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 
Abstract—The Point canonical transformation method is applied 

for solving the Schrödinger equation with position-dependent mass. 
This class of problem has been solved for continuous mass 
distributions. In this work, a staggered mass distribution for the case 
of a free particle in an infinite square well potential has been 
proposed. The continuity conditions as well as normalization for the 
wave function are also considered. The proposal can be used for 
dealing with other kind of staggered mass distributions in the 
Schrödinger equation with different quantum potentials. 
 

Keywords—Free particle, point canonical transformation method, 
position-dependent mass, staggered mass distribution. 

I. INTRODUCTION 

OLVING the one-dimensional Schrödinger equation with 
position dependent mass has had applications in the 

description of physical systems such as semiconductors [1], 
superlattices [2], materials of non-uniform chemical 
composition [3], heterostructures [4], and abrupt 
heterojunctions [5]. Recently, the generalized point canonical 
transformation method [6] has been proposed to solve a 
Schrödinger-type equation, from an arbitrary second-order 
differential equation whose solution is known [7]. This 
methodology has allowed the study of different potentials in 
quantum mechanics [8] as well as other new potential [9] 
associated with the former one. Different schemes of solution 
[10] and generalized methods such as the supersymmetric 
theory [11], the Darboux transform [12], Hamiltonians with 
energy-dependent potentials [13], Schrödinger equation with 
effective mass [14] among others, have been also applied. In 
the first part of this work the point canonical transformation 
method [14] is briefly exposed. Then, the method is explained 
with an example where a continuous mass distribution is used. 
In this case, a harmonic oscillator potential is proposed to link 
both, the position-dependent mass distribution with its 
corresponding constant-mass problem. After that, in Section 
III, a step-type mass distribution is proposed. In this particular 
case, the mass is constant in some known interval, but it 
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changes its value in a subsequent interval. Specific examples 
of staggered mass distributions are proposed for solving the 
Schrödinger equation with different quantum potentials, 
namely an infinite square well potential and a harmonic 
oscillator are used to show the usefulness of the proposed 
method. 

II. EXACTLY SOLVABLE SCHRÖDINGER EQUATION WITH 

POSITION DEPENDENT MASS 

The one-dimensional Schrödinger equation with time-
independent potential and position-dependent mass used in the 
literature [15], is expressed in the form 
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ቀ ԰మ
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൅ ܸሺݔሻቃ ߰௡ሺݔሻ ൌ          (1)	ሻݔ௡߰௡ሺܧ

 
 ሻ is the interactionݔ௡ is the energy spectra, and ܸሺܧ

potential. This equation can be written as 
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With the aim of finding solution to (1), it is convenient to 

transform it into a problem of constant mass. To do that, the 
point canonical transformation method is used, namely, if 
݉ሺݔሻ ൌ ݉଴ܯሺݔሻ where ݉଴ is a constant mass, whereas ܯሺݔሻ 
is a unitless function, the transformation 
 

ݑ ൌ ݃ሺݔሻ ൌ ׬ ඥܯሺݐሻ݀ݐ			
௫

                       (3) 
 
such that ݔ ൌ ሻݑሺܨ ൌ ݃ିଵሺݑሻ, leads to the transformation of 
the differential operator 
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from where 
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thus (2) is written as 
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where 
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Then, after applying the similarity transformation 
 

߰௡ሺܨሺݑሻሻ ൌ ߮௡ሺݑሻ݁ൣ݌ݔെ׬ ܹሺݐሻ݀ݐ
௨

൧	                  (9) 
 
It is possible to write (1) as 
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which is a constant mass problem, where ܷሺݑሻ is the potential 
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Hence both potentials ܸሺݔሻ and  ܷሺݑሻ are related to each 

other through the transformation (3) 
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where in this case (8) is written as 
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In short, the problem of variable mass and constant mass is 

isospectral because (1) and (10) have the same energy spectra. 
Additionally, from (9), the corresponding wave functions are 
related as 
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or, by using (8) and (3) 

 

߰ሺݔሻ ൌ ߮ሺ݃ሺݔሻሻඥ݃ᇱሺݔሻ                        (15) 
 

From this equation, it is possible to verify that if the 
solutions ߮௡ሺݑሻ are normalized, then the wave functions 
߰௡ሺݔሻ will be also normalized, in fact 
 

ሻ|ଶݔሺ߰|׬ ݔ݀ ൌ ሻ|ଶݔሺ݃ሺ߮|׬ ݀൫݃ሺݔሻ൯ ൌ 1.               (16) 
 

Finally, it has been possible to relate the solutions of the 
Schrödinger equation with position-dependent mass (1) to 
those solutions of standard (constant mass problem) 
Schrödinger equation (10). 

