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Abstract—This paper proposes a method for speckle reduction in 

medical ultrasound imaging while preserving the edges with the 
added advantages of adaptive noise filtering and speed. A nonlinear 
image diffusion method that incorporates local image parameter, 
namely, scatterer density in addition to gradient, to weight the 
nonlinear diffusion process, is proposed. The method was tested for 
the isotropic case with a contrast detail phantom and varieties of 
clinical ultrasound images, and then compared to linear and some 
other diffusion enhancement methods. Different diffusion parameters 
were tested and tuned to best reduce speckle noise and preserve 
edges. The method showed superior performance measured both 
quantitatively and qualitatively when incorporating scatterer density 
into the diffusivity function. The proposed filter can be used as a 
preprocessing step for ultrasound image enhancement before 
applying automatic segmentation, automatic volumetric calculations, 
or 3D ultrasound volume rendering. 
 

Keywords—Ultrasound imaging, Nonlinear isotropic diffusion, 
Speckle noise, Scattering. 

I. INTRODUCTION 
EDICAL ultrasound is a mode of medical imaging that 
has a wide array of clinical applications, both as a 

primary modality and as an adjunct to other diagnostic 
procedures [1]. The clinical utility of ultrasound imaging is in 
large part due to three characteristics. Ultrasound is a real-
time modality, does not utilize ionizing radiation, and 
provides quantitative measurement and imaging of blood 
flow. However, an inherent characteristic of ultrasound 
imaging and any type of coherent imaging in general, is the 
presence of speckle noise. Speckle is a random interference 
pattern in an image formed with coherent radiation of a 
medium containing many sub-resolution scatterers. The 
texture of the observed speckle pattern does not correspond to 
underlying structure. Speckle has a negative impact on 
ultrasound imaging. Bamber and Daft show a reduction of 
lesion detectability of approximately a factor of eight due to 
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the presence of speckle in the image [2]. This radical 
reduction in contrast resolution is responsible for the poorer 
effective resolution of ultrasound compared to X-ray or MRI. 
   Therefore, the methods of speckle reduction have been 
established in the past 40 years as one of the active research 
fields in medical ultrasound information processing [3]. 
Adaptive filtering for speckle reduction has been studied by 
Bamber et al. [7] in order to reduce speckles in ultrasound 
images. Many speckle reduction filters have been developed 
with different assumption about the speckle model [14, 29], 
having the multiplicative model the one mostly used, and 
paving the way for those described by Lee[30], Frost et al. 
[31], and Kuan et al. [32-33]. Yu and Acton [34] have 
proposed a filtering scheme based on filters first described by 
Lee and Frost, called speckle reducing anisotropic diffusion 
(SRAD). This SRAD filter has shown a very good 
performance with different levels of speckle.  S. Adja-
Fernandez and C. Alberola-Lopez [35] derived an anisotropic 
diffusion filter that does not depend on a linear approximation 
of the speckle model as in the SRAD case and they focused on 
the problem of estimation of coefficient of variation of both 
signal and noise. However, denoising techniques should not 
only reduce the noise, but do so without blurring or changing 
the location of the edges. Hence, techniques, based on the use 
of partial differential equations, have been extensively studied 
since the early work of Perona and Malik in 1987 [8] and 
others [9-16].  The idea behind the use of the diffusion 
equation in image processing arose from the use of the 
Gaussian filter in multi-scale image analysis. If the diffusivity 
function is a constant, i.e., independent of image positions (x, 
y) or time (t), it leads to a linear diffusion equation [8], with a 
homogeneous diffusivity. In this case, all locations in the 
image, including the edges are smoothed equally. This is, of 
course, undesirable, and a simple improvement would be to 
change diffusivity with the location x and y in the image, thus 
converting the equation into a linear diffusion equation with 
non-homogeneous diffusivity. If the diffusivity function is 
image dependent, then the linear diffusion equation becomes a 
non-linear diffusion equation [10-16]. For example, by using a 
function that was based on the derivative of the image at time 
t, Perona and Malik [9] were able to control the diffusion near 
the edges in the image.  Isotropic non-linear diffusion is the 
case where the diffusivity is scalar while anisotropic diffusion 
is the case where the diffusivity function is varying with both 
the edge location and its directions [10-16, 40].     
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    Thus, diffusion across the edge can be prevented while 
allowing diffusion along the edge. This prevents the edge 
from being smoothed during the denoising process. There are 
several factors that must be considered in the use of diffusion-
based techniques for denoising. These include the choice of 
the diffusivity function, setting any parameters used in the 
diffusivity function [11-14], the method of discretization of 
the PDE, the options used in the solution of the PDE including 
the time for which it is evolved, and the method used for 
solving the linear system of equations.  The tensor formulation 
of nonlinear coherent diffusion method (NCD) was presented 
in [14] and was implemented in real time. NCD change 
progressively from isotropic diffusion through anisotropic 
coherent diffusion to, finally, mean curvature motion 
according to speckle noise contents and anisotropy. A better 
quality of diffusion using NCD method was obtained 
compared to adaptive weighted median filter (AWFM), 
wavelet shrinkage (WS), and wavelet shrinkage and contrast 
enhancement (WSCE) methods [14].  While NCD had a better 
performance compared to AWFM, WS, and WSCE, it has 
several criticisms mentioned in [40]. One such criticism being 
anisotropic tensor formulation is regarding the size of speckle 
that may occupy more than the size of a pixel. A speckle 
reduction and structure enhancement method by multichannel 
median boosted anisotropic diffusion was presented in [40] 
and showed to be superior to methods like AWFM and 
Gaussian regularized anisotropic diffusion. The method 
presented in [40] was successful compared to AWFM and 
Gaussian regularized anisotropic diffusion, their results with 
test ultrasound phantoms and clinical ultrasound images of 
different levels of speckle noise, size, and distribution were 
not compared.  Mean square error and signal to noise ratio 
were used for tuning and evaluating the denoising process [14, 
17-18].  Signal-to-noise ratio (SNR) and Peak signal-to-noise-
ratio (PSNR) image measures are derived from the root mean 
squared error (RMSE) and used as an image quality measures 
in compression, representation, and standards [24, 39]. Higher 
quality measures do not always mean better visual quality of 
enhanced edges and denoised structures. The universal image 
quality index (Q) measures the distortion between two images 
and model this image distortion as a combination of three 
factors; loss of correlation, luminance distortion, and contrast 
distortion [41]. Edge enhancement and edge preserving 
quantitative evaluation is applied by the Pratt’s figure of merit 
(FOM) [42] as a measure for edge preservation and edge 
enhancement between ideal image and processed one and can 
be used as a measure of objects segmentation quality.  
     Our paper proposes a new ultrasound diffusion 
enhancement method suitable for processing ultrasound 
images for speckle reduction with edge enhancement.  This 
method takes into consideration an ultrasound scatterer 
density in addition to the gradient for weighting the diffusivity 
function. The resulting diffusion filter combines the 
advantages of locally adaptive filtering and computational 
speed using the fast and stable diffusion equation 
discretization, semi-implicit scheme using additive operator 
splitting (AOS), and coupled with a new automatic criteria to 
stop the diffusion process with preserving edges, geometry, 
and visual quality of the image.       

