
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

827

Abstract—There is wide range of scientific workflow systems

today, each one designed to resolve problems at a specific level. In

large collaborative projects, it is often necessary to recognize the

heterogeneous workflow systems already in use by various partners

and any potential collaboration between these systems requires

workflow interoperability. Publish/Subscribe Scientific Workflow

Interoperability Framework (PS-SWIF) approach was proposed to

achieve workflow interoperability among workflow systems. This

paper evaluates the PS-SWIF approach and its system to achieve

workflow interoperability using Web Services with asynchronous

notification messages represented by WS-Eventing standard. This

experiment covers different types of communication models provided

by Workflow Management Coalition (WfMC). These models are:

Chained processes, Nested synchronous sub-processes, Event

synchronous sub-processes, and Nested sub-processes

(Polling/Deferred Synchronous). Also, this experiment shows the

flexibility and simplicity of the PS-SWIF approach when applied to a

variety of workflow systems (Triana, Taverna, Kepler) in local and

remote environments.

Keywords—Publish/subscribe, scientific workflow, web services,

workflow interoperability.

I. INTRODUCTION

ORKFLOW systems have become attractive to

scientific computing projects for their ability to describe

experimental processes in a way that makes it easy to create,

manage and execute over a distributed set of resources. There

are various workflow systems developed to resolve problems

in special domains, such as gravitational-wave physics,

geophysics, bioinformatics and astronomy. In each of these

domains, a variety of tools and functions has been developed

and are available to scientists. In some cases, scientists may

need to invoke and use different tools from other systems

which are not available on their workflow system to complete

their experiments or improve performance results. To

collaborate between these systems and tools, interoperability is

essential. Within large collaborative projects [1]-[3]

combinations of workflow systems are already in use.

Workflow interoperability is a significant problem that can

determine if collaboration between e-science projects, using

heterogeneous workflow systems can be successfully

conducted.

Workflow interoperability is receiving increasing attention

from the distributed-computing community. Different

standards and levels have been set to achieve interoperability

among Scientific Workflow Management Systems (SWFMSs),

F. A. Ahmed Alqaoud is with the Shaqra University, P.O. Box 33 Shaqra

11961 SA (phone: 966-1-6224481; fax: 966-1-6224439; e-mail: alqaoud

@su.edu.sa).

for example WfMC and provisional research surveys have

been conducted by the Open Grid Forum (OGF) [4]-[6]. A

special workshop focussing on SWFMSs and improving

interoperability has taken place in Baltimore [7]. Different

originations and committees participated in this workshop, and

a technical report and recommendations issued discuss

workflow interoperability levels and provides different

opportunities to achieve workflow interoperability. Workflow

interoperability is classified on different levels according to

the workflow lifecycle presented by Deelman [8]. These levels

represent workflow design, workflow mapping and execution,

and workflow and data provenance.

 A general approach to achieving interoperability among

workflow systems, based on a WS-based notification

messaging system, was proposed by [9]. This approach

presents a Publish/Subscribe Scientific Workflow

Interoperability Framework (PS-SWIF) and for validation, it is

implemented in multiple workflow systems to demonstrate

run-time interoperability.

This paper evaluates the PS-SWIF approach and its system

to achieve workflow interoperability using Web Services with

asynchronous notification messages represented by WS-

Eventing standard. This experiment covers different types of

communication models provided by WfMC. The experiment

has proof that different workflow engines can use the PS-

SWIF approach to qualitatively improve their capabilities by

accessing different workflows from third party systems without

internal modification. This result shows the PS-SWIF proof of

concept facilitates a qualitative difference, which could form

the basis for futures standardization of the approach in OGF or

similar.

