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 
Abstract—Sentiment analysis (SA) has received growing 

attention in Arabic language research. However, few studies have yet 
to directly apply SA to Arabic due to lack of a publicly available 
dataset for this language. This paper partially bridges this gap due to 
its focus on one of the Arabic dialects which is the Saudi dialect. This 
paper presents annotated data set of 4700 for Saudi dialect sentiment 
analysis with (K= 0.807). Our next work is to extend this corpus and 
creation a large-scale lexicon for Saudi dialect from the corpus. 
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I. INTRODUCTION 

HE Internet contains a growing amount of useful 
information that can be mined and, in turn, made 

accessible back to its users in creative ways [1]. Users can add 
reviews or opinions on web content. They can also share their 
ideas and opinions via social media such as Twitter, Facebook, 
personal blogs, and forums [2] as long as the web technology 
supports these features. Through social media, Arabic users 
tend to communicate with each other by using unstructured 
and ungrammatical slang Arabic language [3]. Sentiment 
analysis (SA) is the determination of text polarity as positive 
or negative [4]. In spite of the recent strong interest in SA, few 
studies have applied it to Arabic language analysis due to a 
lack of publicly available annotated data [4]. As a result, the 
focus of this research is on one Arabic dialect – Saudi. The 
purpose of this work is to present the first Saudi annotated 
corpus. This will be achieved by reporting a procedure of 
manual corpus annotation. This corpus includes data from 
Twitter and covers several domains such as sport, economy, 
and politics. The intention of this paper is to create the first 
reliably annotated Twitter data for the Saudi dialect which will 
be subsequently released to the LREC community as part of 
this submission.  

II. ARABIC LANGUAGE CHALLENGES 

As an important player in international politics and the 
global economy, the Arab world is the focus of many multi-
national interest groups and analysts who endeavour daily to 
decipher sentiments on issues like oil and gas prices, stock 
market movements, politics and foreign policy, emanating 
from this part of the world. The resulting chatter being in the 
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Arabic language, there is a great need for natural language 
analysis of large amounts of Arabic language text and 
documents to support the required sentiment extraction. As 
described in the foregoing, the relative importance of the 
Arabic language in global communications demands a 
proportional amount of interest and research for natural-
language processing of large amounts of Arabic language text 
and documents to facilitate sentiment extraction for industrial 
use [5]-[7]. The reality, however, is that there is relatively 
little available support for Arabic-language sentiment analysis, 
majorly for the following reasons: (1) relatively limited 
scholarly work and research funding in this area, when 
compared to other-language studies, especially English. (2) 
Morphological complexities and dialectal varieties of the 
Arabic language which require advanced pre-processing and 
lexicon-building steps beyond what is applicable for the 
English language domain [6]-[8]. This limits the potential 
applications of current tools and custom tools for Arabic SA 
may not be easy to come by, may be limited in current 
functionality, or may not be freely available. Farra et al. [7] 
illustrated the challenges of Arabic-language sentiment 
analysis: the existence of many inflectional and derivation 
forms - where words have transitional meanings depending on 
position within a sentence, and the type of sentence (verbal or 
nominal). Multiple word prefixing, suffixing, affixing, and 
diacritical forms add high-order dimensionality for words, 
where the same three-letter root can generate different words 
in each case. 

III. RELATED WORK 

A recent study by [9] used Twitter to analyze a variety of 
Arabic dialects. By cross-referencing the geographical 
information from user profiles, the researchers used dialectical 
word n-grams in users tweets to identify their country. 

A project called COLABA (Cross Lingual Arabic Blog 
Alerts) [10] uses multiple systems to develop NLP resources 
for Arabic dialects. To date, these dialects have included 
Levantine, Egyptian, Moroccan, and Iraqi. The system use in 
the current study also utilized MAGEAD (Morphological 
Analyzer and Generator for the Arabic Dialect) [11] and the 
Buckwalter morphological analyzer and generator (BAMA) 
[12]. COLABA’s capacity to process Arabic dialects was 
evaluated through its information retrieval system. 
Importantly, COLABA does not draw upon other dialects 
during its operation. Meanwhile, DIWA (Dialectical Word 
Annotation Tool for Arabic) [13] operates as a desktop 
application and can be used offline. DIWAN captures the 
annotation of morphological features in context. In addition, 
DIWAN can assist in training taggers because it can help 
create corpora. Unlike COLABA, DIWAN can use resources 
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The annotation procedure required the annotators to follow 
six specific instructions:  
1- If annotators believed the sentence under review was an 

objective report of a news item, they were directed to 
avoid labeling good news as positive or bad news as 
negative (i.e., absent of any positive or negative 
sentiment). By definition, a bad news item or a good news 
item can be labeled as neutral. The following are two 
examples of neutrally labeled items:  

