
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1074

Scenario Recognition in Modern Building
Automation

Roland Lang, Dietmar Bruckner, Rosemarie Velik, and Tobias Deutsch

Abstract—Modern building automation needs to deal with very
different types of demands, depending on the use of a building and the
persons acting in it. To meet the requirements of situation awareness
in modern building automation, scenario recognition becomes more
and more important in order to detect sequences of events and to react
to them properly. We present two concepts of scenario recognition
and their implementation, one based on predefined templates and the
other applying an unsupervised learning algorithm using statistical
methods. Implemented applications will be described and their ad-
vantages and disadvantages will be outlined.

Keywords—Building automation, ubiquitous computing, scenario
recognition, surveillance system.

I. INTRODUCTION

TODAY, building automation is mainly concerned with
simple monitoring of environments (e.g. temperature) and

adjusting them to predefined value ranges targeting comfort
and energy preservation. However, as outlined by [8] and [4],
in future, this will shift towards applications like safety and
self-learning environment control. More and more sensory in-
formation will be available for processing. Existing approaches
will be challenged by this abundant amount of data. There
will be a need for new concepts to handle the challenges
of the upcoming future. [5] point out that modern building
automation has to deal with very different types of demands,
depending on the use of the building (hospital, airport, soccer
stadium, office building, etc.) and the persons acting within
this building. More and more, ubiquitous computers will
become a topic in building automation, to support persons in
their actions and with relevant information needed [14].

Nevertheless, without knowing anything about the situation
the persons are involved in, the demands that can be satisfied
by an implemented system are very limited. Even a simple
control variable as simple as the temperature of a room can
depend on various other values than only e.g. the time or date.
The essential values a building automation system has to be
aware of (safety, security, convenience, etc.) can very often de-
pend on a huge variety of diverse sensor information. The data
from these multiple sensor sources can be partly redundant,
contradicting or inconclusive. The processing of huge amounts
of such redundant or ambiguous data requires sophisticated
information processing principles and an adequate architecture
for information processing [15].

To meet the demands of situation awareness in modern
building automation, scenario recognition becomes more and

R. Lang, D. Bruckner, and T. Deutsch are with the Vienna University of
Technology, Institute of Computer Technology, Austria.

R. Velik is with Tecnalia - Fatronik, Biorobotics, Spain.
Manuscript received August 12, 2009; revised August 17, 2009.

Fig. 1. Three phases of appliance

more important in order to detect such demands and react to
them [9]. As described in [10], a scenario is a defined sequence
of events. To recognize scenarios, information coming from
various sensors has to be collected, merged, and interpreted.
This process does not only have to be performed for single
moment snapshots but also across time.

In the following two chapters two very different approaches
of scenario recognition are introduced. The first scenario
recognition model is based on predefined perception patterns,
called image templates, combines different sensor outputs, and
gives them a semantic meaning. In the further, recognized
image templates are used as transition conditions between the
states of a scenario recognition process based on predefined
patterns of possible scenarios. It will be shown how the
designed, tested, and implemented scenario recognition model
supports the desired demands. The second model for sce-
nario recognition follows an approach based on unsupervised
learning of behavior patterns. During a learning phase, the
system detects and learns all new scenarios that take place
and recognizes them or remarks exceptional scenarios during
the operational phase. It learns a set of prototypes for scenarios
from the actual data and weights them according to their
frequency. In the operational phase, it classifies new data with
respect to the prototypes and computes an overall probability
for these data. This is very commonly done in modern control
engineering in different areas by statistical methods, as most
recently described in [13]. Finally the concepts are compared
and advantages and disadvantages are shown.

II. STRUCTURED SCENARIO RECOGNITION SYSTEM

The structured scenario recognition system was designed to
detect scenarios that can be predefined before the operational
phase is started. As shown in Figure 1, there are distinguished
three phases.

The design phase is used to predefine the different entities
of sensors that are used in the application. During the template
definition phase, the concept of condensing linked sensor
data to symbols and scenario templates using these symbols
is predefined. This architecture is sensor independent. By



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1075

following the concept of symbolization – defined in [10] – as a
standardized interface between sensor data and the structured
scenario recognition system, any type of sensor entity can be
used.