In the following, Section II: Workflow Interoperability

Standards, workflow interoperability levels and standards

provided by the workflow management coalition (WfMC) and

OGF community are discussed; with the current

publish/subscribe paradigms presented. Section III: PS-SWIF

architecture and design presents the PS-SWIF approach and

describes how WS-Eventing is used to achieve workflow

interoperability. Section IV: Scientific Workflow

Interoperability Evaluation evaluates the PS-SWIF approach

and its system to achieve workflow interoperability using Web

Services with asynchronous notification messages represented

by WS-Eventing standard, and Section V: Conclusions

presents a summary of the PS-SWIF approach.

II. WORKFLOW INTEROPERABILITY STANDARDS

Workflow interoperability is receiving increasing attention

from the distributed computing community. Different

standards and levels have been set to achieve interoperability

Scientific Workflow Interoperability Evaluation

Ahmed Alqaoud

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

828

among workflow systems. The Workflow Management

Coalition (WfMC) [10] defines various standards for workflow

interoperability. One of these is the Workflow Standard-

Interoperability Abstract Specification [11]. In this

specification different strategies can be used to achieve

workflow interoperability: (1) Direct Interaction: Workflow

Systems use a common API to allow direct interaction; (2)

Message Passing: Workflow Systems exchange information by

sending packets of data messages through a communication

network; (3) Bridging Strategy: Workflow Systems apply a

bridging mechanism using a gateway technique to move data

and tasks between systems via protocol converters; (4) Shared

Data Store: The transfer of data and tasks between workflow

Systems is achieved through a shared database.

Further, the Workflow Standard-Interoperability Abstract

Specification classifies workflow interoperability to eight

levels: (1) No Interoperability Level: No communication

between workflow products at this level, and interoperability

cannot be applied. (2) Coexistence Level: No standard

approach to interoperability between workflow products.

Workflow products share the same run time environment, such

as operating system and network. No direct interaction

between different workflow products. Interoperability can be

achieved at this level when an application implements different

parts of a complete process, using different workflow

products. (3) Unique Gateways Level: Workflow products use

a bridging mechanism to work together to route operations

between engines. One possibility is to use a common Gateway

API among workflow products. (4) Limited Common API

Subset Levels: Workflow products can interoperate directly

using a common standard API. A multiple API may be needed

for a given workflow product to interoperate with other

workflow products. (5) Complete Workflow API Level: A

single standard API is shared by all workflow products to

allow access to the entire range of potential functions. (6)

Shared Definition Formats Level: Requires a shared format for

process definitions implemented by workflow products. Each

process supported on the workflow system must have a single

definition by an organization and guarantee the behaviour of

the process, regardless of the workflow system used. (7)

Protocol Compatibility Level: Requires that all API client and

server communication must be standardized. (8) Common

Look and Feel Utilities Level: In addition to the earlier levels,

this level requires that all workflow products maintain the

same, or at least a similar, interface. This level may not be

achieved for commercial and practical reasons [11]. WfMC

defines a further specification called Workflow Standard

Interoperability Internet e-mail MIME Binding [12] which

provides a concrete definition for a message that uses Internet

e-mail with MIME (Multipurpose Internet Mail Extension)

encoding as transfer method between two workflow engines to

achieve interoperability as defined in the Workflow Standard-

Interoperability Abstract Specification. In addition, the WfMC

released Workflow Standard Interoperability Wf-XML

binding in 1997 [13]. The goal of this standard is to produce a

specification based on an XML language used as basis for the

functionality provided in the Workflow Standard-

Interoperability Abstract Specification. Workflow

interoperability has recently received much interest from the

distributed computing community, as can be seen from a

number of current workshop, for example, in the Open Grid

Forum (OGF) [4]-[6], three levels for interoperability are

identified: (1) Workflow embedding, allowing workflows to

run within their own environment, but invoked from another;

