
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

848

Abstract— The world is moving rapidly toward the deployment

of information and communication systems. Nowadays, computing

systems with their fast growth are found everywhere and one of the

main challenges for these systems is increasing attacks and security

threats against them. Thus, capturing, analyzing and verifying

security requirements becomes a very important activity in

development process of computing systems, specially in developing

systems such as banking, military and e-business systems. For

developing every system, a process model which includes a process,

methods and tools is chosen. The Rational Unified Process (RUP) is

one of the most popular and complete process models which is used

by developers in recent years. This process model should be

extended to be used in developing secure software systems. In this

paper, the Requirement Discipline of RUP is extended to improve

RUP for developing secure software systems. These proposed

extensions are adding and integrating a number of Activities, Roles,

and Artifacts to RUP in order to capture, document and model threats

and security requirements of system. These extensions introduce a

group of clear and stepwise activities to developers. By following

these activities, developers assure that security requirements are

captured and modeled. These models are used in design,

implementation and test activities.

I. INTRODUCTION

Security is an attribute of system that prevents the system

from revealing, changing and denying of resource services

and system information in an illegal way. Generally three

aspects of security are: confidentiality, integrity and

availability of service of resources and information. To

achieve these aspects and develop a secure system, security

services and mechanisms should be considered [1].

One of main activities in developing any computing system

is requirements engineering. Requirements engineering is

capturing, analyzing, documenting and validating of

requirements. In requirements engineering security is

considered as a nonfunctional requirement [2, 3, 4, 5].

Although in some references security is classified as a

functional requirement [6, 7]. In most cases, security

requirements are naturally difficult to identify, evaluate, apply

and achieve [2].

Enforcing and managing security requirements requires

professional abilities and wide knowledge, because the

systems are built to run under attacks of unknown sources and

therefore the requirements of systems might be unknown. One

of the challenges in requirement engineering activities is

capturing and analyzing nonfunctional requirements such as

security, reliability, performance and usability requirements.

Our experience shows that often these quality attributes are

missed and are not captured by analysts. In practice, the usual

method in secure systems development is the “penetrate and

patch” approach. This means that developers attempt to

remove the vulnerable points after the system is developed

and attacks against the system and defects occur. This is a big

risk and often imposes heavy costs and defects on software

projects.

Usually it is possible to find the security needs and goals of

an organization or a system in its security policy document.

But there is no common, clear and defined method to transfer

the facts in the Security Policy Document to precise and

unambiguous requirements and then including security

requirements in analysis, design, implementation and test

phases of software development process. Researchers are

trying to solve the mentioned problems. The main focus of

current works in this area is using software patterns to capture

and model security requirements [8, 9. 11] and common

threats [10]. Also, in [2] a new modeling language is proposed

for modeling security requirements [2]. According to the

above discussion, it is reasonable to integrate and coordinate

secure software development activities in the software process

models [2].

In this work we have chosen Rational Unified Process

(RUP) as target process model for security extension. We

believe that this process model is one of the most complete

and flexible process models. It is easy to understand and

follow and most of the guidelines and activities in this process

model is based on software engineering related standards that

have been proposed by ISO and IEEE. We name the extended

RUP for developing security systems as RUPSec. The aim of

proposing the RUPSec is to define a software process model

in which security requirements are considered in all

development phases of a computer-based system: business

modeling, requirements, analysis and design, implementation,

RUPSec: An Extension on RUP for Developing

Secure Systems - Requirements Discipline

Mohammad Reza Ayatollahzadeh Shirazi, Pooya Jaferian, Golnaz Elahi,

Hamid Baghi, Babak Sadeghian

{ashirazi, jaferian, elahi, baghi, basadegh}@ce.aut.ac.ir

Computer Engineering and IT department

Amirkabir University of Technology (Tehran Polytechnic)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

849

and testing. In this paper a part of these extensions in

Requirement discipline of RUP are presented and described.

This paper is a summarized and improved version of work that

has been presented in [12]. In that paper we have presented

our extensions in Business Modeling Discipline and

Requirements discipline.

Our main contributions in Requirements discipline of

RUPSec are: identifying security threats against the system

and the organization, capturing, modeling and evaluating

security requirements. These extensions are presented

considering analysis and design, implementation and test

phases.