     The rest of this paper’s structure is organized as follows. 
Section II.A gives a brief introduction to the nonlinear 
diffusion filtering and its applicability in image denoising. 
Section II-B presents the proposed parameters models and its 
calculation methods, to weight the diffusion equation. Section 
II-C presents the proposed diffusion speckle reduction and 
denoising method, the scatterer density weighted nonlinear 
diffusion method (SDWND). Section II-C includes the way 
the diffusion equation is solved, explaining the proposed 
diffusivity function, diffusion parameters used in different 
experiments, automatic stopping criteria, proposed algorithm, 
and the equations of the existing image quality and edge 
quality measures. The experimental analysis, results, and 
evaluation are presented in Section III. Finally, Section IV 
gives conclusions and suggestions for future work. 
 

II. NON LINEAR DIFFUSION 
    A.  Nonlinear Diffusion in Image Denoising 

Diffusion is intuitively regarded as a physical process that 
equilibrates concentration differences without creating or 
destroying mass. This physical observation can be easily cast 
in a mathematical formulation. If u is the concentration and C 
is the diffusivity function, then the diffusion equation is given 
as:  

)( uCdivut ∇=∂           (1) 
     In image processing we may identify the concentration u 
with the grey value at a certain location. If the diffusivity 
function C is constant over the whole image domain, one 
speaks of homogeneous diffusion, and a space-dependent 
filtering is called inhomogeneous. Often the diffusivity 
function is a function of the differential structure of the 
evolving image itself. Such a feedback leads to nonlinear 
diffusion filters. 
     The diffusion-based filter calculates a filtered image 
u(x,y,t) of the original noisy image f(x,y) as a solution to the 
nonlinear diffusion equation as shown: 

)),(( uyxCdivut ∇=∂ ,            (2) 
with the original image f(x,y) as the initial state: 

 u(x,y,0)=f(x,y),                         (3) 
and reflecting boundary conditions on the image boundary: 

: 0nu∂ = ,                (4) 
where n denotes the normal to the image boundary. The 
nonlinear diffusivity function C(x,y) is usually given as a 
strictly decreasing function of the magnitude of the gradient. 
 
     B. Ultrasound Image Features Weighted Nonlinear 
Diffusion 
     Perona and Malik [9] suggested incorporating the image 
gradient into image diffusion-based filtering scheme to 
produce adaptive edge-preserving image filters. Since then, 
many researchers [10-16] have suggested improvements and 
modifications related to the form of the diffusivity function 
and the terms of the diffusion PDE [17-18,27-28]. However, 
diffusion schemes that depend on other factors of physical 
importance haven’t received much attention in literature.   
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    Here, we investigate the effect of important image features 
on the performance of ultrasound image diffusion scheme. 
The features, namely the image gradient (G), and the proposed 
ultrasound scatterer density parameter (α) at different regions 
in the image, describe edges and scatterer density properties 
along different geometric structures in the image.  
 

1.  Image Gradient  
Gradient edge detection is the most widely used technique 

to weight the nonlinear diffusion filters. Here, the image f 
(x,y) , (x,y) Є R2, is convolved with only two kernels, one 
estimating the gradient in the x-direction, Gx, the other is the 
gradient in the y-direction, Gy. The absolute gradient 
magnitude is given by:  

22
yGGf x +=∇ ,                            (5)                                    

 
2.  Ultrasound Speckle Patterns and Scatterer Density 
The Rayleigh distribution models the scatterer density 

where a large (infinite) number of uniformly distributed small 
size scatterers (compared to the wavelength of the ultrasound 
wave) are present. But this scenario is satisfied in very limited 
situations [14]. In general, the “effective” number of scatterers 
is finite. Thus there is a need to model the situation with 
smaller scatterer density. A general distribution that accounts 
for small scatterer density was proposed by V. Dutt in [5,19]. 
The envelope of the received backscattered signal A can be 
evaluated as:  

( )
1

1( ) 2 ( )
2
A bp A K bA

α α

αα

+

−
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,          (6)           

where 
2

4
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b
E A

α
= and Kβ() is the modified Bessel function of 

the second kind of order β. 
This distribution is the so-called the K distribution. It gives 

a generalization of the Rayleigh distribution to account for 
small scatterer density. Dutt shows that the parameter α of the 
envelope of the amplitude density function could be treated as 
the “effective” number of scatterers per resolution cell. Next, 
we show how to evaluate this parameter from the K 
distribution moments [5-19].  
The moments of K distributed data have a closed form 
expression as: 

2 / 2

/ 2

(2 ) (1 / 2) ( / 2){ }
( )
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η
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Γ + Γ +
=

Γ
        (7)                                                                                                          

Because the moments have closed form expressions, one 
can devise methods of estimating the parameters of K 
distributed data based on sample moments estimated from the 
data. Several methods have been proposed to estimate α from 
normalized moments [6]. A method that employs lower order 
moments is the method of the second- and fourth-order 
moments. This method is as follows. Using (7), the 
normalized ratio of the fourth moment to the second moment 
squared can be written as:  

4

2 2

{ } 12(1 )
{ }

E A
E A α

= +            (8)                                                                                

This equation suggests an estimate for α using the sample 
fourth-order moment, μ4, and second-order moment, μ2 , as: 

4
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α μ
μ

=
−

,                               (9)                   

where the sample moments are given by: 

1

1 N

i
i

A
N

ν
νμ

=

= ∑ ,                (10)                   

where the Ai are the N samples of the envelope of the received 
backscattered signal used to estimate the parameters of the K 
distributed data from fourth-order moment, μ4, and second-
order moment, μ2 for a window of size WxW. μ2 and μ4  can 
be directly calculated from the window histogram. The 
scatterer density parameter (α) was used in the 
characterization of reperfused infracted myocardium from 
high frequency intracardiac ultrasound imaging [36-38] for 
large window size of 33x32 for a range of α from 2 to 15 for 
the myocardium region. This research [36-38] showed 
significant results that characterize the normal from infracted 
myocardium. In our method a smaller windows of size 3x3, 
5x5, 7x7, 9x9, and 11x11 are studied. We also calculate the 
average α value (αov) for the whole image as a global measure 
of the evolution of the diffusion equation weighted by α. In 
SDWND method, we propose to weight the diffusion process 
with the gradient and scatterer density, thus covering whole 
information contents of structure geometry and scatterer 
density that models the speckle patterns of the K-distribution. 
 