Based on the level of symbolization, two types of templates
are necessary to guarantee scenario recognition: the image
template, representing a typical set of perceived data within a
single moment and second the scenario template, representing
a perceived sequence in time. Finally, the operational phase
starts, where the system’s output are one or more recognized
scenarios. The following sections describe why image and sce-
nario templates are necessary and how they are implemented
and defined. The concept of symbolization used is defined in
[10] and will not be described here.

A. The Difference between a Play Card and a Royal Flush

During the development of the new scenario recognition
model, the authors of this article investigated several models
of how the human perceptive system handles data, symbolizes
them to a higher semantic meaning, and stores recognized
scenarios. The authors came up with a concept using standard
poker playing cards as a metaphor for what has been defined
as an image template. Like the ace of hearts contains different
kinds of information (e.g. color, type, rank, value), several
templates of a perceived image were defined that can be
compared to the currently ongoing situation. When a specific
image template matches the current situation, the state of the
system is changed and several actions are taken.

Using the picture of play cards of a standard poker deck,
this technical concept was presented to a psychoanalytical
advisor – apparently a passionate poker player. Following the
explanations of the concept, the advisor summed up: ”As a
poker player, the fact of looking at an ace of hearts does
not mean anything to me. Only if I am in possession of the
whole set of cards that complete a royal flush, the ace of hearts
becomes meaningful to me”.

In the same way as a playing card alone does not have any
relevance to a poker game, sensory values are not sufficient
to realize modern scenario recognition that needs a broad
overview of information, also over larger intervals of time.

B. Image Definition

An image template consists of a set of rules defining the
perception of specific types of symbols. These symbols can
be very simple like the number of persons in a room or
the temperature or humidity in a room or they can contain
complex information like that a meeting is taking place in the
conference room. Because of the generic way of the concept
for defining image templates, the name and meaning of
symbols shall be abstracted in the further text as symbols S1

to Sn. As the perception module of such a system produces
a constant stream of symbols, every calculation step contains
a subset (P ) of the set of all symbols (S) including the
elements S1 to Sn.

S = {S1, ..., Sn} ... possible perceived symbols

Fig. 2. Basic elements in image template definition

Fig. 3. Example for a generic image template definition accomplished in a
tree structure

P = {S3, S9, S17, ..., Sm} ⊆ S ... perceived symbols

IT1 = {w3 ∗ S3 AND w17 ∗ S17} ⊆ P ... image
template

Since all the definitions of image templates (IT ) have
to be compared with the currently perceived and weighted
(w3 and w17 are the weight factors) set of symbols (P ), a
tree structure is created to define the content of one image
template. In Figure 2, the three basic elements of this tree are
shown: image element (iE), image node (iN ) and image leaf
(iL).

As a base class of all elements within the tree, the image
element holds the following data: For debugging and visu-
alization, every element contains a name and optionally a
description of the specific use. Furthermore, every element –
no matter if node or leaf – stores the information if this ele-
ment is optional or mandatory. Additionally, the image node is
equipped with the information about its child nodes. These can
be further sub-nodes or image leaves. It is also equipped with
the boolean composition (AND or OR) between these sub-
elements, a negation flag that represents a boolean negation
of all sub-elements. The image leaf on the other hand defines
the type of symbol that shall be part of the image template
detection and a logical operator (==, ! =, <,<=, >,>=) that
compares the value of a symbol to the value defined in this
image leaf.

This value depends on the kind of symbol that is generated
from the corresponding sensors, which can be e.g. an integer
value (counter, temperature, etc.) or a fuzzy value (freezing,
cold, warm, hot, boiling in case of temperature) which is
mapped to an enumeration. Figure 3 gives an example for
a generic image template definition accomplished in a tree
structure. Described from bottom to the top, in this image
template, either the value of symbol S2 has to be equal or
higher than ’HOT’ (as a symbolic output for e.g. a temperature
sensor – for whatever that means semantically) OR the value
of symbol S3 has to be equal to or lower than ’DAMP’ (as a



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1076

Fig. 4. Possibilities of matches in the example image template

symbolic output for e.g. a humidity sensor).
With this lower part of the illustrated tree, the first half of

the image template is defined and matches if the perceived
data is within the defined range of values. The second half of
the image template matches if the value of symbol S1 equals
to or is greater than ’NORMAL’. The image template only
matches completely when both conditions – leaf 1 as well as
the sub-node – match. This is defined by the logical operator
AND in the base node.