This paper organizes as follows. Section 2, provides a

description of security requirements in RUP. Section 3

presents the case study that is used to provide examples of

practical usages of proposed extensions. Section 4 is devoted

to the new extensions in Requirements discipline of RUP. In

Section 5 the extensions in the process model are evaluated. In

Section 6, the extensions are compared with related works and

similar models. The paper is concluded with Section 7 which

contains a brief recapitulation of the main points.

II. SECURITY REQUIREMENTS IN RUP

In RUP FURPS+ model is used for categorizing

requirements [6]. In this model, security requirements are

categorized in Functionality requirement category. In RUP

just some steps and an approach (Software Requirements

Specification guideline, section 6) is given to establish and

classify the security requirements. According to this guideline,

captured security requirements are documented in Software

Requirement Specification document, but it is not mentioned

how these requirements should be modeled, analyzed and

used in the remaining phases of development process. In the

following sections, we describe how this problem is solved by

the extensions that we have proposed for RUP.

III. MOTIVATION CASE STUDY

One of the possible ways to evaluate software development

process models or methodologies is to choose some exemplar

systems as case studies and employ the process model or

methodology in developing case study systems. Then, the

weaknesses of the process model in developing the system are

analyzed, the process model is improved and the system

development is repeated according to the improved version of

the process model. In this paper, a Sales and Purchase system

of a dealer organization has been chosen as a case study. This

organization offers some services to the sellers to demonstrate

and sell the stocks. Customers can select and purchase the

stocks from the sellers. In this paper, the examples are based

on this case study system.

IV. EXTENDING REQUIREMENTS DISCIPLINE OF RUP

The goal of Requirements Discipline in RUP is to establish

and maintain agreement with the customers and other

stakeholders on what the system should do. In this activity

system developers gain a better understanding of the system

requirements and boundaries of the system are defined. In

addition to common purposes, the purpose of this discipline

for developing secure systems is: to capture and model

security threats against the system, to propose security

solutions for the threats and to elicit security requirements of

the system.

In this discipline, it is supposed that the developers had

followed the Business Modeling of RUPSec presented in [12].

Therefore the outputs of Business Modeling of RUPSec are

used in Requirement Discipline. We also introduce a role for

performing the required activities named "Security Expert

Role" which is characterized in Table.1.

TABLE 1: SECURITY EXPERT ROLE

Role Security Expert

Role Type Additional Role

Responsibilities
Consultation in security issues, Development of security

test cases

Skills
Familiar with security concepts, threats and counter-

measures, Familiar with system analysis

A. Finding Misactors and Misuse Cases: A New Activity in

Requirements Discipline

Along with finding use cases and actors, "Misuse-Cases"

and "Misactors" should be identified. "Misactor" is an actor

who threatens the system and misuses the system through a

misuse case. As the functional requirements are described via

use-cases, the activities that yield a security threat can be

expressed as misuse cases.

RUP is a use-case driven approach for developing software

[7]. Therefore, we suggest using Misuse Cases to find threats

and security requirements. In the next steps misuse cases will

form a basis for eliciting security requirements and security

use cases. Therefore, a new activity named "Finding Misactors

and Misuse-Cases" is added to RUP as an independent activity

in the RUP's "Define the System" workflow detail. This

activity should be done along with "Finding Use cases and

Actors" activity. The inputs to this activity are "Threat

Specification" and "Security Policy" [12] and the output

artifact is a "Misuse-Case" model. The System Analyst role is

responsible for performing this activity.

B. Finding System Threats: A New Activity in Requirements

Discipline

Finding Misuse-Cases and threats is an iterative activity. In

other words the threats are completed with respect to Misuse-

cases and Misuse-Cases are found and refined by means of

threats. The Security Expert finds the threats against the

system based on the experiences and knowledge of past

projects. The Security Expert also presents a general solution

to counter each threat. The misuse cases will be extracted

using these threats and this process goes on iteratively.

With respect to the above discussions, a new activity called

"Finding System Threats" is added to “Define the System”

workflow of RUP. The inputs to mentioned activity are

"Misuse case Model" and "Security Policy". The threats that

are identified by the Security Expert are documented in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

850

“Threat Specification Document” as output of the activity.

The “Threat Specification Document” is used by the

System Analyst to extract the Misuse-Cases. Also it is

recommended to record the “Threat Specification Document”

in "Threat Repository" for future uses.