(2) Development of a meta language, allowing different

proprietary languages to be mapped to a single standard one;

and (3) Semantic annotation/description/classification,

important when sharing information. In October 2007, a

workshop focusing on scientific workflow and improving

interoperability took place in Baltimore [7]. Different

originations and committees participated in this workshop, and

a technical report, with recommendations, discusses workflow

interoperability levels and provides different opportunities to

achieve workflow interoperability. These levels include

workflow design, workflow mapping and execution, and

workflow and data provenance. In this model, designing a

workflow involves first creating a description of the workflow

at abstract level. Abstract Workflow describes a selection of

application components and defines their dependencies. The

application components could be tasks, jobs, services or any

executable units. Dependencies between these components

defines the order in which components can be executed [7],

and recommends the use of a common high level specification

to describe what the workflow does to achieve the

interoperability at workflow design level, regardless of the

workflow language used. Using the common high level

specification can lead to several advantages: (1) If a workflow

system no longer exists, it is possible to re-render workflows

that used the old workflow system to a different language; (2)

Using such specification enhances the ability of existing

workflows to be published, discovered and be more

understandable; (3) The specification could be used as a

standard metadata language or annotation language for

describing workflows. Workflow execution refers to turning

the components application in the abstract workflow into an

executable state. Workflow execution interoperability is

essential when an instance in a workflow system needs to

invoke an instance in another system. In general, the data

provenance refers to the ability to obtain the history of data

products. In scientific workflow systems this not only includes

reproducing the data, but also includes troubleshooting and

optimizing efficiency [14]. For example, when data product X

generated from a workflow system A is then used by another

workflow system to generate new data Y. The significant

advantages of workflow interoperability and data provenance

here is when provenance record Y is used to trace back to

original data A.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

829

III. THE PS-SWIF ARCHITECTURE AND DESIGN

In the PS-SWIF approach [9], the Event Source

responsibility is delegated to three Web Services: Publish

Topic Web Service, Source Web Service and Publish

Information Web Service. The Publish Topic Web Service is

created as the WS-Eventing specification [15] does not explain

how a topic is created in the Event Source. The Publish Topic

Web Service generates the Source Web Services

automatically. The Source Web Service is created to receive a

request message from Event Sink and create a response

message. The Publish Information Web Service is created to

deliver notification messages to Event Sink. Within the context

of a workflow system, the Event Source represents the

Workflow System Producer that create topics, receive request

messages and sends the notification message to other workflow

systems.

In the PS-SWIF approach, the Event Sink responsibility is

also delegated to three Web Services: Sink Web Service,

Subscriber Web Service and Subscription Manager Web

Service. The Sink Web Service could be a predefined Sink

Web Service or a standard Web Service. The predefined Sink

Web Service is created to support workflow systems that do

not have the ability of deploying an instance of workflow as a

Web Service, such as the Taverna [16] and Kepler [17]

workflows. The predefined Sink Web Service methods are

invoked by interested workflows to allow them to receive

notification messages. If the workflow products support

deployment of instance workflow as a Web Service, such as

the Triana [18] workflow, then this Web Service represents the

Sink Web Service and receives notification messages instead

of using the predefined Sink Web Services.

The Subscriber Web Service in the PS-SWIF is used to

allow workflow system A to create a subscription request to

workflow system B. The subscription request in the PS-SIWF

approach is similar to the subscription request defined in the

WS-Eventing section, except that two delivery modes are

applied; with push mode (asynchronous) and pull mode

(synchronous) to deliver the notification message to the event

Sink Web Service. The push model is applied when one uses a

standard Web Service as a Sink Web Service and the pull

mode is applied when one uses the predefined Web Service to

act as a Sink Web Service.

The Subscription Manager Web Service is used to manage

the subscription created by Subscriber Web Services. Within

the context of a workflow system, the Event Sink represents

the Workflow system consumer that subscribes to another

workflow system and receives notification messages.

The Internal Subscription Manager entity fulfils a mediation

layer between the Event Sink, Event Source and other required

entities in the PS-SWIF API, such as the Topic XML file and

Subscription Database. When the notification message is sent

by Publish Information Web Service, this entity checks the

subscription list with the Subscription Database and then

delivers the notification message to those Sink Web Services

that made a subscription to this event.