As a simple example of application for the case of a mass 
varying continuously with the position, the potential of the 
Harmonic oscillator ܷሺݑሻ ൌ  ଶ is considered in (10), whichݑଶߚ
is a solvable problem in the context of the Schrodinger 
equation with constant mass. In fact, the wave function and 
the energy spectra are given as  
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where ௡ܰ ൌ ට ඥఉ

ଶ೙௡!	√గ
 is the normalization constant, ܪ௡ are the 

Hermite polynomials and ܧ௡ ൌ ሺ2݊ߚ ൅ 1ሻ is the 
corresponding energy spectra. To connect this problem with 
its corresponding one in the context of position-dependent 
mass, it is necessary to propose a mass distribution, in this 
case 
 

     ݉ሺݔሻ ൌ ݉଴ሺ1 ൅  ሻିଶ                       (18)ݔߛ
 
which has been used in the treatment of the generalized 
displacement operator under a position-dependent mass 
scheme [16]. According with the transformation (3) 
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leading to 
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The corresponding potential given in (12) is 
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with wave function given in (15) as 
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The results of this example are shown in Fig. 1 for the 

problem of a continuous mass distribution (18). In this case 
the harmonic oscillator potential is mapped into the interval 

	ቀെ ଵ

ఊ
, ∞ቁ. Regarding the wave functions, it is possible to see 

that they are no longer symmetrical. The reason why they are 
unsymmetrical is because the transformation ݃ሺݔሻ deforms the 
x-space where the Schrödinger equation is involved with the 
position-dependent mass. It is worth pointing out that when 
ߛ → 0, the problem of constant mass is recovered, namely 
݉ሺݔሻ → ݉଴, ܸሺݔሻ → ሻݔଶ, ߰௡ሺݔଶߚ → ߮݊ሺݔሻ as well as the 

interval ቀെ ଵ

ఊ
, ∞ቁ → ሺെ∞, ∞ሻ 

 

  

Fig. 1 Potential (21), the probability density ∣ ߰௡ሺݔሻ ∣ଶ, ݊ ൌ 0, 1, 2, 
the energy spectra  ܧ௡ ൌ ሺ2݊ߚ ൅ 1ሻ  and the mass distribution ݉ሺݔሻ 

given in (18) with parameters  ߛ ൌ ߚ  ,0.3 ൌ 1 and ԰ ൌ ݉଴ ൌ 1 
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III. THE PROBLEM OF STAGGERED MASS  

Despite the fact that the approach given in the previous 
section is applied to continuous mass distributions, the case of 
staggered masses, which deals with a constant mass in some 
defined interval [17], can be incorporated to the proposal 
described above. This kind of mass distributions is given as 
 

݉ሺݔሻ ൌ ൜
݉ଵ,						ݔ	 ∊ ሺߙ, ሻߚ
݉ଶ,						ݔ	 ∊ 	 ሺߚ, ሻߛ

	                          (23) 

 
where ݉ଵ ് ݉ଶ are constant. In this case, the transformation 
(3) takes the general form 
 

݃ሺݔሻ ൌ ൜
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ݔܤ ൅ 	ݔ							,݀ ∊ 	 ሺߚ, ,	ሻߛ

                   (24) 

 
where the constants ܤ ,ܣ, ܿ and ݀ are choosen on condition to 
have continuity for the transformation ݃ሺݔሻ. Furthermore, 
from (13), the function ܹሺ݃ሺݔሻሻ ൌ 0 leads to 
 

ܸሺݔሻ ൌ ܷ൫݃ሺݔሻ൯                             (25) 
 

Some specific examples of staggered masses are given next. 
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In this case, from (3),  ܯሺݔሻ ൌ ሺ݃ᇱሺݔሻሻଶ,  such that 
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Hence, the transformation ݃ሺݔሻ is 
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with ߙ ൌ ൬ට
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௠బ
െ ට
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௠బ
൰  .  Next, the Schrödinger equation	଴ݔ