In Figure 1, the use cases and Misuse-Cases of the Sales

system are presented. The use cases, which are identified by

<<misuse case>> stereotype, illustrate threats against the

system. These threats take place during the flow of use cases

flow and their occurrence is illegal. Therefore, the dependency

between use case and related Misuse-Case should be specified

by <<extend>> relationship between use cases.

C. Refine Misuse Cases and Finding Security Use Cases: A

New Activity in Requirements Discipline

In order to find security requirements, we have added a new

activity to the RUP, which is called "Refine Misuse cases and

finding Security use cases" as an independent activity in

“Define the system” workflow detail.

In this step, the System Analyst studies “Misuse case

Model” and “Threat Specification Documents” to capture

security use cases. In current activity, the steps of the misuse

case are defined precisely. After that the system analyst

specifies the solutions to confront the threats with respect to

Threat Specification Document. These solutions are called

"Security Use-Cases" and they should be described and

documented. In current activity, the system analyst should

avoid interfering technological aspects to select and describe

security use cases; because using specific technology as a

security use case will restrain finding better solutions in

selecting architecture and design steps.

To document a Security Use-Case, the following points

should be considered:

Related threats should be specified.

For each Security Use-Case, the flow of events should

be studied in the three following viewpoints: System,

Normal Actors and Misactors activities.

In this approach the system activities to provide the

required security are captured and recorded as security

requirements. In the Security Use-Case Description table

which is presented in [9], post condition of each Security Use-

Case is considered as a general security requirement. The

purpose of mentioned requirement is to counter the related

misuse case.

Usually, security use cases can be classified into several

categories [9]. Also each category may have different paths

[9]. To obtain security requirements from security use cases,

each use case path should be analyzed independently and

security requirements for each path are extracted.

In the use case diagram of Figure 2, for each Misuse-Case,

we can present a number of solutions. These solutions are

modeled by security use cases. Security Use-Cases are

denoted by <<security>> stereotype. The dependency between

Security Use-Case and Misuse-case is defined by

<<prevent>> stereotype. This type of dependency specifies

that security use case prevents the occurrence of Misuse-Case.

D. Refine Security Requirements: An Improvement on

"Detail the Software Requirements"

The system requirements will be obtained by describing

each Security Use-Case. These requirements usually can be

found in "System Actions" column (in security use case

description table [9]) and Security use case post-condition.

The mentioned system requirements should be categorized

and documented. Therefore, in "Detail the software

requirements" activity of the RUP, the Requirement Specifier

should document the security requirements in "Software

Requirement Specification" document according to the

requirement's type. Security requirements will form a basis for

“Analysis and Design” discipline along with security use case

model.

V. EVALUATION OF PRESENTED EXTENSIONS

There are various methods to evaluate a software

development process model. Two common ways are

evaluation based on case studies and Feature Based

Evaluation. To evaluate proposed extensions, we use the

criteria introduced in [13] for evaluating software engineering

methodologies and evaluate our extension based on a subset

of these criteria.

Expressiveness: a process model should be introduced in

such a way to cover various aspects of a system. Whereas

threats and security aspects like confidentiality, integrity and

availability are not mentioned in RUP, in this paper some

solutions are presented for modeling and documenting these

aspects. In Table 2, these solutions are presented and

compared to RUP.
TABLE 2: COMPARING RUP WITH EXTENDED PROCESS MODEL

Studied aspect Extended process model RUP

Organization

Security Policy

is documented in Security

Policy

Is not documented

Threats against the

system

Is modeled and documented in

Threat Specification and

Misuse Case document

Is not documented

Security aspects of

system

Is modeled and documented

using Security Use Cases

Is not documented

Preciseness: A process model should be unambiguous, that

is, it should be possible to use it in a correct way. In presented

extensions inputs, outputs, time to do, related discipline, and

role who dose the activities are declared and integrated with

RUP. This integration prevents an ambiguity in extensions.

Accessibility : A process model should be practical for

various groups of developers with different skills and level of

knowledge. As RUP is used widely and UML is a universal

modeling language among developers, the presented

extensions are based on RUP and modeling language is UML.

Therefore, using the extensions is easy for developers who are

familiar with RUP and UML.

Portability: A process model should not depend on

implementation language, special technology or architecture.

