
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3610

1

Scalable Deployment and Configuration of
High-Performance Virtual Clusters

Kyrre M Begnum, Matthew Disney

Abstract— Virtualization and high performance computing have
been discussed from a performance perspective in recent publica-
tions. We present and discuss a flexible and efficient approach to
the management of virtual clusters. A virtual machine management
tool is extended to function as a fabric for cluster deployment and
management. We show how features such as saving the state of a
running cluster can be used to avoid disruption. We also compare our
approach to the traditional methods of cluster deployment and present
benchmarks which illustrate the efficiency of our approach.

Keywords— Cluster management, clusters, high-performance, vir-
tual machines, Xen

I. INTRODUCTION

V IRTUALIZATION has seen a recent, renewed and mas-
sive interest in computing. The technology is becoming

increasingly integrated into operating system releases as well
as hardware. Many fields, such as autonomic computing, ser-
vice consolidation, security and education publish results that
praise the benefits of virtualization. Recent publications discuss
the prospect of high performance computing (HPC) coupled
with virtualization[1][2].

Managing a virtual cluster is a two-fold challenge. First, there
is the cluster of virtual machines that needs to be managed as
an atomic unit, even though it is distributed among a set of
servers. They have to be created, started, stopped and perhaps
re-located or destroyed. Next, there is the network of physical
machines that are to host the virtual machines. In the case of
one virtual machine per physical machine, the administrator
will have a total of twice as many operating systems to handle.
One of the benefits of virtual clusters is the ability to run sev-
eral different clusters at various constellations supported by the
advent of multi-core CPUs. But with every new virtual cluster,
there is an increase in the number of computer systems one
has to manage. The challenge of virtual cluster management
and deployment therefore inherits the challenges from physical
clusters, including the problem of scalability. As the size of the
cluster grows, the cost of the cluster and the complexity of
the management grows proportionally. New tools are needed
to ensure that the configuration and deployment of virtual
clusters do not grow as the number of nodes increases. Ideally,
such tools would be free.

Can scalable management of virtual clusters be achieved?
What are the benefits of a virtual cluster? What design de-
cisions and trade-offs must be considered? Also, what is the
performance loss when running on a virtual platform? In this
text, we demonstrate and discuss how the deployment of
Xen virtual-machine-based clusters can be done efficiently in
terms of management and design. We review a working virtual
machine management solution as a framework for cluster
management and present results and benchmarks from a 36-
node cluster both when run on virtual and physical machines.

Authors are with the Faculty of Engineering, Oslo University
College, Oslo, Norway (e-mail: kyrre.begnum@iu.hio.no,
matthew.disney@stud.iu.hio.no).

The text is organized as follows: we first present a brief
background on virtualization together with clustering. Next we
detail how the physical machines are set up to accommodate
virtualized clusters. In Sections IV and V we show how the
virtualized clusters can be designed and managed efficiently.
Performance benchmarks on both management metrics and the
clusters themselves are presented in Section VI. A discussion
on how traditional clusters may improve compatibility with
virtualization concludes our work.

II. BACKGROUND

Clusters are often deployed in a configuration consisting
of a head node and compute nodes. A head node is a user
gateway to the compute nodes, providing utilities to allow
users to interact with the compute nodes. Additionally, head
nodes provide certain important infrastructural services to
the compute nodes, including network gateway, DNS, NFS,
authentication service, and so on. For this reason, head nodes
must have special knowledge (in terms of configuration) about
the compute nodes and vice-versa.

A virtualized cluster scenario differs from other models in
that it is actually two clusters instead of one. The foundation
consists of the physical machines, which is not an HPC cluster
in itself, but still offers a collective functionality to its user. In
essence, its only job is to host and manage virtual machines.
We call this the virtual fabric layer, and a physical machine
which hosts virtual machines as part of this fabric is referred
to simply as a server. When a server hosts a virtual machine, it
provides the means to store the VM file system, start and stop
the VM, and even monitor its resource usage. Most of these
functions are available through the virtualization technology
used. However, few software solutions offer the ability to
manage large groups of virtual machines spread out over many
servers.

