capability of the detection scheme using SDVAR algorithm
to accurately detect the sudden jumps in mean despite the
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Fig. 7. Change points detected in the second simulated series

Fig. 8. Simulated VAR(1) series with jumping variance

Fig. 9. Predicted series with jumping variance using SDVAR algorithm

changing of variance over time.
3) Jumping variance: The last simulation deals with data

with jumping variance using KL as defined in Eq. (7) and the
parameters used are:

Φ =

(
0.4 −0.5
−0.3 0.4

)
, μ =

(
0
0

)
, and Σε =

(
1.0 0.1
0.1 1.0

)
.

However, at t0 x 1000 (t0 = 1, ..., 9), the variance is
changing from 1 to 9 when t0 is odd and changing from 9 to
1 when t0 is even (refer to Figure 8). The SDVAR algorithm
used to learn the model yields the predicted values for each
variate, x1 and x2 (Figure 9).

Fig. 10. Change points detected in the third simulated series

In Figure 10, SDVAR used in the detection scheme is
correctly detecting the change points that occur when the
variance suddenly jumps from 1 to 9. However no change
points detected when the variance suddenly falls from 9 to 1.

B. Case Study

A sample of 6-day CDR data is used as a training data
in obtaining the user profiles of the subscribers. The CDR is
collected from a PBX at one of telecommunications companies
in Malaysia. The network growth profiles used as instantiations
to detect change points in the CDR for the unique subscribers
are duration-to-network and cost-to-network ratios (where the
network growth is defined from the growth of destinations),
as shown in Figure 11. One user account’s profiles is used for
this case study where the growth profiles are developed in 10
minutes interval for the whole six days.

Using bivariate VAR(1) process of the two selected profile
measurements, mAr.est function from mAr package in R is
applied to estimate the model. The detection scheme used as
described in Figure 1 where the scoring methods used are
logarithmic scores and quadratic scores in the first and second
detection stage, respectively. Figure 12 exhibits the plot of the
series using SDVAR algorithm as the model learning module.
The scores result of the joint densities of both variates defined
in the VAR(1) model indicate that the 78th of the 10-minute
interval is identified as change point (Figure 13).

In the context of CDR the change point might show a
sudden deviation from the normal behaviour of the call of the
respective account. This may be an indicative of suspicious
act of fraudulent that has occurred in the sample CDR series.
Further investigation indicate that the call duration growth in
the 78th interval is found to be two times higher than in the
77th interval. In contrast, cost growth profile shows a strange
behaviour which is not reflecting the long call made at t=78
of the corresponding user (Figure 12).

As a purpose of an example for this case study, the quadratic
loss function is used in both of the detection stages [14] and
the results are as shown in Figure 14. Both variates, duration-
to-network growth and cost-to-network growth show sudden
jumps (change points) at time t=78 (Figure 14), as found in
the first example using the joint probability density of both
referenced profiles.
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Fig. 11. Duration-Network growth (top) and Cost-Network growth series of
the 10-minute interval

Fig. 12. Duration-Network growth (top) and Cost-Network growth series
learned using SDVAR

VI. CONCLUSION

In this paper, an algorithm for learning a vector autoregres-
sive process is proposed for detecting change points in time
series. The SDVAR algorithm is used as a learning module for
change point analysis from nonstationary time series data in
online manner, based on the approach and change detection
framework of [1]. The approach is part of research in detecting
fraudulent acts from a CDR. The algorithm is validated using
simulation and case study. Findings from the three different
types of simulated vector autoregressive series with jumping
mean, jumping mean and varying variance and jumping vari-
ance, the detection scheme using the SDVAR algorithm is
capable of detecting multiple change points. These change
points are referred as sudden jumps in the context of the mean
and variance of the series which are defined by Kullback-
Leibler divergence. The case studies using the 6-day CDR data
indicate the change points are appropriately detected in both
of the instantiations used in the VAR(1) model. The case study
attempts to test the capability of the scoring method used in
the detection stages. The use of either logarithmic or quadratic

Fig. 13. Change point detected in the CDR using logarithmic loss scores
(first stage) and quadratic loss scores (second stage)

Fig. 14. Change points detected for both Duration-Network growth (left-
hand side) and Cost-Network growth profiles using quadratic loss scores in
both detection stages

score in this paper shows that both are correctly detecting the
sudden jumps in the sample CDR data. The change points
detected in the CDR may lead to an alarming stage of detecting
suspicious activities as indicative of the fraudulent calls. Such
calls will be quarantined for further investigation by fraud
officers of the telecommunications companies.
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