     C.  Flow of the Diffusion Denoising Process 
     The diffusion equation can be written in the general form 
as: 

)),,(),,((),,( tyxUtyxCtyxU
t

∇•∇=
∂
∂      (11) 

where “•” represents the inner product of two vectors. When 
C is a constant, the diffusion process is isotropic. When C is a 
function of the directional parameters, the process becomes 
anisotropic.  To solve the above partial differential equation 
(PDE), the original image uo is used as the initial condition 
and the Neumann boundary condition is applied to the image 
borders: 

u(x,y,t)t=0=uo=f(x,y) ,   ənu=0.          (12) 
The Neumann boundary condition avoids the energy loss in 
the image boundary during the evolution of the diffusion 
process. There are some common diffusivity functions [18] in 
the literature. Some of these functions are shown below: 

Perona-Malik 1:    )1/(1),,( 2

2

K
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Weikert (with m=2, 3, and 4)              
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where       )21)(exp(1 mCC mm +−=                   (17) 
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For m=2, 3, and 4, Cm=2.33666, 2.9183, and 3.31488.  
C(x,y,t) varies as anisotropic scalar function of the image data, 
and is small where the gradient of the image is large, resulting 
in lower diffusivity near the edges. The conductance 
parameter K enables backward diffusion [17] when it is 
smaller than the gradient σU∇ , thus enhancing the edges. As 
the image is smoothed, and the unwanted intensity variations 
diminish faster than the signal, the gradient measurements 
become more reliable. The early work of Perona-Malik 
resulted in an ill-posed problem, where images close to each 
other could produce divergent solutions and very different 
edges [17]. The common solution to this problem was to use a 
regularized (smoothed) version of the image to calculate the 
gradient in (13-16). Thus we calculated the gradient using the 
regularized version by the following equation: 

)),,(*( tyxUGU
τσσ ∇=∇ ,         (18) 

where Gστ * is the Gaussian convolution with the image. The 
gradient is taken after the image at time t is smoothed by 
convolution with a Gaussian of standard deviation στ. The 
parameter στ can be decreased with time evolution however in 
our experiments we kept it constant and equal to one (the 
order of one pixel size) through the evolution of the diffusion 
process. 
 
    1.  Solution of the Diffusion Equation  

We followed Weickert’s method [12,27] to solve the 
nonlinear diffusion equation.       
The 1D diffusion equation is given as:  

))(( 2 uuCu xxxt ∂∂∂=∂ σ              (19) 
The explicit scheme resulted from the discretization of 
nonlinear equation yields: 

kkkk uuAuu )(1 τ+=+ ,           (20) 
where uk+1, and uk are the u values at iterations k and k+1 of 
time step size τ, where discrete time tk=k.τ. The distance 
between the centers of the pixels(i,j), referred to as the grid 
spacing, is h.  
The elements of the matrix A(uk) are defined as: 
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The semi-implicit scheme resulted from the discretization of 
nonlinear equation yields: 

1
1

)( +
+

=
− kk

kk

uuAuu
τ             (22) 

This leads to the scheme: 
kkk uuuAI =− +1)}({ τ           (23) 

The 2D equation discretization gives rise to the explicit 
equation: 

kk
y

k
x

kk uuAuAuu )}()({1 ++=+ τ
        (24) 

 and gives rise to the semi-implicit discretization: 
kkk

y
k

x uuuAuAI =+− +1))}()(({ τ      (25) 

A is a tridiagonal matrix, with nonzeros along the main 
diagonal (j=i), the first super-diagonal (j=i+1) and the first 
sub-diagonal (j=i-1), where i is the row number and j is the 
column number in the matrix. As a result of this sparsity, the 
matrix-vector multiply requires few operations and the explicit 
approach is computationally very efficient. However, it 
requires small time steps for stability. As a result, more time 
steps are required to reach a particular time tk. The semi-
implicit scheme doesn’t give the solution u[k+1] explicitly. It 
requires solving a linear system first. So, it is called a linear-
implicit (semi-implicit) scheme. The main advantage of this 
scheme is that it is stable for large time steps,  

τ  = Tk/ kn                                (26) 
Where τ is the time step size and Tk is the discrete time where 
kn Є IN0 is the number of iterations. Higher τ means more 
diffusion however Weickert [27,18] and others stated that 
many nonlinear diffusion problems require only the 
elimination of noise and some small-scale details. Often this 
can be accomplished with τ not more than 5. Solving the 
system of equations was performed using Thomas algorithm, 
which is a Gaussian elimination algorithm for tridiagonal 
systems.  The update equation used in 2D case is the semi-
implicit scheme, using additive operator splitting (AOS) given 
as: 

kk
y

k
x

k uuAIuAIu )}))((2())((2{(
2
1 111 −−+ −+−= ττ     (27) 

This reduces to the solution of two tridiagonal systems. This 
operator is first order accurate in time and the AOS scheme is 
stable for large time steps. The semi-implicit scheme has 
shown unconditional stability in the scalar nonlinear 
anisotropic diffusion for any time step.   
 
     2.  Proposed Diffusivity Function  
     We propose the diffusivity function C(x,y,t)  given as: 

)(),,( UCtyxC ∇•= α ,                (28) 

where ”•” is the product operator. Using any of the diffusivity 
functions in the literature, for example Perona-Malik 1, and 
extending this function to include a weighted α, for local 
region, in addition to the gradient, thus C(x,y,t) becomes: 

)
).(

1/(1),,( 2

2

K
U

tyxC σα ∇
+=                          (29) 

     This equation weights the diffusivity function with gradient 
magnitude and the proposed scatterer density measure (α), 
which are locally calculated for a window WxW. The function 
C(x,y,t) is estimated at each time, t, of the diffusion process 
and can take any form of the monotonically decreasing 
diffusivity functions in the literature. Our diffusivity function 
is anisotropic in the sense that it varies at each point in the 
image surrounded by local region WxW and with the degree 
of anisotropy in the gradient (edge extent) and scatterer 
density (speckle patterns). It is implemented in 2D as in (21 
and 27) as a function of directions, yet it is not in a tensor 
formulation as in [14,18]. According to Weickert, it can be 
modified to a tensor formulation as in [18] assuming λ2=1 and 
λ1=our C(x,y,t) defined in (29). In this paper we studied only 
the isotropic case and the tensor formulation for both edge 
preservation and coherence enhancement is currently under 
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study. The proposed model does not only preserve edges but 
also reduce speckle noise by incorporating the local tissue α 
into the diffusivity equation. From the functional point of 
view, diffusivity function combines both isotropic and 
anisotropic diffusions.  According to the extent of the local 
speckle regions and image anisotropy, the function changes 
from isotropic diffusion to anisotropic one. In homogenous 
regions where there is low information described by the 
gradient magnitude as a measure of the edges, and α as a 
measure of scatterer density forming speckle pattern, the 
diffusion process reduces to isotropic one. In the case of 
regions of high information contained in the parameters with 
different weights, especially at edges, interfaces, vessels, 
speckled and textured regions, the diffusion process is 
anisotropic as a function of these parameters, thus operating 
adaptively depending on the relative contents of these 
parameters in the locally analyzed regions. 
 

3.  Image Quality Measures 
The RMSE, SNR, and PSNR are image quality measures 

and are given as: 
2/1

1 1

2 ))),(),((1( ∑∑
= =

−=
N

i

M

j
denoisedoriginal jiujiu

NM
RMSE       (30) 

)/1(log20)( 10 RMSEdBPSNR =            (31) 

)/(log10)( 22
10 eudBSNR σσ=                            (32)   
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N

i

M

j
denoisedoriginale jiujiu

NM
σ           (33)    

where 2
uσ  is the variance of the denoised image. 