Above the fabric layer, we find one or more clusters of virtual
machines spread out among several servers. This is where the
computational software resides, such as mathematical libraries
and job-control mechanisms. It is possible to completely re-
move the configuration of the HPC cluster from that of the
fabric layer. This gives the user the freedom to have complete
control of the software versions on its own cluster while not
having to focus on the underlying hardware and drivers.

Xen[3] is an open source virtualization framework which
has gained significant popularity in recent years. Much of it
is due to its impressive performance and availability features.
A virtual machine running Xen can be visible on the network
just like a physical machine.

III. VIRTUAL FABRIC LAYER DEPLOYMENT

We consider the virtual fabric layer to have a minimal OS in-
stallation and to offer a virtual machine management interface
to the user. MLN (Manage Large Networks) [4] is a software

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3611

2

global {
project oneVM
$variable = 10.0.0.1

}

host one {
xen
memory 64M
free_space 500M
service_host xen2.iu.hio.no
network eth0 {

address 10.0.0.2
netmask 255.255.255.0
gateway $variable

}
users {

matt jflaA/623(JBGS
}

}

Fig. 1. An MLN project file describing a single VM.

tool designed for large virtualized networks using either Xen
or User-Mode Linux[5] and can run as a service on most Linux
distributions. Central management can be achieved, letting one
MLN instance manage virtual machines on several servers at
the same time as long as the MLN service runs on all servers.

A group of virtual machines, e.g. a cluster, is called a project
in MLN terms. MLN builds virtual machines in a project using
a cloning technique, where file system images are cloned and
configured according to the project specification. Users can
create their own file systems based on their specialized needs
and those file systems are automatically configured into virtual
cluster nodes based on a project configuration file. Figure 1 is
an example of a simple MLN project.

The project file is written in declarative form. MLN supports
general virtual machine settings, such as amount of memory
and file system size, as well as system configuration variables
including users, passwords and network settings. Most of the
MLN syntax is self-explanatory, but notice the service_host
xen2.iu.hio.no, which dictates the actual placement of the
virtual machine. The syntax and configuration domain of MLN
is expandable in the form of plug-ins written in the Perl
programming language. Plug-ins can be used for two main
purposes: 1) Introduce changes to the project before the project
is built, e.g creating more virtual machines in the project,
or changing some of their settings. 2) Add to the system
configuration capabilities, e.g. configuring a special software
package inside the virtual machine. We will demonstrate the
use of both these features.

Interaction with MLN, such as creating, starting and stop-
ping projects, is achieved via the command line. A distributed
status command will collect status information from all the
MLN daemons, including the amount of available memory
for virtual machines as well as the status of currently running
VMs.

MLN supports an upgrade function to projects, where the
project can be modified based on changes in the project file.
Examples of modifications can be increasing the file system size
or memory, changing configurations, such as user passwords
or even assigning a new service host, resulting in a migration
of the virtual machine. More on MLN and its applications can
be found in [6].

In terms of deployment, we modified an Ubuntu Linux [7]
installer CD to include both Xen and MLN and to offer an
automated install routine. A URL to a script can be supplied
at boot time, which will make the installer download and run

��������
��

�� �	����
�

���� �	��
��

��������
��

�� �	����
�

���� �	��
��

��������
��

�� �	����
�

���� �	��
��

�
�������
�����
�����	

�
���
���
�

���� �	���

�
� ����
��

��		�	������	� ��	

��������
���� ������ ����
�	�
���� ����� �	��

�������	�
��

����� �	�	 ������

�	��
��

��� � ������ 	��	� ��� � ������ 	��	���� � ������ 	��	�

��� ���� � ��� �

��� � ��� � ��� �

Fig. 2. The fabric layer is composed of physical machines running a minimal
OS (dom0 in Xen terminology) installation together with virtual machine man-
agement software. The virtual machines (domUs) create the actual cluster where
the computations take place.

it at the end of the installation. This way it is easy to specialize
the installation to local needs, e.g. distributing public keys
for automated log-in. Using this CD it is straight-forward to
create the fabric layer, as the configuration of these machines
is relatively simple.