(10) with a free particle confined in an infinite square well 
potential is considered. In such a case, the solution of (10) 
with ܷሺݑሻ ൌ 0 will be  
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 where ܣ is a constant and ݇଴ ൌ ටଶ௠బா
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. The boundary 

conditions ߮௡ሺ0ሻ ൌ ߮௡ሺܮሻ ൌ 0 lead to ݇଴ ൌ
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௅
, thus the 

corresponding wave function for the case of staggered mass 
distribution will be 
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where ܣ ൌ ට
௠భ௠మ

௠బ
మ	

 is required for the continuity of the wave 

function. Dealing with a free particle in an infinite well 
potential in a constant mass frame, the corresponding 
boundary conditions for the wave functions in the context of 
variable mass are ߰௡ሺ0ሻ ൌ ߰௡ሺℓሻ ൌ 0, where according with 

the transformation (29), ℓ ൌ ට
௠బ

௠మ
	ሺܮ െ  ሻ. Fig. 2 shows someߙ

details of these solutions. As in the previous example, the 
wave functions have no longer symmetrical. This is because 
the transformation ݃ሺݔሻ deforms the x-space where the mass is 
varying with the position. In fact, it is possible to notice that 
the wave functions are skewed toward the major mass. 
  

  

Fig. 2 Free particle confined in an infinite square well potential. The 
probability density ∣ ߰௡ሺݔሻ ∣ଶ ,		݊ ൌ 	1, 2, 3 in (31) and the mass 
distribution ݉ሺݔሻ given in (28).  ݉ଵ ൌ 15, 	݉ଶ ൌ ଴ݔ  ,5 ൌ 3.5  

and ԰ ൌ ݉଴ ൌ 1 
 

As in the example given in Section II, a harmonic oscillator 
potential ܷሺݑሻ ൌ  ଶ is used to link the Schrödingerݑଶߚ
equation with constant mass with its corresponding varying 
mass problem. Hence, the solution given in (17) and the 
energy spectra ܧ௡ ൌ ሺ2݊ߚ ൅ 1ሻ will be considered. Then, the 
corresponding problem with varying mass is solved for a mass 
distribution given in (28). In such a case, according with (25), 
the potential will be ܸሺݔሻ ൌ  ሻሻଶ which, by using theݔଶሺ݃ሺߚ
transformation (29), can be written as 
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Likewise, from (14) and (17), the corresponding wave 

functions are 
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where in this case ܰ ൌ ට ඥఉ

ଶ೙௡!	√గ
ቀ௠భ௠మ

௠బ
మ ቁ

ଵ/ସ
. The factor 

involved with the masses ݉ଵ, ݉ଶ, and ݉଴ is necessary to 
guarantee the continuity of the wave-functions. Fig. 3 shows a 
harmonic oscillator which is deformed by the transformation 
݃ሺݔሻ generated by the staggered mass distribution (28). 

Different approaches for studying the Schrödinger equation 
with position-dependent mass for the case of staggered mass 
distribution have been applied. In this context, by taking a 
staggered potential, reflection and transmission coefficients 
have been calculated [17]. Also, by using a model of step-type 
mass, interface connection rules for abrupt heterojunctions 
between two different semiconductors are obtained [18]. The 
envelop-function approximation method has been applied for 
studying super-lattices [19]. The analytical solution of a 
smooth potential with mass step has been solved [20]. In [21], 
transmission coefficients and mooring energies for electrons 
moving in a double potential barrier are calculated. To do that, 
the multi-step potential approximation method is used with the 
mass varying as shown above. 

The proposed method may be applied to make calculations 
on transmission coefficients when staggered masses are 
considered. Besides that, other interesting amounts such as 
transition probabilities or matrix elements can be calculated.  
 

  

Fig. 3 Potential (32), the probability density ∣ ߰௡ሺݔሻ ∣ଶ given in (33), 
the energy spectra ܧ௡ ൌ ሺ2݊ߚ ൅ 1ሻ, ݊ ൌ 0, 1, 2, 3, 4  and the mass 
distribution ݉ሺݔሻ given in (28). ݉ଵ ൌ 8,݉ଶ ൌ ଴ݔ  ,2 ൌ ߚ  ,0 ൌ 1 

and ԰ ൌ ݉଴ ൌ 1 
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