C. The Result of the Matching Algorithm

After the comparison of the predefined image template with
the actual perceived symbols, a value from zero to one must be
generated that describes the quality of the match. To calculate
this quality, a simple algorithm is implemented. First, the
number of elements within a node, containing the operator
AND is determined and summed up with the nodes containing
an OR-operator. Applying this algorithm recursively through
all branches of the tree, the total weight of the tree is calculated
no matter if there is any match or not.

In the example tree of Figure 3, the total weight is two –
one for leaf 1 and one for leaf 2 or 3 or both of them. In
the next step, there are counted only leaves that have a valid
condition match. The number of matching conditions divided
by the total weight of the tree gives the quality of the match.
Taking again the example of Figure 3, the match would be 1.0
if leaf 1 and one or both of the leaves 2 and 3 match, 0.5 if
leaf 1 but neither leaf 2 nor 3 match or only leaf 2 or 3 match.
The match is 0 if none of the leaf rules meet the conditions.
Figure 4 shows these possibilities without the full and the zero
match.

The disadvantage of this algorithm is that every element has
the same weight. This can be useful for several applications
but driven by a rising demand in different applications, the
image element was extended by a weight that can be defined
specifically. The algorithm was slightly adapted to the given
weight in each node.

As described in [6], the concept of comparing the current
perception to a set of templates that have been learned previ-
ously or that are predefined is following a bionic approach
to find a new way in affective computing as described in
[7]. By retracting the layer of image template recognition, a
new higher semantic level of symbolization is reached. Based
on this level, a scenario recognition was implemented that is
described in the following sections.

Fig. 5. Basic elements of scenario definition

D. Scenario Definition

Until now, the described concept only dealed with a single
moment in time. Every image template and the resulting match
did not contain the variable of time. By adding the value of
time to the concept, a new step in the hierarchy is made,
containing perceived data of the past.

A scenario is defined as a sequence of several recognized
images that are perceived (like a royal flush is composed
of several play cards). By looking at common sequence
diagrams, it was decided to use the concept of state charts
to represent such scenarios. From the beginning to the end
of a scenario recognition process, several circumstances can
occur. For example, there may exist more than one possibility
for a event that has to be perceived by the image template
recognition. Different paths have to be covered in the definition
of a scenario process. It is necessary to make global abort
conditions possible, either caused by a timeout or another
event that triggers the abortion of the scenario recognition
and resets it. Figure 5 depicts the four basic elements of a
scenario definition and their purpose: starting scenario state
(SCB), ending scenario state (SCE), scenario state (SC) and
scenario transition (ST ).

The begin and end states only have a virtual meaning in
the system. All scenario recognition processes are initially set
to the begin state, waiting for the first transition condition to
occur. When the end state is reached, the scenario recognition
process reaches the end of its lifetime and does not deliver
any further information. The scenario states between the begin
and end state indicate the process of the scenario recognition
defined by their position. Each scenario state (except the end
state) holds a list of transitions. These transitions specify the
condition when switching to the next state. The match of a
selected image template must meet the specified condition.
For instance, in figure 5, the image template number 7 must
have a perceived match higher than 40 percent.

Figure 6 shows a generic scenario template definition. Here,
the scenario recognition process is triggered when the image
template (IT ) number 1 is perceived with a match of at least
60 percent. The current state is set to the state S1. This state
contains two different transitions. The first transition leads to
state S2 as soon as IT2 is perceived with a match of hundred
percent. The second transition leads to the state S3 when IT3
is perceived with at least 80 percent. With a match of at least
70 percent, IT4 closes the path and the recognition process
gets into the state S2. The final condition for complete scenario
recognition is fulfilled when IT5 is detected with a match of
at least 50 percent.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1077

Fig. 6. Generic scenario template definition

The definition of both the image templates and the scenario
templates were defined in an XML structured file, representing
the knowledge of the system. Images and scenarios that are
not defined in this database cannot be recognized.

E. Concept Verificationm and Application

To test the implementation and verify the functional cor-
rectness of the image and scenario recognition, a simulation
environment was created. This tool offers the possibility to
generate symbols and build a stream of perceptions without
the necessity of data from physical sensors. The generated data
stream was used as an input for the image template matching
algorithm. To test the scenario recognition unit, recognized
image templates and their match were generated. With this,
it could be confirmed that scenarios could be recognized, an
abort transition successfully aborted the recognition process,
and timeouts lead to an abortion of the process.