The virtual fabric layer is similar to a regular cluster. One
server is selected as the main server which the other servers
accept commands from. The user can log into this server and
manage its projects.

IV. DESIGNING VIRTUAL CLUSTERS

A traditional HPC cluster will be installed (directly or indi-
rectly) from a set of install media, usually either located on CD-
ROMs or in a networked location. During the install process the
user can select from set of software packages that comes with
the installation media. In a virtualized cluster, the approach is
different. The user creates a file system which is to act as an
MLN template for the virtual machine file systems. We installed
a set of high performance computing (HPC) and clustering
software tools on a virtual machine and then extracted its
file system as a template. This tool-set included torque for
resource management [8], an MPI implementation [9], [10],
linear algebra libraries [11], and a benchmark utility [12]. The
template acts as a virtual appliance. It can either be very small
and specialized, or larger with a great number of software
packages.

The software on a virtual cluster needs to be configured
specific to each case according to local network settings, user
accounts and the size of the cluster. These settings are usually
written to the head node and propagated from there to the
compute nodes. Instead of leaving the configuration of the
compute nodes to the head node, we assume that the cluster
has no internal configuration management system and let MLN
build and configure them in the same process. Figure 3 is a
complete project file for a 36 node virtual cluster.

The original MLN syntax is expanded with two plug-
ins, both expressed in the global block. The first, called
autoenum, is a general-purpose plug-in used to automatically
expand the project with a defined number of hosts. (Notice,
that the project contains no hosts in it to begin with). It is
essentially an iterator, as it creates a number of hosts and
increments the last octet of its IP address and the number at
the end of the hostname. Its main use is to reduce the need

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3612

3

global {
project mpi_cluster
$console = screen
$gateway_address = 128.39.74.1
autoenum {

superclass hosts
numhosts 36
address auto
addresses_begin 150
net 128.39.74.0
service_hosts {

#include /var/mpi/servers.txt
}

}
cluster {

head node1
}

}

superclass hosts {
term $console
template ubuntu-server-cluster.ext3
size 700M
memory 128M
xen
lvm
network eth0 {

netmask 255.255.255.0
broadcast 128.39.74.255
gateway $gateway_address

}
users {

disney VUmaegY1g8q4I
}

}

Fig. 3. AN MLN project file describing a 36 node cluster of Xen VMs.

for repetitive entry and configuration maintenance for the ad-
ministrator, while abbreviating the configuration and keeping
large number of hosts consistent in terms of configuration.
Additionally, the number of nodes in the cluster is arbitrary to
the complexity of the project file, as one only has to increase
the number at numhosts in the project file.

The second plug-in, called cluster, is specialized to the
template file system we have created. It assumes an installation
of torque and then creates the appropriate system-level torque
configuration necessary for the head node to distribute jobs
to the compute nodes. This includes an automatic generation
of a file containing a list of the network addresses for all
nodes. Additionally, the cluster plug-in configures a network
file system (NFS) server on the head node to export user
home directories to all nodes. On all nodes in the project, the
automounter is configured to mount home directories from
the head node. This all happens automatically, independent of
which or how many nodes are specified. The only parameter
needed for that plug-in is an indicator of the head node. Other
plug-ins can be written that are specialized to other software
packages or to perform other administrative functions.

A superclass, hosts, is defined for this project. It defines
the general configuration of a virtual machine. A superclass
will not result in a virtual machine, but hosts in a project may
inherit settings from a superclass. We see that the amount of
memory, users, file system-size and general network settings
all are defined in the superclass. The autoenum plug-in will
cause all hosts to inherit from that superclass, making their
configurations consistent.