The Subscription Database is used to store the subscription

information when the Subscriber Web Service sends a request

to the Source Web Service. This information includes;

Subscription ID; a unique value for every subscription; Source

Web Service address, Sink Web Service address and expiry

date.

IV. SCIENTIFIC WORKFLOW INTEROPERABILITY EVALUATION

This section evaluates the PS-SWIF system to achieve

workflow interoperability using Web Services with

asynchronous notification messages represented by WS-

Eventing standard. This experiment covers different types of

communication models provided by WfMC. These models are:

Chained processes, Nested synchronous sub-processes, Event

synchronous sub-processes, and Nested sub-processes

(Polling/Deferred Synchronous). Also, this experiment shows

the flexibility and simplicity of the PS-SWIF approach when

applied to a variety of workflow systems (Triana, Taverna,

Kepler) in local and remote environments.

A. Experimental Hypotheses

This section presents and explains the experiment

hypotheses:

1- The experiment involves three different workflow

systems, namely Triana, Kepler, and Taverna that run in

three different machines to show that the PS-SWIF

approach can be applied to different workflow systems

that run in remote environments. Moreover, the

experiment also involves two different workflow systems,

namely Triana and Kepler, to show that the PS-SWIF

approach can be applied to different workflow systems

that run in a local environment. Choosing the order of

running these workflow systems is arbitrary and the

experiment can be run in any order.

2- The Experiment uses the PS-SWIF application to manage

the exchanging of data between different workflow

systems. Four topics are created, namely Test3M for

Triana workflow run on machine M1, Test3M_Tavern for

Taverna workflow run on machine M2, Test3M_Kepler

for Kepler workflow run on machine M1, and

Test3M_Triana for Triana workflow run on machine M3.

Six subscription requests are made: Tavern workflow on

M2, Kepler workflow on M1 and Triana workflow on M3

are subscribed to Test3M topic which represents the

Triana workflow on M1. The Kepler workflow on M1

subscribed to Test3M_Taverna topic which represents the

Taverna workflow on M2. The Triana workflow on M3

subscribed to the Test3M_Kepler topic which represents

the Kepler workflow on M1. The Taverna workflow on

M2 subscribed to the Test3M_Triana topic which

represents the Triana workflow on M3. The experiment

shows the ability of the system to manage the data through

using the PS-SWIF application. The exchange of data

depends on these subscriptions and without these

subscriptions their data cannot be exchanged between

these workflow systems. Moreover, the PS-SWIF allows

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

830

users to unsubscribe or renew the subscription. These

options are considered to be part of managing the data.

3- To prove the ability of the system to control

communication between different workflow systems the

experiment involves invoking the PS-SWIF Web Services

8 times:

1. The sendNotification operation of the Publish

Information Web Service is invoked on Triana

workflow on M1 to send notification messages to

Tavern workflow on M2, Kepler workflow on M1 and

Triana workflow on M3.

2. The receiveNotification operation the Sink Web

Service receives is invoked on Taverna workflow on

M2 to receive the notification message from Triana

workflow on M1.

3. The sendNotification operation of the Publish

Information Web Service is invoked on Taverna

workflow on M2 to send a notification message to

Kepler workflow on M1.

4. The receiveNotification operation the Sink Web

Service receives is invoked on Taverna workflow on

M2 to receive the notification message from Triana

workflow on M3.

5. The sendNotification operation of the Publish

Information Web Service is invoked on Triana

workflow on M3 to send a notification message to

Taverna workflow on M2. The Triana workflow system

support deploys a workflow as a web service, so the

Triana workflow will receive the notification message

once a subscription is made without the need to invoke

the Receive Notification operation of the Sink Web

Service.

6. The receiveNotification operation the Sink Web

Service receives is invoked on Kepler workflow on M1

to receive the notification message from Triana

workflow on M1.