In addition to these image quality measures, we calculated the 
universal image quality index (Q) defined in [41], where it 
measures the distortion between two images (noise free and 
noisy images), modeled as a combination of three factors, the 
loss of correlation, luminance distortion, and contrast 
distortion. In our analysis, we computed Q as an average of all 
Q values at each pixel. The local Q value for each pixel is 
calculated for a sliding window of 8x8 as in [40-41].  The 
dynamic range of Q is between [-1,1], the best value of Q=1 is 
achieved if and only if the two images are equal. The higher 
the Q values, the less the distortion between the original and 
the processed image is. In our experiments, we calculated 
SNR, PSNR, and Q for a grey-scale images normalized from 
0-255 grey-scales to 0-1.  In addition to these measures, we 
calculated the αov, to be added to these image quality measures 
to evaluate the degree of diffusion process. The quantitative 
measure of edge preserving or edge enhancement is calculated 
by the Pratt’s figure of merit (FOM), to give a quantitative 
evaluation, and is defined in [42]. In calculating FOM, we 
used the λ parameter to be 1/9. The dynamic range of FOM is 
between [0,1]. Higher FOM value indicates better edge 
matching between processed and ideal image. In calculating 
FOM, we used the resulted Canny edge map of the diffused 
image and compared it to the ideal phantom reference Canny 
edge map image. Now we have quantitative and qualitative 
evaluations for both image quality and edge preservation. The 
SNR, PSNR, and Q are the quantitative evaluation of image 
quality. The diffused images with evolution of diffusion 
process and the 2D maps of different parameters are 

qualitative measures of image quality. The quantitative 
measure of edge preservation is the FOM measure. The 
qualitative measures of edges are the Canny edge map and the 
gradient map. In order to have an overall index for image and 
segmentation quality, let us define the following index as: 

FOMQ •=γ                                     (34) 
This index, γ, is an overall image and segmentation quality 
index. 
  

4.  Diffusion Parameters  
We followed Weickert’s rule-of-thumb in his paper [27] 

where he stated that many nonlinear diffusion problems 
require only the elimination of noise and some small-scale 
details. Often this can be accomplished with no more than 5 
discrete time steps. So in some experiments we fixed τ to be 
equal to 5 in order to see the effect of weighting the diffusivity 
function with the new proposed image parameters. The 
conductance parameter, K, can be used as a time varying 
function as in [28] in order to cool down the system. The 
value of K is used to balance the amount of forward diffusion 
(where everything is smoothed) and backward diffusion 
(where contrast enhancement is happened). We have tested 
the algorithm for different values of τ. We measured the 
quality of diffusion in SNR, PSNR, Q, FOM, γ, α, the detected 
canny edge map, and the visual inspection of the diffused 
image, and the 2D maps for α and gradient, and the evolution 
of the overall image average scatterer density(αov). The 
denoising process is accomplished with good compromise 
between efficiency and accuracy for τ=3-5, similar to what 
Weickert observed [12,27]. We have tested the effect of time 
step size τ  on the diffusion process and we have found our 
experiment agree with Weickert who stated that we can 
achieve a good denoising (a compromise between efficiency 
and accuracy) in no more than 5 discrete time steps. We have 
adopted the AOS algorithm illustrated in [12] in the 2D case in 
(27) and by replacing the diffusivity matrix with our proposed 
equation (29). We fixed the value for the grid size h1 and h2 
equal to 1, since all the test and clinical images have an aspect 
ratio of 1.  We have studied the dependence on the 
conductance, K, and got the compromized value that allows 
forward and backward diffusion processes, and then we used 
it in other experiments. 

 
5.  Proposed Stopping Function 
In our experimental result of varying τ, and using the 

diffusivity function shown in (29), we found that it can be 
achieved for τ≤5. The noise is completely removed as in Figs. 
2-3 and this is shown in the time evolution curve of Fig. 4, 
which shows the αov with iterations, as well, with the progress 
of other quality measures (SNR, PSNR, Q, FOM, and γ). 
According to Weickert’s criteria, our findings, and 
observation of the scatterer density and overall image and 
segmentation quality (γ) behaviors with different values of τ 
and iterations, we propose the following time varying 
stopping function to stop the diffusion process as a function of 
consecutive quality measures. Since when no major γ or αov 
variations occur between two consecutive discrete time steps 
(equilibrium state) is equivalent to some quality measure 
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between two consecutive diffused images, we propose the 
following normalized criteria to stop the ultrasound denoising 
process: 

δ
αγ

αγαγ
<

−++
)0().0(

)().()1().1(

ov

ovov kkkk       (35) 

where γ(k+1) and γ(k) are the overall image and segmentation 
quality at iterations k+1 and k, respectively. γ(0) is the initial 
overall image and segmentation quality of the noisy speckled 
image. αov(k+1) and αov(k) are the overall average image 
scatterer densities at iterations k+1 and k, respectively. αov(0) 
is the initial image average scatterer density of the noisy 
speckled image. The parameter, δ, is defined as a certain 
threshold to stop the diffusion process. The value of δ was 
experimentally found to be in the range of 2-3% for different 
ultrasound test phantom and clinical images of different 
speckle patterns. So the diffusion process will stop whenever 
this condition (δ < 3%) or stopping time is reached. This δ 
value < 3%, between two consecutive diffused images is 
equivalent to a change in PSNR(dB) <0.5 dB.  
 

6.  Proposed Algorithm 
An iteration k, of the proposed algorithm consists of the 

following steps: 
Step 1) Convolve the image with Gσ of one standard deviation 

as in (18), for σ=1, h1=h2=1, τ=5. For a compromised 
value for conductance (K), let δ=3%. 

Step 2) For each point (x,y) that belong to 2-D space of all real 

numbers, ( ) 2ℜ∈y,x , calculate the gradient magnitude 
as in (5) and overall image and segmentation quality, 
γ, as in (34) for local window of size WxW. 

Step 3) Calculate the Diffusivity matrix, C(x,y,t) at iteration k, 
as in (29). 

Step 4) Construct the Ax and Ay matrices as in (21) from the 
calculated C(x,y,t) at iteration k. 

Step 5) Solve the diffusion equation in (27), to update u(k+1) 
from u(k) and the calculated matrices at step k, using 
the semi-implicit scheme with additive operator 
splitting (AOS). 

Step 6) Finish the whole points in the image then calculate 
γ(k) and αov(k),  and check for the stopping criteria (δ) 
as in (35) as a function of k. 

Step 7) Loop until either stopping criteria in (35) is satisfied 
or discrete time, Tk, as in (26) is reached. 

It is obvious from the shown algorithm that the diffusivity 
function is updated with the resulted gradient and scatterer 
density for each local region of the diffused image, for each 
individual step k. Also δ(k) is calculated at each iteration. A 
minimum number of iterations is 1 in order to calculate δ(0) 
from  γ(1) of the diffused image at iteration 1 and γ(0) of the 
original image.  
 

III. EXPERIMENTAL RESULTS AND EVALUATION 
We investigated and tested the performance of the proposed 

nonlinear diffusion method (SWDNAD) on reducing the 
speckle noise for test phantom and clinical ultrasound images 
using all possible combinations of two factors: the image 

gradient and the scatterer density. We have conducted the 
following experiments in order to select the best choice of 
diffusivity weighting function of our proposed method. That 
is, we tested the performance using each factor alone and two 
at a time. To compare the performance for different choices of 
diffusivities, we used these set of image quality measures 
(SNR, PSNR, and Q), edge preservation (FOM), overall 
image and segmentation quality index (γ), and Canny edge 
detector map in addition to the evolution of αov, scatterer 
density maps, and gradient maps with time steps.  The default 
(if not specified in some experiments) diffusion parameters 
were set as, σ=1, K=0.5, h1=h2=1, τ=5, T=25, Perona-Malik 1 
function, 3x3 window, AOS scheme, and with 5 iterations.  