The list of servers, i.e. the physical nodes that will host the
virtual machines, is in the text-file /var/mpi/servers.txt.
It could just as well be in the project file, though the result
would be unnecessarily long and less readable. The syntax of
the fabric list is both simple and flexible. One host address

15

13

11

9

7

3x122x181x36

D
ep

lo
ym

en
t T

im
e

in
 M

in
ut

es

of Virtual Hosts x # of Fabric Hosts

Fig. 4. This graph shows the deployment time for virtual clusters in various
configurations to a fabric consisting of single-processor hosts. In all cases, a
cluster of the same size is created but with a different distribution. 1x36 means
that there is one virtual machine per server.

per line, with an optional parameter (separated by whitespace)
providing the number of virtual machines that should be
hosted on that particular node.

A remarkable feature about the combination of these con-
figuration language capabilities is that the complexity of the
specification is static despite the growth of the size of the
cluster. Whether the cluster is a single node or hundreds, the
project file need not grow in size at all.

V. VIRTUALIZED CLUSTER MANAGEMENT

The deployment of a virtual cluster is done with the com-
mand:
mln build -f mpi_cluster.mln

MLN will contact all the physical servers involved in the
MLN project and handle the distribution of the project. The
creation of a distributed project of this sort is handled in
parallel by all the servers. Consequently, the build time is not
dependent on the number of nodes in the cluster per se, but
on the number of nodes per physical server. As an example,
building a 36 node cluster spread out over 36 physical servers
will take as long as the time it takes to build one node. Building
the same virtual cluster on 18 physical servers, meaning two
virtual machines per server, will take longer, as we can see
from Figure 4.

A project can be started and stopped atomically with a single
command:
mln start -p mpi_cluster

mln stop -p mpi_cluster

Xen supports stopping a virtual machine and saving its state.
This can be harnessed by MLN to snapshot the entire cluster
while it is running and to restore it later. The command for
MLN to attempt to save the entire projects state is:
mln stop -p mpi_cluster -S

We found that this does not disrupt the computation of a
running cluster. MLN also supports migration of virtual ma-
chines between physical servers. The typical form of migration
is to shut down the virtual machine first, and then to boot it at
its new destination. This has the benefit, that one can migrate
between compatible CPU architectures and change other host
parameters in the process. Virtual machines that have been
saved can migrate between machines of the exact same CPU
architecture.

The combination of migration and freezing a project is
interesting for clusters. In our experiments, we were able to
start a job in a cluster, freeze the cluster, migrate some of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3613

4

nodes to different servers, and continue it again to complete the
job. This disruption avoidance technique can be used to remove
failing physical machines from a cluster without having to
cancel the job that is running. It can also be used to upgrade the
hardware of a cluster without having to re-install the software
or disrupt the actual computations.

The templates used by the project have to be available to
all the servers before building it. This can be achieved, either
by manually copying them to the servers beforehand, or to
share a file system with the templates over the network. The
latter approach is more practical if the templates are updated
frequently, but it will impose an impact on the network during
the build process.

Long-term management is possible through the mln
upgrade command. Through it, parameters can be adjusted
on projects that are already built. The same mechanism is
used to migrate virtual machines between servers. The MLN
command mln reconfigure can be used to bring a project
back to its project description and intended configuration. Thus
it can function as a tool for maintenance of a cluster, though
that is not its main purpose. Dynamic system configuration
tools, such as cfengine[13], can be used inside a cluster and be
set up through a MLN plug-in. A maintenance scheme that is
internal to the virtualized cluster can be beneficial if the users
of the cluster have no access to the virtual fabric layer itself
and therefore have no access to MLN.

VI. PERFORMANCE BENCHMARKS

While work has already been done to show the viability of
virtualization from a performance perspective [1], any recom-
mendation of a new way to create and manage clusters would
be incomplete without a look into both performance and the
benefits gained from proposed methods.