The scenario recognition model was implemented in the
office kitchen of a research department [3]. Several cheap
sensors of different types (tactile sensor, light barriers, motion
detector, etc.) were used to get a redundant sensor arrange-
ment. The scenario recognition module was embedded into the
system to detect various scenarios happening in the kitchen
(meeting, person making coffee, lights left on and nobody
present, etc.). Recognized scenarios were visualized on a
screen.

During the test phase, the scenario recognition unit was
also migrated to a project dealing with simulated, embodied,
autonomous agents and their perception and decision units
are implemented as outlined by [4]. It was shown that the
described scenario recognition model can also cope with these
demands, being completely different from modern building
automation. Figure 7 shows the visualization of the sce-
nario recognition and the internal values of the embedded
autonomous agents at a certain moment of the simulation.

During the test, it was shown that a ”recognition boost” of
image templates that are expected by already started recog-
nition processes leads to a better performance in scenario
recognition. To ”boost” a recognized image template means
that the calculated match is increased by a predefined value
which increases the probability that a scenario transition
condition is met.

III. SCENARIO RECOGNITION WITH STATISTICAL
METHODS

System that are intended to be aware of the context of
persons or systems need the ability to adapt themselves to

Fig. 7. Visualization of scenario recognition within embodied autonomous
agents

changing conditions that maybe have not even been foreseen
at design time. Therefore, as a supplementary approach to sce-
nario recognition algorithms that rely on pre-defined pattern,
an approach based on unsupervised learning [1] of behavior
patterns is presented in this section.

Several possibilities have to be distinguished when con-
sidering introducing learning methods into scenario recogni-
tion: They range from making the definitions of pre-defined
scenario building blocks fuzzy in terms of sensor values or
allow various sequences of pre-defined events in pre-defined
sequence templates to happen and end up with acompletely
unsupervised learning of building blocks, sequences, and their
interconnections.

In the following sections the principles of unsupervised
learning of behavior are presented and a concrete example
is given. The ultimate goal of all the algorithms is to create a
model of behavior that can be interpreted easily by humans.

A. Scenario Learning Principles

Finding recurring behavioral pattern in sensor data that
can be used to model scenarios in a way that humans can
interpret heavily depends on the type of sensor data and the
characteristics of the data generation.

Therefore, each sensor needs a pre-processing stage to
deliver only ”useful” data. For instance keep alive messages
with identical values in wireless networks or recurring bursts
from motion detectors or other presence detection sensors
have to be omitted in later learning procedures. Once the pre-
processing has been performed for all involved sensor types,
no more human operation is necessary in order to let the
system learn and later recognize behavior patterns (see Figure
8).

The result of the modeling process is the creation of states.
These states are the fundamental building blocks of this kind
of scenario learning algorithms. The framework for the model
is the hidden Markov model [12]. It offers a set of algorithms
for adapting parameters to new data as well as estimating the
membership of new data to states in the model.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1078

Fig. 8. Three phases of implementation

Fig. 9. The Markov chain. The time index goes from 1 to T in case of
completed data samples (horizon T )

B. Hidden Markov Model

There exists a variety of models for modeling a data source
which is believed to obey the Markov property – new values,
no matter if discrete or continuous, somehow depend on old
values. In most cases, a first order relationship – that the
current value depends somehow on the last one – is assumed.
HMMs in particular are used where it is not possible or useful
to directly model observation sequences, but rather to model
the underlying source for the change in observations. The
following paragraphs give an introduction to Markov models
and HMMs and their most useful algorithms.

Markov Chain: A discrete time Markov process produces
a discrete time Markov chain of values (see Figure 9). The
discrete time Markov Chain of 1st order is defined as

P (Qt+1 = qt+1|Qt = qt, Qt−1 = qt−1, ..., Q0 = q0) =
P (Qt+1 = qt+1|Qt = qt),

where Qt is the random variable at time t and qt is a
variable for some state at time t. This means that the
probability for being in some state at some time is only
dependent on the previous state.