 
A.  Test Images 
In our experiments, we used a contrast detail phantom 

image (ATS laboratories, Bridgeport, CT). The contrast detail 
phantom was made to produce standard contrast levels from –
15 dB to +12 dB. The phantom image has a resolution of 
256×128 and consists of eight different contrast regions (four 
positive contrast regions and four negative contrast regions). 
Regions are ordered in two rows. The upper row contains 
negative contrast regions while the lower one contains the 
positive contrast regions as shown in Fig. 1. A reference 
image was constructed manually from the speckled image by 
evaluating the mean value in each region [14]. All images 
were acquired at 3.5 Mhz.  
 

B.  2D Maps for Contrast Detail Image 
Fig. 2 shows the evolution of the diffused phantom image 

for 5 iterations of τ=5. Fig. 3 shows the associated Canny edge 
maps of the diffused images. Fig. 3 shows the amount of 
enhancement of the edge map started with the evolution of the 
process for each iteration. Canny edge maps of Fig. 3 show 
that the contrast circles simulating ultrasound hyper positive 
contrast and hypo echoic negative contrast structures in the 
phantom image, started to appear clearly at iterations 4-5.  The 
process started with a non-meaningful edge map of the 
original image and ended with a meaningful Canny edge map 
after 4-5 iterations.  At iteration 5, it is shown from Fig. 5 that 
the major scatterer regions are around the 8 contrast circles 
due to the large number of scattering found at the interfaces 
between different tissue. In ultrasound imaging, different 
distribution of collagen, elastic fibers, and vessels containing 
blood is one of the major sources of scattering of the 
ultrasound beam.  Fig. 4 shows the scatterer density evolution 
with the 5 iterations. There is a progressive decrease in the 
value of the image αov from 0.6518, 0.4026, 0.3146, 2691, 
0.2438, to 0.2249 after 5 iterations, which represents a 34.5 % 
of the original αov value.  The Q values decreases from 1, 
0.8476, 0.6312, 0.4692, 0.3598, to 0.2860. The FOM changes 
from 0.1813, 0.176, 0.1763, 0.1886, 0.2045, to 0.2163. The γ 
value changes from 0.1813, 0.14473, 0.1112, 0.08849, 
0.0735, to 0.0618. The δ calculated values for the 5 iterations 
are 21.35%, 8.36%, 4.02%, 2.11%, and 1.44%. In our 
stopping criteria defined in (35), we proposed to stop the 
diffusion process at iteration 4 since it satisfies the 
quantitative value of the defined stopping threshold (δ<3%). 
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This value was empirically suitable for most clinical 
ultrasound images experimented. 
 
     C.  Conductance Parameter (K) Choice on SDWND  
     The conductance parameter K represents the steepness of 
the decreasing monotonically diffusivity function. The value 
of K is used to balance the amount of forward diffusion 
(where everything is smoothed, K ≥ |G.α|) and backward 
diffusion (where edge contrast enhancement is happened, K < 
| σU .α|). To study the performance of the diffusion process 
with different conductance values of K=0.001,0.01,0.1 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 10, 100, and 1000. 
We conducted the following experiment for τ = 5 and for 5 
iterations, for Perona-Malik 1 function with AOS scheme, and 
using other default values in section III.  Table I shows the 
effect of the conductance parameter on the quality diffusion of 
the process. For K=10, 100, and 1000, the results are 
unchanged since (forward diffusion where everything is 
smoothed, K >| σU .α|). Figs. 6-7 show the resulted diffusion 
images and its associated Canny edge maps. We can observe 
that the K interval in which there is a smoothing and edge 
preservation is between 0.1 and 2.  Fig. 8 show plots of Q, 
FOM, γ, and αov versus K for the three diffusivity functions in 
(36-38). Fig. 8-a shows Q as a decreasing function with K. 
Fig. 8-b shows FOM as an increasing function with K. Fig. 8-
c shows γ as a decreasing function with K. Fig. 8-d shows αov 
as a decreasing function with K. The value for K that show a 
compromise for smoothing and edge preservation was selected 
at K=0.5. 
 

TABLE I 
SNR, PSNR, Q, FOM, Γ , AND ΑOV COMPARISON WITH DIFFERENT 

CONDUCTANCE K , FOR  ORIGINAL  CONTRAST DETAIL PHANTOM IMAGE OF 
ORIGINAL ΑOV = 0.6518, FOM WITH IDEAL=0.18131, Q WITH IDEAL =0.04635 

K SNR PSNR Q FOM γ αov 
0.001 24.927 45.194 0.994 0.181 0.180 0.6309 
0.01 16.349 36.616 0.963 0.182 0.176 0.5458 
0.1 8.167 28.434 0.707 0.188 0.133 0.361 
0.2 6.039 26.306 0.506 0.196 0.099 0.2944 
0.3 5.13 25.397 0.391 0.202 0.079 0.2600 
0.4 4.663 24.929 0.326 0.211 0.069 0.239 
0.5 4.379 24.646 0.286 0.216 0.062 0.2249 
0.6 4.191 24.458 0.26 0.221 0.057 0.2155 
0.7 4.062 24.329 0.242 0.220 0.053 0.2089 
0.8 3.97 24.237 0.231 0.211 0.051 0.2044 
0.9 3.898 24.165 0.221 0.242 0.053 0.2021 
1 3.84 24.107 0.214 0.239 0.051 0.2002 
1.5 3.691 23.958 0.197 0.250 0.049 0.196 
2 3.63 23.897 0.19 0.252 0.048 0.1942 
10 3.545 23.812 0.181 0.272 0.049 0.1925 
100 3.541 23.808 0.181 0.271 0.049 0.1924 
1000 3.541 23.808 0.181 0.271 0.049 0.1924 

 
D.  Comparison between Linear and Nonlinear Diffusions     
In this experiment, we compared the performance of linear 

isotropic (D≡1 as Gaussian filter) and nonlinear diffusions 
weighted by (29).  The diffusion parameters were set as σ=1, 
K=0.5, h1=h2=1, τ=5, T=25, Perona-Malik 1 function with 
AOS scheme. This was set for gradient and all parameters 
diffusion while in Gaussian removal using the Gaussian 
convolution with standard deviation σ, is equivalent to linear 
diffusion filtering (D=1) for some time T= σ2/2 for one time 

step as in [12], for linear diffusion and with using AOS stable 
scheme, and taking into our considerations of σ to be in the 
order of the pixel size. 
     Table II and Figs. 9-10 show an overall enhancement of 
the different quality measures by the three methods compared 
with the quality measure between the phantom image and the 
reference image. However a slight decrease of image quality 
measures of the phantom occurred, we achieved the highest 
FOM value when the diffusion equation was weighted by our 
method of diffusivity (all parameters), as there is an increase 
of the FOM value of 0.2163 when weighted by (29) compared 
to 0.1776 for Gaussian linear filter, and 0.201 when weighted 
by Gradient nonlinear diffusion only.  Fig. 7 shows how the 
phantom image has a vague edge map and how the best edge 
map was achieved when we weight the diffusivity function by 
the two parameters. Since the highest FOM for the phantom 
image was obtained when incorporating the two parameters 
into the diffusivity function and the difference in the different 
quality measures is very small (< 0.5 dB PSNR) as observed 
in the visual quality of images, we studied different choices of 
parameters in diffusivity function on the performance of the 
diffusion process in section III-F. However both Gaussian 
processes in the phantom images have a higher quality 
measures, it is not suitable for any automatic segmentation or 
active contour processes (lower FOM value, vaguer edge map, 
and Gaussian filter changes the position of edges) while the 
images diffused using (29) have higher FOM, better edge 
map, and is suitable for automatic segmentation issues. 
 