A popular benchmark for clusters is Linpack, a set of Fortran
routines for solving linear systems [14]. Specifically, an imple-
mentation called the High Performance Linpack (HPL) bench-
mark [12] is used in comparing supercomputers in the form
of the Top500 list, published twice annually [15]. Therefore,
HPL is a suitable tool by which we can size virtual clusters in
various configurations and compare them to physical clusters.
We consider the following:

• How does a 36-node Xen virtual cluster compare to a 36-
node physical cluster using identical HPL configuration?

• What is the performance degradation of using 2 or 3 Xen
virtual machines per physical host when using an identical
HPL configuration?

• How does an optimized Xen virtual cluster HPL bench-
mark for 64 virtual nodes in a configuration of 2 hosts
per each physical host compare to an optimized HPL
benchmark of 36 single-processor physical nodes?

• What are the performance advantages of a dual-core pro-
cessor architecture in the context of HPC applications?
What is the performance degradation of running 2 or
3 competing virtual HPC nodes on a multi-core server?
What is the difference in performance when allocating vir-
tual CPUs in different quantities when running competing
virtual clusters?

A. Single-processor virtual fabric
Our initial HPL configuration includes a problem matrix

order N of 16000, a partition blocking factor NB of 80, a
number of process rows P of 6, and a number of process

 0

 5

 10

 15

 20

 25

36
physical
N=30000
P=Q=6

2x36
N=30000
P=Q=8

3x12
N=16000
P=Q=6

2x18
N=16000
P=Q=6

36
physical
N=16000
P=Q=6

1x36
N=16000
P=Q=6

gi
ga

F
LO

P
s

Fig. 5. Performance in gigaFLOPs of each cluster configuration benchmarked
using HPL.

columns Q of 6. These tests were run on on a laboratory of
36 hosts with 2.8 GHz Intel P4 processors, 512 MB RAM, a
standard 7200rpm harddisk, and 100BaseT Ethernet.

The virtual cluster of 36 nodes (1 node per physical host,
i.e. 1x36) achieved 11.25 gigaFLOPS (units of billions of float-
ing point operations per second) while the physical cluster
obtained 12.38 gigaFLOPS. The physical cluster was approx-
imately 10% faster.

Leaving the same HPL configuration in place, we tested 2
new configurations of virtual cluster deployment to the fabric.
It is interesting to note that due to the separation of the virtual
hosts from the fabric, the existing virtual machines could easily
be redeployed using MLN in new combinations per physical
host without the need to rebuild the cluster or reconfigure our
MPI environment. Results can be seen in Figure 5, comparing
the plots for 1x36, 2x18, and 3x12. Our results suggest that
performance difference increases as competing virtual nodes
are added to the fabric.

To further examine the performance degradation due to
competing virtual machines, we configured our virtual cluster
so that each server hosted 2 virtual nodes and changed the
HPL configuration accordingly. The results of that test can
be compared with a similar benchmark run on the physical
servers (seen in Figure 5, contrasting the data for 2x36 and 36
physical nodes). The performance of the physical cluster was
almost twice that of the virtual cluster.

B. Dual-core virtual fabric

While most of our laboratory equipment is single-processor
and allows us to adequately pursue issues of scale, the emer-
gence of multi-core processors is significant and should not
be overlooked when discussing matters of economy in virtual
clusters. Accordingly, we performed HPL benchmarks (in a
configuration where P and Q are both 1) on a server with
a dual-core 2GHz AMD Pacifica and 2GB RAM.