7. The receiveNotification operation the Sink Web

Service receives is invoked on Kepler workflow on M1

to receive the notification message from Taverna

workflow on M2.

8. The sendNotification operation of the Publish

Information Web Service is invoked on Kepler

workflow on M1 to send a notification message to

Triana workflow on M3.

The control communication between these workflow

systems is achieved through invoking the PS-SWIF Web

Services at the appropriate stage. Moreover, the invoking of

these web services is not arbitrary. They are invoked in order

to satisfy and fitful the requirements to achieve the workflow

interoperability models provided by WfMC.

B. Experiment Design

Fig. 1 shows the experiment scenario. Four workflow

systems are used: two workflows (Triana and Kepler) are

installed on M1, Taverna installed on M2, and Triana installed

on M3.

Fig. 1 Experiment Scenario

The scenario explained:

1. Triana workflow in M1 sends a message to all subscribed

workflows, namely; Kepler workflow on M1, Taverna

workflow on M2 and Triana workflow on M3.

2. The Taverna workflow on M2 receives a notification

message from the Triana workflow on M1. The Taverna

workflow does some processing with the message

received and sends it to the Kepler workflow on M1. At a

later stage, the Taverna workflow (M2) receives a

message from the M3 Triana workflow.

3. The Triana workflow on M3 receives a notification

message from Triana workflow on M1. The Triana

workflow does some processing with the message

received and sends it to Taverna workflow on M2. At a

later stage, the Triana workflow on M3 receives a

message from Kepler workflow on M1.

4. The Kepler workflow on M1 receives a notification

message from Triana workflow on M1. The Kepler

workflow does some processing with the received

message. At a later stage the Kepler workflow on M1

receives a message from the Taverna workflow on M2 and

also does more processing with the received message and

then sends it to the Triana workflow on M3.

C. Test-Bed

The test-bed for the experiments includes three machines:

the first machine M1 is the same machine M(S) used for the

performance experiment section. The other two machines M2

and M3 have similar specifications with a 3.2 Ghz Intel(R)

Pentium(R) processor and 1 GB of memory, Fedora 7 as

operating system, and Java version 1.6.0.14. All machines were

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

831

connected through a private Ethernet network which was not

shared by other users. M1 installed Triana and Kepler

workflow systems, M2 installed a Taverna workflow system

and M3 installed the Triana workflow system.

D. Triana Workflow (M1)

Fig. 2 shows the Triana workflow that runs on M1, as used

to send a message to other workflows. Five tools are used to

construct this workflow and Table I provides a description for

each tool. The main tool in this workflow is the

sendNotification tool which represents the operation of the

Publish Information Web Service. The Publish Information

Web Service is invoked in Triana using service tools to send

message to any subscribed workflows.

Fig. 2 Triana Workflow on M1

TABLE I

TRIANA UNITS DESCRIPTION ON M1

Triana Tool Description

sendNotification
An operation of Publish Information Web Service

used to send messages to subscribed workflows.

Topic
A tool used to specify the topic name for

sendNotification tool

Message
A string value that should be sent by

sendNotification tool

Exec
A tool used to execute storetime.sh scrip to store

the time.

StringGen A string unit required to execute the Exec unit.

E. Taverna Workflow (M2)

Fig. 3 shows the Taverna workflow on remote machine M2.

There are 14 components used to construct this workflow and

Table II gives a brief description for each component. The

main components of this workflow are receiveNotification,

sendNotification, and receiveTrianaNotification components.

The receiveNotification is an operation of the Sink Web

Service and used to receive a notification message from Triana

Workflow on M1. The sendNotification is an operation of the

Publish Information Web Service and used to send a message

to the Kepler workflow on M1. The receiveTrianaNotification

is an operation of the Sink Web Service to receive a

notification message from the Triana workflow on M3. (The

original name for this operation is receiveNotification but

changed here to distinguish it from the previous operation used

earlier in this workflow).