If the number of possible states in a Markov process (its
state space) is assumed to be finite, it can modeled with a
Markov model (see figure 10). The Markov model explained
here, and all subsequently introduced models in statistics, try
to model processes which are assumed to possess the Markov
property. Sometimes, this assumption does not hold, but the
approximation is still sufficient and convenient. Every state
of the Markov model is said to produce some output symbol
s, which is an element of the output or symbol alphabet

∑
.

The probabilities of transitions between states – the transition
probabilities – together with the Prior distribution π also
called initial state distribution vector, formally define a Markov
model.

Markov models provide a framework which the user can
adapt by supplying transition pdfs (probability distribution
functions) of an arbitrary shape. If the basic Markov model is
used and by an emission probability distribution to allow the
association of a distribution over some output symbols with
each state, it is called hidden Markov model HMM (see Figure
11). Additionally adding a duration probability distribution –
this allows the modeling of the time, the model stays in a

Fig. 10. The Markov model. It consists of N states with a N ×N transition
probability matrix T . Depending on the non-zero transitions, the actual state
at time t, Qt can take every value from 1 to N

Fig. 11. The hidden Markov model. It consists of N states with transition
probabilities between these states, denoted Tij . Each state i also has an
emission probability distribution over output symbols bi. Here, the random
variable for the output is depicted as Ot and the random variables for the
states as Qt

state before leaving – gives a hidden semi-Markov model (see
Figure 12). It is also possible to define a model that consists
of a Markov model on the top level having HMMs as states.

Hidden Markov Model: As mentioned above, if the states of
a process are directly observable, the process can be modeled
with a Markov model. Under certain circumstances, the pro-
cess that has to be modeled cannot be described sufficiently by
a Markov model (e.g., a situation where you can measure – or
observe – some value, but you would like to infer from those
observations the driving force behind the values). In those
cases, hidden Markov models are used. Their states cannot be
directly observed, they are hidden. Each state has a probability
distribution over some or all possible output symbols. In other
words, the hidden Markov model extends the Markov model
by emission probability distributions. The complete definition

Fig. 12. The hidden semi-Markov model. It consists of N states with
transition probabilities, emission probability distributions over output symbols
and duration probability distributions that give a number of repetitions every
time each state is visited



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1079

of a HMM is: A hidden Markov model is a variant of a finite
state machine having a set of states Q, a transition probability
matrix A, an output alphabet

∑
, a confusion or emission

probability matrix B and initial state probabilities π. The states
are not observable and therefore called hidden. Instead, each
state produces an output symbol according to the emission
probability distribution (B). Characterizing for HMMs are:

• The number of states N
• The number of possible output symbols M
• The transition probability matrix A = {Pij}, where

Pij = P (Qt+1 = j|Qt = i), 1 ≤ i, j ≤ N
• An emission probability distribution in each of the states

B = bik, where bik = P (Ot = k|Qt = i), 1 ≤ i ≤
N, 1 ≤ k ≤ M

• The initial state distribution vector π = πi, where πi =
P{Q0 = i}, 1 ≥ i ≤ N

Hidden Markov Model Algorithms: After having selected
the HMM to model a specific process, there are three possible
tasks to accomplish with it [2]:

• Inferring the probability of an observation sequence given
the fully characterized model (evaluation).

• Finding the path of hidden states that most probably
generated the observed output (decoding).

• Generating a HMM given sequences of observations
(learning).

In case of learning a HMM, structure learning (finding
the appropriate number of states and possible connections)
and parameter estimation (fitting the HMM parameters, such
as transition and emission probability distributions) must be
distinguished.

In this scenario recognition application, the following algo-
rithms are used for the three tasks:

• Forward algorithm: This algorithm considers problems
where different prototypes for the behavior and a sam-
ple observation sequence are present and it has to be
determined which prototype has the best probability of
generating that sequence. Examples in a surveillance
application are a set of possible prototype scenarios like
”person walking along the corridor” or ”person going for
lunch”. According to a resulting sequence of values, it
has to be determines which scenario – and which point
in time within the scenario – is the most probable cause
for this sequence.

• Viterbi algorithm: The Viterbi algorithm addresses the
decoding problem. A particular HMM and an observation
sequence is given and the most probable sequence of
hidden states that produced that sequence is determined.