Our results are demonstrated in Figure 6. We found that the
virtual node marginally outperformed the physical CPU and
that there was little difference between a virtual node running
on one versus two logical CPUs. Additionally, we found that
two virtual nodes on the dual-core server performing the HPL
benchmark at the same time each performed as well as the
physical host. Predictably, running three virtual hosts on the
dual-core server exhibited a substantial drop in performance.
In the first case, each host was designated to use a single
logical CPU. One virtual node approached the performance
of the previous tests, while the other two virtual nodes each
demonstrated half the gigaFLOPs of the successful node. In the
second case of three virtual nodes on the dual-core server, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3614

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x1
2 vcpus

3x1
2 vcpus

3x1
2 vcpus

3x1
1 vcpu

3x1
1 vcpu

3x1
1 vcpu

2x1
1 vcpu

2x1
1 vcpu

1
physical
2 vcpus

1x1
2 vcpus

1x1
1 vcpu

gi
ga

F
LO

P
s

Fig. 6. Results from HPL benchmarks on various single-node cluster configu-
rations (using a P and Q of 1) on a dual-core server. Plots with identical shading
represent benchmarks run simultaneously, competing for physical resources.

virtual hosts were each assigned two logical CPUs. The nodes
this time performed much worse.

These tests suggest, unsurprisingly, that the best resource
distribution for a set of servers with multiple logical CPUs is
to run n number of virtual hosts per server, where n represents
the number of logical CPUs per server. Our findings that Xen
performs suitably for HPC are consistent with and complement
the initial findings of Barham et al [3], as their work uses
benchmarks that are not specific to HPC.

C. Management Metrics and Benefits

We analyzed the benefit of a tool, MLN, to manage whole
networks of virtual machines in regards to deployment time,
availability, mobility, and simplicity of management and con-
figuration (including any increase in complexity as the cluster
increases in size).

Our customized installer CD installed hosts in approximately
10 minutes each. The complete installation of 36 physical nodes
for our virtual fabric required less than 2 hours, even when
manually moving CDs and initiating installations. In an envi-
ronment with PXE-based network install capabilities and/or
network infrastructure faster than 100 Mbps, deployment of
the virtual fabric would take less time.

With the fabric in place, we were ready to deploy clusters.
A virtual cluster of 1x36 was deployed in 7 minutes, 40
seconds. A cluster of 2x18 deployed in 11 minutes, 12 seconds;
3x12 in 14 minutes, 55 seconds. This indicates a degradation
in deployment efficiency relative to number of virtual hosts
per single-processor node but shows that a virtual cluster
can be deployed extremely quickly using MLN. The time it
takes to build a virtual machine depends primarily on the
size of the file system template and the speed of the storage
device. The template used in our cluster was around 620MB.
For completeness, consider an additional 2 minutes for the
modifications necessary to MLN configuration files each time
the cluster configuration was changed.

In a physical cluster, the removal of a node or the full cluster
for maintenance can be disastrous for long-running jobs. Such
maintenance can result in the necessity to repeat a full lengthy
job. This challenge, disruption avoidance, is effectively addressed
by a Xen virtual fabric created and managed by MLN. We
tested three scenarios for disruption avoidance:

• Taking an entire virtual cluster offline.
• Taking a single node offline.
• Relocating a single virtual machine to a different physical

node.

In each case, the job completed successfully without error,
any need for special adjustment by the user, or any kind of
interruption planning whatsoever. Such options for availability
alone may justify any performance degradation that may be
experienced when using a virtual rather than physical cluster.
This shows it is possible to execute a two-phase hardware
deployment to upgrade all the physical hosts constituting the
virtual fabric without compromising the completion of any jobs
running on the virtual cluster hosted on that fabric. Such an
upgrade could be so dramatic as to include a compatible sys-
tems architecture change, provided the virtual fabric remains
intact.

VII. DISCUSSION

A traditional approach of installing clusters has been to
install the head-node, and then to leverage it to install and con-
figure the compute nodes. When is it favorable to first deploy a
fabric for virtual machine administration, next specialize a file
system template and finally spread it out among the servers?
Clearly, the management aspects and benefits come first into
play when several virtual clusters are to be managed, either at
the same time or in succession. Such cases would include:

• An organization that does not own its own cluster, but
rents access to a virtual fabric from a third party.