Example 1: " وغبار"أجواء الیوم حارة  

Translation: "Today is too hot and dusty" 
Example 2: "طایح" سوق الاسھم  

Translation: " The stock market is decreasing sharply " 
2- Because the point-of-view from which a sentence is 

composed influences whether a positive or negative 
sentiment label is assigned, annotators were asked to 
assign sentences based on the authors who wrote them. 
For example, the statement, “النصر یھزم الھلال”, "Al-Nasser 
defeated Al-Hilal" the act of winning is deemed a positive 
from the perspective of Al-nassr’ followers but, 
contrarily, the same item can be deemed negative when 
taken from the perspective of Al-Hilal’s audience. 

3- Annotators were asked to consider epistemic modality 
during their evaluation of Twitter sentences. Epistemic 
modality, a modality that deals with the speaker’s 
judgment of the knowledge of their statements, has been 
shown to influence trust in the truth of a proposition [21]. 
For example, confidence can be influenced by the use by 
hedges, such as “maybe”, “perhaps”, or “somewhat”, or 
strengthened with boosters or intensifiers like “of course” 
or “certainly” [22]. Furthermore, epistemic modality can 
also modify the subjectivity and polarity of a sentence. 
For example, a statement like “car crashes has killed a lot 
of people” lacks sentiment and, therefore, can be 
annotated as Neutral. By contrast, the sentence 
“Regrettably, car crashes have killed a lot of people” can 
be labeled strong Negative. “Strong” is applied because of 
the use of “regrettably.”  

4- Each annotator was ordered not let any personal 
background knowledge influence the interpretation of 
content. Examples of background knowledge include 
exposure to influential social, cultural, or religious forces. 
Although challenging to suspend, such background 
knowledge can shape decisions about polarity. For 
example, the statement, “conservatism should not be 
taught in public schools” would be negative to a person 
with conservative political beliefs but positive to someone 
who does not. 

5- During annotation process there will be what so called " 
Do'aa " which means " supplicating to God ". Such a case 
of Do'aa is commonly used in Twitter. Do'aa can be 
devided into two main streams: (a) Do'aa for the sake of 
someone and (b) Do'aa against the sake of someone. By 
consulting semantic people we came a conclusion that 
Do'aa denotes two attitudes: positive and negative.  

Example 3: For positive Do'aa: 
خرة""ربي یوفقك في الدنیا والآ  

Translation: "My lord guide you in this life and in the 
hereafter". 

Example 4: For negative Do'aa: 
 "حسبي الله علیھم"
Translation: "Allah is enough for me upon them" 
6- The final direction for each annotator for this study, each 

annotator was to assign one of three labels: 

A. Positive (POS) 

Example 5:  
" الله یسعدك خبر یفتح النفس   " 
Translation: "May Allah make you happy for the news that 

makes soul happy" 

B. Negative (NEG) 

Example 6: 
 "حتى موبایلي مخیس"

Translation: "Mobily is as well as rubbish" 

C. Neutral (NEU) 

 " عندي ھذا الجھاز جدید الي یحتاجھ یكلمني في جده "
Translation: "For whom he needs it, call me in Jeddah" 

VI. CONCLUSION 

The purpose of this research was to present an annotated 
corpus that applied SA to Twitter content. The preceding 
application of this annotation first of its kind for the Saudi 
dialect. As a result, this corpus will be the first publicly 
released corpus of its kind. In future work we will extend this 
corpus, then use it to generate a large scale lexicon for Saudi 
dialect this lexicon we help us to build a comprehensive SA 
system for Saudi dialect using big data technique.  
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