Fig. 3 Taverna Workflow on M2

F. Triana Workflow (M3)

Fig. 4 shows the Triana workflow that runs on remote

machine M3. The Triana workflow is constructed from several

tools and Table III presents descriptions for each tool. The

primary tools in this workflow are receiveNotification to

receive a notification message from Triana workflow on M1,

sendNotification to send a message to the Taverna workflow

on M2 and receiveNotification1 to receive a notification

message from the Kepler workflow on M1.

G. Kepler Workflow (M1)

Fig. 5 shows the Kepler workflow run on local machine M1.

Various actors are used to build the Kepler workflow and

Table IV gives a brief description for each actor. The primary

actors in this workflow are Web Service Actor2 which

represents the receiveNotification operation used to receive a

notification message from the Triana workflow on M1, Web

Service Actor represents another receiveNotification operation

used to receive a notification message from the Taverna

workflow on M2, and Web Service Actor3 which represents

the sendNotification operation used to send a message to the

Kepler workflow on M1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

832

Fig. 4 Triana Workflow on M3

Fig. 5 Kepler Workflow on M1

TABLE II

TAVERNA COMPONENTS ON M2

Taverna Component Description

Topic
A component used to specify the topic

name for receiveNotification component

Consumer
A component to specify a consumer

workflow

receiveNotification
An operation of Sink Web Service used to

receive a notification message

StoreTimeTaverna3_1
Store time when the notification message

is received

Sleep_5_secs
Used for a process, sleep 5 second

thereafter

StoreTimeTaverna3_2
Store time when message is sent by

sendNotification operation

TopicNotify
Component used to specify the topic name

for sendNotification component

Read_Text_File Component is used to read a text file

sendNotification

An operation of Publish Information Web

Service used to send a notification

message

TopicTriana
Component used to specify the topic name

for receiveTrianaNotification component

Sleep_5_secs_2
Used for a process, sleep 5 seconds

thereafter

receiveTrianaNotification
An operation of Sink Web Service that

used to receive a notification message

StoreTimeTaverna_3_3
Store time when the message is received

by receiveTrianaNotification components

TABLE III

TRIANA UNITS DESCRIPTION ON M3

Triana Unit Description

TopicReceive
A unit used to specify the topic name for

receiveNotification tool

receiveNotification
Operation of Sink Web Service used to

receive notification message

Consumer A unit to specify a consumer workflow

StoretimeTriana3_1
Store time when the message is received

by receiveNotification unit

TriggerDelay Used to do some process, sleep 5 second

ExecTrigger
String unit is used to execute the

storetime.sh in the StoreTrianaTime3_2

StoreTrianaTime3_2
Store time when the message is sent by

sendNotification operation

Message
String value that should be sent by

sendNotification tool

Topic
Unit used to specify the topic name for

sendNotification tool

sendNotification

Operation of Publish Information Web

Service used to send a notification

message

TriggerDelay2 Used to do some process, sleep 5 second

ConsumerTriana Unit to specify a consumer workflow

TopicReceiveFromKepler
Unit to specify the topic name for

receiveNotification1 tool

receviceNotification1
Operation of Sink Web Service used to

receive notification message

StoreTrianaTime3_2
Store time when message received by

receiveNotification1 operation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