• Someone who would like to easily interchange the cur-
rently running cluster with a different configuration (e.g.
applications, memory, network information, etc...).

• Developers of cluster and HPC software who are inter-
ested in deploying test-scenarios quickly.

• Administrators who face the challenge of maintaining a
cluster for a variety of customers, which have application
requirements that conflict with each other.

With the two plug-ins, autoenum and cluster, we were
able to define the settings of a cluster easily, and to re-use it
in many scenarios. The autoenum plug-in is general purpose
and can be re-used for most scenarios. The other plug-in con-
cerns configuration of the job-control software, and might be
replaced based on the software on the given template. Rather
than relying on specialized plug-ins, it is also possible to create
file system templates that hard-code the needed functionality.

Once the fabric is running, we were able to build new
clusters in less than ten minutes. Saving the state of a running
cluster takes a only a few seconds. While booting and shutting
down a cluster takes somewhat longer, it is still achieved
within minutes, making transitions from one cluster to another
very fast and convenient. The question remains whether this
is a big enough gain for a technician who has to specialize a
template and perhaps write a plug-in for it.

Template distribution is a new type of challenge regarding
clusters, but is a relatively known problem generally. It is also
apparently the only central bottleneck in our proposed deploy-
ment and management methods that could restrict scalability.
There are several approaches for addressing the problem; one
would be to have a network file system that contains the
templates, thereby removing the synchronization problem, but
inducing a network cost at build time. Another approach
would be to do a manual synchronization of the templates
using tools such as the bittorrent system to spread them
rapidly. Multicast communication, coupled with an appropriate
application to handle synchronization issues, could also be
used to quickly distribute large files to many hosts.

MLN and Xen can also be installed on other Linux machines
that are not dedicated to a cluster and still participate as fabric

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3615

6

servers. One scenario for this usage is that regular workstations
can act as part of a virtualization fabric during off-peak time
periods when they are under-utilized.

In comparing our work in the context of deployment and
management of virtual Xen clusters built from commodity
hardware to other popular cluster deployment suites, five of-
ferings stand out: FAI[16], OSCAR[17], Rocks[18], VMPlants[2],
and XenEnterprise[19].

FAI, OSCAR, and Rocks target the bootstrapping of clusters
from bare-metal, though each are capable of deploying Xen
nodes in different ways. OSCAR can apparently now install a
Xen head node to be used for testing, but not compute nodes.
Rocks reports alpha capability for installing virtual compute
nodes, which can be managed as regular Rocks compute nodes,
but the head node must be a physical host. FAI has been
leveraged to deploy Xen nodes, though FAI does not include
an ongoing system configuration component; it only manages
configuration at deployment time. Each of these solutions are
limited to specific GNU/Linux distributions, while MLN can
support any distribution through its modular plug-in architec-
ture. FAI and Rocks are apparently too different in architecture
to ever be integrated with MLN, but OSCAR’s use of filesystem
images makes it a good candidate for integrating with our
methods. Indeed, informal OSCAR suggestions for future work
on that project indicate similar goals to our management
methods.

The VMPlants[2] work is similar to ours, though the software
itself is not available to the general public. Accordingly, we are
unable to make sufficient comparisons to our work.

The currently available software most closely related to our
method is the newly released XenEnterprise[19]. The XenEn-
terprise product appears to offer many similar benefits to
our methods (as well as a graphical management interface),
though it is neither open-source nor modular. It is dedicated
to the Xen platform, which is certainly the focus of our work
but other competitive virtualization architectures may emerge,
and MLN will be suitable to deploy and manage those new
virtualization technologies as well. Nonetheless, there may be
lessons to learn from the XenEnterprise product, including
interface improvement and more extensive support of Xen
features.