TABLE II 
COMPARISON BETWEEN QUALITY MEASURES AND THE PROPOSED SCATTERER 

DENSITY MEASURE FOR ULTRASOUND DIFFUSION PROCESS OF PHANTOM 
IMAGE OF ORIGINAL ΑOV = 0.6518, FOM WITH IDEAL =0.18131, Q WITH 

IDEAL =0.04635 
Diffusion SNR PSNR Q FOM γ αov 
Gaussian 6.547 26.914 0.615 0.177 0.109 0.3393 

σU∇  
4.821 25.088 0.352 0.201 0.070 0.2487 

σU∇ .α 
4.379 24.646 0.286 0.216 0.062 0.2249 

 
 

E.  SDWND in Removing Noise and Preserving Edges 
In order to evaluate the capability of the SDWND in 

removing noise with preserving edges and image features, we 
have chosen some clinical test ultrasound images for fetal face 
(Fig. 11 of 580x433 pixels), heart (Fig. 12 of 256x256 pixels), 
and phantom reference (Fig. 13 of 256x128 pixels) of 
different edges, texture, speckle, and scattering properties. In 
order to evaluate the effects of applying our diffusion-based 
denoising filter, we have added Gaussian noise, with standard 
deviation of 20, to each of the images shown in Figs 11-13. 
Using diffusion parameters set as σ=1, K=0.5, h1=h2=1, τ=5, 
T=25, Perona-Malik 1 function, and with AOS scheme. The 
diffusion process using our proposed method is applied to the 
noisy images. The effectiveness in removing the noise is 
obtained by different quality measures, edge measures, and 
the 2D edge, gradient and scatterer density maps. The 
performance results in Table III show the capability of the 
proposed SDWND method to reduce the noise in all the 
clinical and test noisy images, and do so without blurring or 
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changing the location of the edges as well to preserve basic 
image features as shown in the resulted denoised images with 
its associated Canny edge maps. The original Canny edge 
maps for the whole images are quite vague and not suitable at 
all for automatic segmentation process, while the resulted 
Canny edge maps of the SDWND diffused images show 
significant edge enhancement and edge preservation of the 
different original anatomy.  

 
TABLE III 

SNR, PSNR, AND Q COMPARISON O FIGS.(11-16), USING DIFFUSIVITY IN (29) 
Images SNR PSNR Q 
Face before denoising 2.784 19.406 0.1568 
Face after denoising 5.888 23.005 0.2232 
Heart before denoising 4.926 18.726 0.2351 
Heart after denoising 7.947 21.747 0.3201 
Phantom Reference before densoising -2.818 20.635 0.0647 
Phantom Reference after densoising 10.794 34.248 0.1952 

 
Figs. 11-13 show these difficulties on the noisy images to 
track shapes of the anatomy of fetal face in Fig. 11 for 
automatic 3D segmentation and 3D rendering of fetal face, 
heart chambers with valves in Fig. 12 for volumetric 4D 
measurements and analysis of the valves patterns in 4D, and 
hypoechoic structures of negative contrast simulating vessels 
and hyperechoic structures of positive contrast simulating 
tumors in  Fig. 13, which is used in B-mode ultrasound 
machines calibration and quality control, to determine and 
calibrate ultrasound machine parameters and thus correcting 
measurements (area/volume). In Figs. 14-16, it is easy to 
segment and detect these anatomical shapes as it is clearly 
shown in its associated canny edge maps. In Figs. 13 and 16, 
it is observed that the circular contrast structures in the 
phantom reference image are clearly delineated and edge 
detected which was not clear in the edge map of Fig. 13. The 
resulted gradient and scatterer density maps show the relative 
contents of these features in the noisy reference image, where 
the resulted image has a small number of scatterer density per 
unit cell and the image contains clear gradient structures of 
those circles. Table III shows a remarkable increase of the 
SNR, PSNR, and Q for before and after denoising of the 
phantom reference and other clinical images. Figs. 14-16, the 
basic gradient of the important structures of the anatomy is 
preserved with the important texture information contained in 
the varieties of the shown texture images. Thus, the active 
contour process will remain stuck in ambiguous contours of 
Figs 11-13 due to the existence of the noise. Also in cases of 
automatic detection of 2D or 3D objects of a priori known 
shapes with any method such as Hough transform, it will be 
easier to detect predefined anatomical shapes (vessels, heart 
chambers shape, fetal head, fetal face, and contrast circles), 
when we apply the diffusion process to the noisy images. It is 
more accurate to calculate automatic 3D volumetric 
measurements to predict, for example, expected fetal birth 
date, to quantify some heart diseases with the 4D calculation 
of 3D volumes with cardiac cycles, and to quantify some 3D 
volumetrics for a hypo or hyperechoic tumors for further 
surgical planning or treatment. 
 

F.  Choice of Parameters in Weighting SDWND 
To select the best choice of diffusivity function, we applied 

the following experiments on the contrast detail phantom 
image, using Perona-Malik-1 with the default diffusion 
parameters set as in section III of σ=1, K=0.5, h1=h2=1, τ=5, 
T=25, 3x3 window,  AOS scheme, and with 5 iterations. We 
tested the following three normalized functions for standard 
gradient weighting, scatterer density weighting, and the 
multiplication of both on the diffusion quality (Image and 
segmentation quality). 

)1/(1),,( 2

2
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tyxC σ∇
+=                       (36) 
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     Table IV, Fig. 17, and Fig. 8 at k=0.5 show the results of 
using these three functions to weight the diffusion of the 
phantom image. We observed that the phantom image has 
experienced a progressive increase in the image quality and 
segmentation quality and experienced a decrease in the αov as 
time evolves.  The result shows that the diffusion using the 
scatterer density only can essentially perform equally or better 
than the diffusion depending on the gradient only. The image 
quality measures using scatterer density alone has the highest 
values. However, the gradient is an indispensable factor that 
should be present in the diffusivity weighting. The highest 
FOM value was achieved for the function shown in (38) 
which shows the importance of adding the scatterer density in 
the diffusivity function. We concluded that by incorporating 
the gradient magnitude multiplied by the scatterer density into 
the diffusivity function, we can gain better performance in 
terms of noise removal and edge preservation. Table IV shows 
that the phantom noisy image has experienced a progressive 
decrease in the αov as time evolves.  Also the αov of the 
diffused phantom image has experienced a very small 
decrease compared to gradient weighting alone. 
 