833

TABLE IV

KEPLER ACTORS DESCRIPTION

Kepler Actor Description

Test3M
A topic name that used to specify the topic

for receiveNotification operation

Kepler
A consumer name that used to specify the

consumer workflow

Web Service Actor2
An operation of Sink Web Service that used

to receive a notification message

StoreKeplerTime3_1
Store time when the message is received by

receiveNotification operation

Sleep_5_secs
This is used to do some process, sleep 5

second

Test3M_Taverna
A topic name that used to specify the topic

for receiveNotification operation

kepler
A consumer name that used to specify the

consumer workflow

Web Service Actor
An operation of Sink Web Service that used

to receive a notification message

StoreKeplerTime3_2
Store time when the message is received by

receiveNotification operation

Sleep_5_secs2
This is used to do some process, sleep 5

second

Store_Kepler_time_3_3
Store time when the message is sent by

sendNotification operation

Test3M_Kepler
A topic name that used to specify the topic

for sendNotification operation

File Reader
A message that should be send by

sendNotification operation

Web Service Actor3

An operation of Publish Information Web

Service that used to send a notification

message

H. Experiment Process

The experiment can be run in any order, no matter which

workflow runs first. If the message is sent by the workflow

publisher and there is no one to receive it, the message will be

held in a queue until pulled by a workflow subscriber. If the

workflow subscriber executes first and there is no notification

message at this time, the workflow subscriber keeps listening

until the notification message arrives.

The only aspect affected by the execution order is the time

calculated between the message sent tool of workflow

publisher and message tool of workflow subscriber. Taverna

workflow on M2 was executed first and then Triana workflow

on M3 second and Kepler workflow on M1 third, and the

Triana workflow on M1 last, because the Triana workflows on

M1 was the initiator of the interactions between these

workflow.

The following description explains how the workflow

interoperability models provided by WfMC are achieved:

1. The chained processes model is achieved when the Triana

workflow on M1 use Publish Information Service to send

the notification message to the other workflows.

2. The Nested synchronous sub-process and Event

synchronous sub-process models are achieved when the

Triana workflow uses the Publish Information Web

Service on M1 to send the message to the Taverna

workflow on M2. The Taverna workflow receives it

through the Sink Web Service and then simulates some

processing of the receive message, using the sleep 5

second component, and sends to the Kepler workflow on

M1.

The Nested synchronous sub-process and Event

synchronous sub-process models assume that the notification

message should be sent back to the first workflow that initiates

the communication; which is the Triana workflow on M1 in

this case. The PS-SWIF approach can handle this assumption

easily but to avoid implementing each model in separate

experiments, one experiment that covers all primary aspects of

each model is used.

3. The Nested sub-process (Polling/Deferred Synchronous)

model is achieved when the Triana workflow on M3

complete their processes except the receiveNotification1

tool which waits until all other workflows 'Taverna’ and

‘Kepler' finish the entire workflow processes and send the

notification message to the Triana workflow on M3 which

explains why the Triana workflow on M3 is the last to

finish execution.

I. Experiment Observation

To observe the experiment, the PS-SWIF application is used

to monitor the published topic and the subscription. Fig. 6

shows that all topics are successfully published, and all the

subscriptions are successfully made. The details of these

subscriptions are also shown in the same figure. Triana

workflow on M1, Taverna workflow on M2, Triana workflow

on M3, and Kepler workflow on M1 successfully invoked the

PS-SWIF Web Services and this is shown in Figs. 2-5. The

experiment was successfully executed and the data was moved

among these workflow systems.

Fig. 6 Experiment Observation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:6, 2013

834

J. Experiment Achievements

1. The experiment showed how the Web Services with

asynchronous notification messages can be invoked and

deployed by different workflow systems, namely Triana,

Taverna, and Kepler, to move and mange data between

these workflow systems without modification to those

systems.

2. The experiment proved that different types of

communications between workflow systems can be

achieved by satisfying the requirements of workflow

interoperability models provided by WfMC.

3. The experiment proved the flexibility and simplicity of the

PS-SWIF approach when applied to a variety of workflow

systems (Triana, Taverna, Kepler) in local and remote

environments.