VIII. CONCLUSIONS AND FUTURE WORK

Scalability is a core challenge of cluster management. Our
approach offers a simple way to manage virtual clusters so that
the cluster administrator is not affected by issues of scale. This
method was shown to be scalable in terms of cluster design;
a cluster can be designed accurately, simply, and independent
of the number of nodes in the cluster. Deployment of a virtual
cluster is automatic, the time required for deployment of all
nodes is nominal, and future work will further improve the
scalability of filesystem template distribution. Large distributed
clusters can be easily started, stopped, and even suspended in
a running state from a single point of user interaction. Using
MLN’s modular architecture, we extended the virtual network
management tool to suit specific requirements, in this case HPC
cluster configuration. Leveraging Xen as a virtualization plat-
form has enabled the running of two or more clusters on the
same hardware, which we showed is clearly advantageous on
multi-core computers. Finally, financial scalability is achieved
as well, since our entire approach was built from free and
currently available software.

MLN supports only Xen and User-Mode Linux as virtual-
ization frameworks. Future work will investigate how other
popular technologies, such as VMWare[20] can be utilized in
the same context.

ACKNOWLEDGMENTS

The authors extend their thanks to Prof. Mark Burgess and
Dr. Tore Jonassen for helpful discussions and to the IT depart-
ment at the Oslo University College Faculty of Engineering for
making the equipment available. This work is supported by the
EC IST-EMANICS Network of Excellence (#26854)

REFERENCES

[1] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi Xenidis.
Virtualization for high-performance computing. SIGOPS Oper.
Syst. Rev., 40(2):8–11, 2006.

[2] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortes, and
Renato J. Figueiredo. VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 7, Washington, DC, USA, 2004. IEEE Computer Society.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[4] K. Begnum and J. Sechrest. The MLN homepage.
http://mln.sourceforge.net. Last accessed August 28, 2006.

[5] Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of
the 2000 Linux Showcase and Conference, October 2000.

[6] Kyrre Begnum. Manage large virtual networks. In To appear
in: Proceedings of the 20th Large installation system administration
conference. USENIX, 2006.

[7] Ubuntu Linux. http://www.ubuntu.com/. Last accessed August
27, 2006.

[8] TORQUE Resource Manager 2.0.
http://www.clusterresources.com/pages/products/torque-
resource-manager.php. Last accessed August 27, 2006.

[9] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings of Supercomputing Symposium,
pages 379–386, 1994.

[10] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Ar-
chitecture for LAM/MPI. In Proceedings, 10th European PVM/MPI
Users’ Group Meeting, number 2840 in Lecture Notes in Computer
Science, pages 379–387, Venice, Italy, September / October 2003.
Springer-Verlag.

[11] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear
algebra software. In Supercomputing ’98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), pages 1–27,
Washington, DC, USA, 1998. IEEE Computer Society.

[12] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL
- A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/. Last accessed August
27, 2006.

[13] Mark Burgess. Cfengine: a site configuration engine. In Computing
systems, Vol8, No. 3. USENIX, 1995.

[14] Jack Dongarra. The LINPACK Benchmark: An Explanation. In
Proceedings of the 1st International Conference on Supercomputing,
pages 456–474, London, UK, 1988. Springer-Verlag.

[15] Top500 Supercomputing Sites. http://www.top500.org/. Last
accessed August 27, 2006.

[16] FAI - Fully Automatic Installation. http://www.informatik.uni-
koeln.de/fai/. Last accessed August 28, 2006.

[17] OSCAR (Open Source Cluster Application Resources).
http://oscar.openclustergroup.org. Last accessed August 28,
2006.

[18] Rocks Clusters. http://www.rocksclusters.org/. Last accessed
August 28, 2006.

[19] XenSource - XenEnterprise. http://www.xensource.com/products/
xen_enterprise/. Last accessed August 28, 2006.

[20] VMWare - An EMC Company. http://www.vmware.com. Last
accessed August 28, 2006.