TABLE IV 
SNR, PSNR, Q, FOM, Γ, AND ΑOV COMPARISON OF DIFFERENT CHOICES OF 

DIFFUSIVITY PARAMETERS FOR ORIGINAL CONTRAST DETAIL PHANTOM 
IMAGE OF ORIGINAL ΑOV = 0.6518, FOM WITH IDEAL =0.18131, Q WITH 

IDEAL =0.04635 
Parameters SNR PSNR Q FOM γ αov 

σU∇  4.821 25.088 0.352 0.201 0.071 0.2487 

α 4.806 25.073 0.36 0.205 0.074 0.2449 

σU∇ .α 4.379 24.646 0.286 0.216 0.062 0.2249 

 
     G. Performance of Proposed Choices of Diffusivity 
Function 
     Table IV shows the performance measures (SNR, PSNR, 
Q, FOM, γ), in addition to the αov for different choices of 
diffusivities weighted by different parameters, for the 
phantom image. However, the higher measures do not always 
mean better quality [24,40].  Table IV showed that the highest 
FOM (edge preserving and edge enhancement measure) is for 
the gradient and scatterer density weighted while the highest 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:2, No:1, 2008

9

 

 

quality measures (image distortion measures) are for the 
scatterer density weighted and the gradient weighted. This 
result assures the importance of scatterer density in weighting 
the diffusivity function. In edge preservation, we achieved the 
highest value when we incorporated the scatterer density with 
the gradient. The actual value of the quality measures is not 
physically meaningful, but the comparison between two 
values for different diffused or reconstructed images gives one 
measure of reconstructed or processed quality. Using PSNR 
measure for example in image reconstruction, the MPEG 
committee used an informal threshold of 0.5 dB PSNR to 
decide whether to incorporate a coding optimization since 
they believed that any improvement of that magnitude would 
be visible. However, the differences in PSNR values do not 
exceed 0.5 dB, we have an enhanced denoised visible image 
of good edge map sharpness that can be suitable as a 
preprocessing step for further segmentation or active contour 
processes of organs, tumors, or vessels. In analyzing 
ultrasound images when only texture information can present 
as in the hepatic parenchyma of non-randomly distributed 
speckle patterns with long-range order (NRLR) [5,43,44], it is 
not wise to weight the diffusivity function with the gradient 
alone since the gradient will be a noisy information. When we 
have the whole information contained as a texture due to 
speckle noise, in organ surfaces and blood vessels images that 
contain non-randomly distributed speckle patterns with short-
range order (NRSR) [43], scatterer density weighting can 
perform better than the gradient alone.  In other modalities of 
medical images such as MRI, CT, or PET, a different ratio of 
this information can occur, for example Weickert in his paper 
[12] analyzed MRI images which has a prominent gradient 
information between different tissues of brain (CSF, gray 
matter, white matter, and background), so weighting the 
diffusivity function using only gradient information was 
successful [12] to reduce the speckles while in ultrasound or 
radar images, this gradient only weighting may not be 
successful when not considering the speckle patterns and 
speckle noise formed in the texture. In other imaging 
modalities other than the ultrasound or radar imaging which 
has a speckle noise, one can propose other physical parameter, 
that weight the diffusion process and this can be more 
successful than taking the gradient alone. Lee [30]  designed 
his filter to eliminate speckle noise while preserving edges and 
point features in radar imagery, Frost [31] used an 
exponentially damped convolution kernel that adapts to 
regions containing edges by exploiting local statistics, Yu and 
Acton [34] caste the Lee and Frost filters in the framework of 
the PDE bridges and unified two approaches, the PDE 
approach and the adaptive filtering approach, they derived 
their speckle reducing anisotropic diffusion method (SRAD) 
where [35] used this method and proposed estimation of the 
coefficients of variation based on the SRAD method which all 
were basically based only on the edges information in the 
PDE case. Adding the scatterer density to the diffusion 
weighting process showed to be successful since it is based on 
the K distribution model of ultrasound echoes. We have not 
compared our method with the several methods in the 
literature for speckle reduction but a few of them in section  
III-J, since our main goal in this paper was to propose the 

scattering density into diffusivity function and show its impact 
on the diffusion weighting process and show the degree of 
anisotropy which can not be only in the gradient information 
that measure edginess in images, but also with scattering 
density which results in a different distribution of scatterers 
and speckle patterns within the resolution cell forming the 
ultrasound texture. 
 

H.  SDWND for Large Number of Iterations  
To compare the performance of the SWDNAD nonlinear 

diffusion and linear diffusion processes for large number of 
iterations, we have peformed the following study using τ=5, 
and using Perona-Malik 1 function with AOS scheme, for 100 
iterations. For linear diffusion, it is well know that one step 
Gaussian convolution with standard deviation σ is equivalent 
to linear diffusion filtering (D≡1) for some time T= σ2/2 as in 
[12] for single step linear diffusion, with using AOS stable 
scheme, and for taking into our considerations that σ is in the 
order of magnitude of the pixel size. In SDWND method the 
FOM is increasing smoothly up to 50 iterations, then decays 
very smoothly with small decrease at iteration 100. This FOM 
pattern showed the capability of the SDWND method in 
preserving edges without changing its position even with large 
number of iterations. Fig. 18 shows a decreasing pattern for 
αov, Q, and γ with iterations while the FOM pattern increases 
remarkably till iteration 25 with the largest FOM value of 
0.5382 then decreases smoothly with iterations. 
 

I.  Automatic Stopping Criteria Evaluation for SDWND  
To study the automatic stopping function behavior with 

large number of iterations, we conducted the experiment on 
the phantom image diffusion process, for τ=5 and 100 
iterations. From Figs. 18-19, our defined criteria for automatic 
stopping in (35), was reached after 3 iterations (value for 
δ=2.7% which is<3%). The associated values for the Q, FOM, 
γ, and αov at iteration 3 are 0.2906, 0.2065, 0.06, and 0.2143, 
respectively. 
 

J.  Comparison between SDWND and Other Methods 
To compare the performance of our proposed SDWND 

method with some existing speckle reduction and coherent 
enhancement methods such as NCD, AWFM, WS, and 
WSCE, we performed the following comparison for τ=5 and 
for 5 iterations. In our method, we used Perona-Malik 1 
function with AOS scheme for the same settings in section III. 