• Baum-Welsh algorithm: This algorithm addresses the
third – and most difficult – problem of HMMs: To find a
method to adjust the model’s parameters to maximize the
probability of the observation sequence given the model.
Unfortunately, there is no analytical way to accomplish
this task. Only local optimization of the probability of the
observation sequence can be done of the given models.

C. Applying the Model

Each state comprises an emission distribution (describing its
possible sensor values), a transition distribution (describing the
connections between states in the model), and – for learning
and merging purposes – a weight. The goal is that states
represent the behavior of the observed system or person.

Having processed the raw sensor data to represent mean-
ingful statuses or events, a data base with several chains of
sensor values forms the base for scenario learning. Ideally,
those sensor value chains have their starting point with the
start of the desired scenario and their end should coincide with
the end of the scenario. Of course, this prerequisite violates
the intended unsupervised fashion of learning, but in several
cases – e.g., the learning of daily routines or the learning of
behavior in a room delimited with opening of the door – the
time frame of the scenario (s) is known and can be used as
prior knowledge.

After having obtained an initial data set, the value chains are
compared. The same scenario is expected to generate roughly
the same sensor values in each occurrence and each value
chain represents one particular form of the desired scenario.
The comparison is undertaken in several steps with the goal to
merge the values into states and to reduce the number of states
until they reach a degree of expressiveness to be interpreted
by a human.

One of the comparison steps looks for equal sensor values
at equal times with equal delay times to another value; another
step looks for consecutive recurring patterns to merge. For a
detailed description of the algorithms see [2].

D. Model Interpretation

For explaining the capacity of this approach, an example
located in an office environment is illustrated. The input sensor
data come from a motion detector that generates a ”1” when
it detects motion (at a maximum rate of every five seconds)
and a ”0” after one minute of no detected motion. For pre-
processing the motion detector, values are averaged over 30
min periods in order to represent ”more” or ”less” activity
within these time frames. The model was trained with 15 of
those 48 values long sensor value chains. Figure 13 shows the
result. The model consists of 14 states (plus initial and final
state) as a result of the merging of more than 15,000 sensor
values emitted by the motion detector during the observation
period of 15 days.

The model identified 6 different daily routines represented
by the various paths from the left to the right. One of these
paths (0, 1, 5, 13, 4, 15) is discussed in the following
paragraph:

Figure 14 shows a path in the graph of the model while
figure 11 shows the sensor value chain which created the states
and transitions of this path – its Viterbi path. It is important to
mention that the graphical representation of the model contains
only sparse information about time insofar as the transitions
show the possible sequences of states; and states to the right
cannot be visited before states to the left.

The paths do not contain information about when during
observation the current state of the model changes to the next.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1080

Fig. 13. The model. States are depicted with labeled circles, possible
transitions with arrows. The initial and final states (0 and 15) appear at the
start and end of every sensor value chain. The ellipses above the states show
possible self-transitions

Fig. 14. A path in the learned model. The path (0, 1, 5, 13, 4, 15) represents
a particular daily routine from 0:00 to 24:00 o’clock in the observed office

Therefore, the path of states has to be viewed together with
the sensor values which created it.

The Viterbi algorithm then determines the sequence of states
as can be viewed on top of Figure 15. In this illustration, it is
possible to interpret the – fully unsupervised learned – states of
the model: State 1 represents the mornings where nobody is in
the office and state 4 the evenings. As can be seen in the model
graph, all daily routines, except the weekends represented by
state 14, share those morning and evening states.

State 5 was a surprise, it represents the cleaning personal!
They entered the room nearly every day round 6:00 in the
morning and emptied wastepaper baskets, etc. Finally, state 13

Fig. 15. Sensor values that created the path (0, 1, 5, 13, 4, 15). In the vertical
middle of the figure the pre-processed 48 ”sensor values” are drawn. On top,
the sequence of states that matches best the observed sensor values are shown
and, finally, on bottom, the interpretation thereof is given

Fig. 16. Another path through the model

Fig. 17. A day with breaks in activity in the afternoon. Probably a meeting

represents the normal activity in the office which lasts from
morning until evening.