4. This experiment provides a sophisticated example of how

the system can handle different models of interoperability

using different types of workflow systems. Moreover,

other experiments that cover the following scenario have

been conducted to prove that all possibilities of

communication between different workflow systems

(Tirana, Kepler, and Taverna) can occur:

a) Tirana, Taverna, and Kepler

b) Triana, Kepler, and Taverna

c) Taverna, Triana, and Kepler

d) Taverna, Kepler, and Triana

e) Kepler, Taverna, and Triana

f) Kepler, Triana, and Taverna

V. CONCLUSION

In this paper, we have discussed workflow interoperability

for scientific applications, describing the levels identified and

the strategies identified which can achieve interoperability

among different SWFMSs. A novel approach to workflow

interoperability is introduced in this paper, based on a WS-

based notification messaging system that uses a mechanism for

decoupling and enabling asynchronous messaging to achieve

workflow interoperability. The PS-SWIF application is

presented based on a set of web services that follows WS

Eventing specifications. This application enables scientists to

run their experiments among SWFMSs that execute remotely.

These experiments evaluate the PS-SWIF approach and its

system to achieve workflow interoperability. The PS-SWIF

approach is easier for scientists and provides interoperability

among a wide range of SWFMSs.

ACKNOWLEDGMENT

Author thanks Dr Ian Taylor and Dr Andrew Jones form

School of Computer Science of Cardiff University, for their

expert guidance and support throughout this research.

REFERENCES

[1] The National Science Foundation. Linked environments for

atmospheric discovery (lead), 2003. Available at: URL

http://www.renci.org/focus-areas/project-archive/lead.

[2] Scott Koranda. Ligo inspiral analysis workflow, 2007. Available at:

URL https://spaces.internet2.edu/display/scischworkflow/Home.

[3] Philip Maechling. Scec earthquake wave propagation and source

validation workflow, 2007. Available at: URL

https://spaces.internet2.edu/display/scischworkflow/Home.

[4] Adrian Toth. Levels of the grid workflow interoperability. Open Grid

Forum OGF20, May 2007.

[5] Andrew Harrison. Workflow sharing and interoperability. GridNet2

Report - Open Grid Forum OGF21, October 2007.

[6] Ian Taylor. Workflow management research group - wfm-rg. GridNet2

Report - Open Grid Forum OGF22, February 2008.

[7] K Klingenstein and D Gannon. Improving interoperability, sustainability

and platform convergence in scientific and scholarly workflow.

Technical report, University of Colorado and Indiana University, 2007.

[8] Ewa Deelman and Miron Livny. The pegasus approach to building a

workflow management system.

[9] A.Alqaoud, I.Taylor, A.Jones,2010, Scientific Workflow Interoperability

Framework. International Journal of Business Process Integration and

Management. (Scientific Workflows).

[10] D. Hollingsworth. Workflow management coalition: The workflow

reference model. Document TC00-1003, Workflow Management

Coalition, Jan, 1995.

[11] Workflow Management Coalition members. Workflow Management

Coalition Workflow Standard - Interoperability Abstract Specification.

The Workflow Management Coalition, 1996.

[12] Workflow Management Coalition members. Workflow Management

Coalition Workflow Standard - Interoperability Internet e-m MIME

Binding. The Workflow Management Coalition, 2000.

[13] Workflow Management Coalition members. Workflow Management

Coalition Workflow Standard - Interoperability Wf XML Binding. The

Workflow Management Coalition, 2001.

[14] Susan B. Davidson, Sarah Cohen Boulakia, and Anat Eyal et al.

Provenance in scientific workflow systems. IEEE Data Eng. Bull.,

30(4):44–50, 2007.

[15] D. Box et al. Web services eventing (ws-eventing), 2004. Available at:

URL http://www.w3.org/Submission/WS-Eventing/ .

[16] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.

Carver, K. Glover, M.R. Pocock, A. Wipat, et al. Taverna: a tool for the

composition and enactment of bioinformatics workflows, 2004

[17] National Science Foundation. The Kepler Project. 2002. Available at:

URL https://kepler-project.org/ .

[18] Cardiff University. The Triana Project. Available at: URL

http://www.trianacode.org.