Figs. 20-21 and Table V show a comparison of our 
proposed method (SDWND) with NCD, AWFM, WS, and 
WCSE methods.  Diffused image using SDWND have the 
highest SNR, PSNR, and FOM compared to all other methods. 
However the WS and WSCE methods has higher Q values 
than SDWND, it has not resolved most of the circles in the 
Canny edge map, the way the SDWND method did, and it has  
a lower FOM (edge preservation) values of 0.171 and 0.177 
compared to 0.216 for the SDWND. The scatterer density 
value obtained with SDWND is the least value compared to 
all other methods. This showed the capability of the SDWND 
method to diffuse regions of larger scatterer density more than 
all other methods and remarkably preserves the edges. The 
resulting edge map using SDWND showed higher quality 
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measures and edge preservation than the NCD method. 
SDWND has a higher overall measure compared to NCD 
method. Despite the fact that NCD method is based on tensor 
formulation, we achieved a much better results in terms of 
quality measures and edge preservation. Although the 
diffusivity tensor provided by [14] was successful compared 
to AWFM, WS, and WSCE methods, it may not be effective 
for spatially correlated and heavy-tail distributed speckle noise 
[40]. In our method, we overcome this spatial correlation 
problem illustrated in [40] by calculating scatterer density in a 
window and we tested different window size in order to 
overcome the problem that some speckles may occupy several 
pixels in size.   To summarize, SDWND method were capable 
to diffuse regions of speckle noise (reduction of speckle 
noise), diffuse regions of high scatterer densities, preserve 
edges (highest FOM), and maintain the highest quality 
measures compared to other methods. 

 
TABLE V 

SNR, PSNR, Q, FOM, Γ, AND ΑOV COMPARISON BETWEEN SDWND, NCD, 
AWFM, WS, AND WSCE, FOR ORIGINAL CONTRAST DETAIL PHANTOM 
IMAGE OF ORIGINAL ΑOV = 0.6518, FOM WITH IDEAL =0.18131, Q WITH 

IDEAL =0.04635 
Method SNR PSNR Q FOM γ αov 

SDWND 4.379 24.646 0.286 0.216 0.062 0.2249 
NCD 3.618 23.885 0.232 0.200 0.046 0.2329 

AWFM 3.712 23.979 0.264 0.184 0.049 0.2814 
WS 4.127 24.393 0.381 0.171 0.065 0.2982 

WSCE 3.150 23.468 0.442 0.177 0.078 0.5094 
 

IV. DISCUSSIONS AND CONCLUSIONS 
First, we proposed a new method for nonlinear anisotropic 

diffusion (SDWND) weighted by features extracted from 
ultrasound image, and have physical models related to 
ultrasound imaging. Second, we proposed a new algorithm 
with new automatic stopping criteria in order to evolve and 
stop the diffusion process with a good quality of the processed 
image measured in quantitative and qualitative image quality 
and edge preservation measures. Then, we tested and tuned 
different parameters and factors that affect the diffusion 
process, in order to reach the best tuning of our SDWND 
method for both testing phantoms and clinical ultrasound 
images. We investigated the performance of nonlinear 
diffusion filters on reducing the speckle noise with the choice 
of diffusivity function adding scattere density to gradient.   

From our experiments, we can confirm that the introduction 
of scatterer density into the diffusion process increases the 
performance of the nonlinear diffusion process in removing 
the speckle noise and preserving the important structures and 
edges of the image. The new parameter proposed to weight 
the nonlinear diffusion process in addition to gradient, makes 
sense because they have a strong physical meaning and 
models related to ultrasound imaging.  We also showed the 
better performance of our method (SDWND) as nonlinear 
anisotropic speckle reduction method over some of the 
existing methods for speckle reduction in the literature, such 
as NCD, AWFM, WS, and WSCE. SDWND method can be 
used in denoising other imaging modalities such as MRI and 
CT. The proposed method showed a better quality of diffusion 

and better edge map compared to linear diffusion and other 
nonlinear tensor and non tensor based coherent enhancement 
diffusion methods.   

SDWND can be used as a preprocessing step before 
applying any automatic segmentation or active contour 
processes. Other parameters of relative importance in 
modeling the speckle noise and measuring the image quality 
could be tested similarly for potential use, as weighting 
parameters of the ultrasound nonlinear diffusion filters. The 
codes in our experiments were implemented in Matlab version 
7.04 and using a P4 machine of 2 GHz processor.  The 
calculation of gradient, scatterer density parameters and the 
evolution of the diffusion process takes less than a second for 
the 5 iterations. Our main goal was to investigate the 
introduction of scatterer density in the weighting process of 
ultrasound diffusion denoising and evaluation of the nonlinear 
diffusion process. The introduction of scatterer density into 
the diffusion process for the isotropic case was shown to have 
a better performance in terms of image quality and edge 
preservations. We are currently studying the importance of 
scatterer density in edge and coherent enhancement nonlinear 
anisotropic diffusion methods in formulating the tensor 
matrix.  
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(d) 

Fig. 1 Contrast detail phantom of resolution 256x128 (a), and its Canny edge map (b), Reference contrast detail phantom (c), and its Canny 
edge map (d) 

 

   

  
Fig. 2 Diffused images at iterations 1, 2, 3, 4, and 5 

 

   

  
Fig. 3 Canny edge maps at iterations 1, 2, 3, 4, and 5 
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Fig. 4 Time evolution of the αov of the phantom image through diffusion using (29) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Normalized Gradient (a,b) and Scatterer density (c,d) maps at iteration 1 and 5 
 
 

   

   

   
Fig. 6 Diffused images for K=0.01, 0.1, 0.5, 1, 1.5, 2, 10, 100, and 1000 
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Fig. 7 Canny edge maps for diffused images for K=0.01, 0.1, 0.5, 1, 1.5, 2, 10, 100, and 1000 
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(d) 

Fig. 8 Q (a), FOM (b), γ (c), and αov (d) plots versus Conductance K for the three diffusivity functions in (36-38) 
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Fig. 9 Original phantom image (a), reference image (b), diffused image using Gaussian with σ=1 (c), gradient weighted nonlinear diffusion (d), 

and using our diffusivity function (e) weighted by (31) 
 

   

  
Fig. 10 Canny edge maps for Fig. 9 
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(b) 
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(d) 

Fig. 11 Fetal face original image (a), corresponding image with additive Gaussian noise of standard deviation of 20 (b), original  Canny edge 
map (c), Gaussian noisy Canny edge map (d) 
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Fig. 12 Heart original image (a), its corresponding image with additive Gaussian noise of standard deviation of 20 (b), original  Canny edge 
map (c), Gaussian noisy Canny edge map (d) 
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(e) (f) 

Fig. 13 Phantom reference original image (a), its corresponding image with additive Gaussian noise of standard deviation of 20 (b), riginal  
reference Canny edge map (c), Gaussian noisy Canny edge map (d), normalized noisy gradient map (e), normalized noisy scatterer density 

map (f) 
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Fig. 14 Diffused fetal face image and its Canny edge map 

 

  
Fig. 15 Diffused heart image and its Canny edge map 
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(c) 

 
(d) 

Fig. 16 Diffused noisy phantom reference image (a), its Canny edge map (b), its normalized gradient map (d), and normalized its scatterer 
density map (e) 
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Fig. 17 Diffused images using the three diffusivity functions in equations (36-38) 
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(e) 

Fig. 18 Time evolution of the Q (a), FOM (b), γ (c), αov (d), and δ (e) of the nonlinear diffusion for 100 iterations 
 
 

  
Fig. 19 Diffused image and its Canny edge map at iteration 3 for the stopping criteria of δ<3% 

 
 

   

   
Fig. 20 Original image, processed images with NCD, AWFM, WS, WSCE, and SDWNAD 

 

   

   
Fig. 21 Canny edge maps for original phantom, NCD, AWFM, WS, WSCE, and SDWNAD 

 