The model also saw days with discontinuous appearances
of motion. An example is given in Figure 16 and 17 where
the afternoon is divided into time frames with and without
motion. Each of these time frames are represented by their
own states. The model assumes that there is an underlying
cause for the change in behavior. In a later parameter update
phase, there are at least 2 possibilities for those states and the
transitions to them: Either those values were singularities and
the probability therefor sinks, or afternoons like this happen
more often and maybe persons from that office can interpret
these states as their weekly project meeting or the like.

The interpretation of the states 1, 5, and 4 is as it was with
the first day, state 6 represents a ”shorter” working day and
states 8, 9, 10, and 11 cannot be interpreted by us because of
lack of particular knowledge, but could represent lunch and
meetings.

This little example shows the power of the unsupervised
scenario learning approach. It allows learning a model only
from sensor data without human supervision in a way that
a human operator can interpret the meaning of the model’s
elements.

E. Application

The described model of statistical based scenario recogni-
tion has been implemented in a real time environment within
the scope of the project SENSE (Smart Environment for
Assisted Living). The goal of this project was to establish
security, care, and comfort for elderly people within their
homes. Even though elderly people may be handicapped in
different ways, it may impossible for them to stay in their
usual home instead of moving to a nursery home. However,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1081

specific requirements have to be met so that elderly people can
be observed in a way that their daily routines can be supported
and safety critical situations can be detected and handled.

Since a private home is not the place for video and web
cams, first of all because of the strong request for privacy
and second and because of the effort that has to be taken
by external human observers or image recognition software,
avoiding video observation within the project was mandatory.
The system was based on wireless sensor networks to provide
an easy and lexible installation within a flat. The sensor
network consisted of different sensors, e.g. motion detectors,
pressure sensitive switches, simple on/off and touch sensitive
switches, and multifunctional sensors for e.g. temperature,
light, humidity, etc. Although video cameras were replaced by
these simple kinds of sensor types, a surprisingly high amount
of information could be extracted to observe safety critical
situations in association with the scenario recognitions system
based on statistical methods. For example, a pressure sensitive
switch was attached to the bed of the room so that the system
could detect whether a person lies in the bed or not. Within
an automatically learning phase of two weeks that has been
declared as ’normal living’ without any exceptions, the system
learned when the inhabitant of the flat usually wakes up during
the week and on weekends. During the operational phase, the
system would detect an abnormal behavior if the person stays
in bed until ten in the morning although the normal wakeup
time was 9 AM and would start an alert procedure. Within
the scope of the test applications, the system did support the
nursing stuff and was strongly accepted by the elderly people.

IV. MODEL COMPARISON

The two models described in this article use different ap-
proaches for achieving the same goal. Perception of everyday
activities and crude ”understanding” of what is happening is
vital for future automation systems. Both approaches have
certain advantages and a comparison has to consider the
different underlying methods and the different applications for
the models.

The structured scenario recognition system bases on prede-
fined scenarios and can therefore provide additional semantic
information about the perceived scenarios. This is important
if a human operator needs to evaluate the information that
the system has perceived. In cases where privacy is essential,
this additional information, which edited before the operational
phase, greatly assists the operator. Privacy is one of the main
concerns, when persons with special needs are observed: in
retirement homes or in hospitals, such a system can be well
integrated and provide constant 24-hour surveillance and only
alarm a human user if it detects a predefined scenario that
requires assistance. The disadvantage of the model is the ini-
tialization phase. Although many scenarios can be predefined
and do not change from one installation to another, it will still
be necessary to do adaptations depending on the layout and
situations at a new venue. This may increase the costs of the
whole system.

In constrast, the scenario recognition with statistical meth-
ods does not suffer from a long and costly initialization phase.

It automatically adapts to the incoming sensor information
and learns to tell apart usual from unusual situations. It is
in principle possible to assign semantic information to a
model the system has learned. A disadvantage is that since
the associations between sensor values are learned completely
autonomously, the system has no means to provide information
about the scenarios it has detected. It can only provide infor-
mation whether a scenario is unusual. An experienced operator
can use this information and attempt to assign ”meaning”
to the scenarios. However, this task is subject to personal
interpretations.

It appears that the best solution is a combination of both
systems. This way, the system is equipped with basic knowl-
edge of its whereabouts, but is still flexible enough to adapt
to specific situations.

V. CONCLUSION AND OUTLOOK

This article introduced two models for scenario recognition
– one based on predefined scenario patterns and one based on
unsupervised learned patterns. The work bases on the research
results of [11].

The model of the structured scenario recognition system
showed an approach for detecting predefined scenarios in
sensor-equipped buildings or autonomous agents. After pre-
defining templates of detected data and expected scenarios
within an XML knowledge base, the operational phase of
scenario recognition is started. The output of such a system
are recognized scenarios. On this basis, further processing e.g.
taking according actions can be performed. Learning of new
scenarios during operational phase is not foreseen. An option
is to extend the knowledge base by a human operator.

The model of scenario recognition with statistical meth-
ods realizes the unsupervised learning of scenarios during a
learning phase and therefore minimizes the effort of adapting
the system to new surroundings. The semantic meaning of
automatically learned scenarios does not emerge during the
learning or operational phase, except if an operator filters
redundant or meaningless scenarios and adds a semantic
meaning to the detected scenarios.

The two models of scenario recognition are currently im-
plemented in a test run in a modern kitchen and in the living
rooms of a home for elderly people both being equipped with
a range of different sensor types. While the equipped modern
kitchen has to be considered as a prototype implementation
that is running as a long time try to be able to collect and
verify data for further research, the rooms for elderly people
are applied to this real world environment. Here, elderly people
are supported in their daily life and observed without affecting
their privacy. Looking in this direction, further applications in
the field of safety critical surveillance systems (e.g. security in
public spaces, airports, modern soccer stadiums) are planned.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition, New York NY:
Oxford University Press Inc., p. 20, 1995.

[2] D. Bruckner, Probabilistic Models in Building Automation – Recognizing
Scnearios with Statistical Methods, Ph.D. Thesis, Vienna University of
Technology, 2007.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1082

[3] W. Burgstaller, Interpretation of Scenarios in Buildings, Ph.D. Thesis,
Vienna University of Technology, 2007.

[4] T. Deutsch, R. Lang, G. Pratl, E. Brainin, S. Teicher, Applying Psychoan-
alytical and Neuro-Scientific Models to Automation. Proc. International
Conference on Intelligent Environments, pp. 111-118, 2006.

[5] D. Dietrich, G. Russ, C. Tamarit, G. Koller, M. Ponweiser, M. Vincze,
Modellierung des technischen Wahrnehmungsbewusstseins fr den Bereich
Home Automation, e&i, Vol. 11, pp. 454-455, 2001.

[6] M. Dornes, Der kompetente Sugling – Die prverbale Entwicklung des
Menschen, Fischer Taschenbuch Verlag, 2001.

[7] R.W. Picard R. W, Affective Computing, The MIT Press, 1997.
[8] G. Pratl, P. Palensky, The Project ARS – The Next Step Towards an

Intelligent Environment, Proc. International Conference on Intelligent
Environments, pp. 55-62, 2005.

[9] G. Pratl, W. Penzhorn, D. Dietrich, W. Burgstaller, Perceptive Awareness
in Building Automation. Proc. International Conference on Computa-
tional Cybernetics, pp. 259-264, 2005.

[10] G. Pratl, Processing and Symbolization of Ambient Sensor Data, Ph.D.
Thesis, Vienna University of Technology, 2006.

[11] G. Pratl, D. Dietrich, G. Hancke, W. Penzhorn, A New Model for Au-
tonomous, Networked Control Systems, IEEE Transactions on Industrial
Informatics, Vol. 1, Issue 3, pp. 21-32, 2007.

[12] L. R. Rabiner, B. Juang, An Introduction to Hidden Markov Models,
ASSAP Magazine, Vol. 3, pp. 4-16, 1986.

[13] R. Rakotomamonjy, R. Le Riche, D. Gualandris, and Z. Harchaoui,
A Comparison of Statistical Learning Approaches for Engine Torque
Estimation. Control Engineering Practice, Vol. 16, Issue 1, pp. 43-55,
2007.

[14] E. M. Tapia, S. S. Intille, K. Larson, Activity Recognition in the Home
Using Simple and Ubiquitous Sensors, Pervasive, pp. 158-175, 2004.

[15] R. Velik, G. Pratl, R. Lang, Multi-Sensory, Symbolic, Knowledge-Base
Model for Humanlike Perception, Proc. International Conference on
Fieldbuses and Networks in Industrial and Embedded Systems, pp. 273-
278, 2007.