In presented extensions in this paper, it is emphasized on

using standard modeling languages such as UML and

common process models such as RUP. Therefore, they can be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

851

used in any type of projects.

I. COMPARISON WITH RELATED WORKS

In previous sections the extensions and improvements on

RUP were introduced. A number of the discussed aspects,

phases and activities are mentioned in [2,8,9,14,15,16,17,18]

too, but in this paper we have investigated to integrate

existing attempts and works in the framework of RUP.

In [15], the presented process model is not based on a

reference and specified process model. As in [15] activities,

artifacts, and roles are not specified in detail, developers have

to integrate the mentioned process models with their own

process model. In this paper, all extended activities and

artifacts are incorporated with RUP and are provided for

developers.

In [14], use cases are extended to cover security

requirements, but it is not discussed for what threats the

system should be protected. In [17] the aspect of Abuse Case

is introduced but no way for including these threats in analysis

and design model is suggested. In [9] in addition to modeling

Misuse Cases, a number of Security Use Cases are assigned to

normal Use Cases to protect the system against the threats. In

the our work we have tried to eliminate the weaknesses of the

works reported in [9, 14, 17] by using Misuse Cases and

Security Use Cases and Threat Specification.

Pay for Order

Disable the site
<<Misuse Case>>

pay for orders using customer

accounts

<<Misuse Case>>

Search and chose products

<<extend>>

Order productss

<<extend>>

<<extend>>

Customer

System Admin inside organization

attacker

manage customer accounts

supply accounts
Supply or charge account

<<Misuse Case>>
<<extend>>

<<extend>>

Hacker

Figure 1: Misuse Case of Sale System

Disable the site
<<Misuse Case>>

System protection
<<Security >>

<<Prevent>>

inside organization

 attacker

pay for orders using customer

accounts

<<Misuse Case>>

supply accounts

Search and chose products

Customer
Pay for OrderOrder productss

<<include>>

Access Control
<<Security>>

<<Prevent>>
<<include>>

<<include>>

System Admin

Supply or charge account
<<Misuse Case>>

<<Prevent>>

manage customer accounts

<<include>>

Hacker

Figure 2: Security Use Case Diagram For Sales System

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

852

II. CONCLUSION AND SUGGESTIONS FOR FURTHER WORKS

In this paper some extensions on Requirement discipline of

RUP were reported as a part of research work on defining a

process model for developing secure systems, RUPSec. These

extensions include adding activities, artifacts, and roles to

RUP or improving them. In current stage, these extensions do

not cover all RUP disciplines and in further steps of research

we will work on other RUP disciplines. In the next phases of

work, captured Misuse Cases will be realized in analysis and

design discipline. System attacks are identified whereas they

are realized. Security Use Cases will be realized and used to

specify Analysis Mechanism and design against threats. Also

Misuse Cases will be used in test phase to generate Test

Cases.

REFERENCES

[1] Matt Bishop, Computer Security, Art & Science, Addison-Wesley, First

Edition, 2002

[2] J. J¨urjens. Secure Systems Development with UML. Springer, To be

published. 2004.

[3] Shreyas Doshi, Software Engineering and Security: Towards

Architecting Secure Software, a graduate term paper for ICS 221-

Seminar in Software Engineering, University of California, Irvine, 2001.

[4] Lawrence Chung Brian A. Nixon, Dealing with Non-Functional

Requirements: Three Experimental Studies of a Process-Oriented

Approach ,International Conference on Software Engineering 1995.

[5] Barbara Paech, Allen H. Dutoit, Daniel Kerkow, Antje von Knethen

,Functional requirements, non-functional requirements, and architecture

should not be separated, 8th International Workshop on Requirements

Engineering: Foundation for Software Quality, Essen, Germany, 2002

[6] Robert Grady, Practical Software Metrics for Project Management and

Process Improvement, Prentice Hall, 1992

[7] Philippe Kruchten, The Rational Unified Process: An Introduction,

Third Edition, Addison-Wesley Pub Co, 2003.

[8] Donald G. Firesmith, Engineering Security Requirements, Journal of

Object Technology, Vol. 2, No. 1, January-February 2003.

[9] Donald G. Firesmith, Security Use Cases, Journal Of Object

Technology, Vol. 2, No. 3, May-June 2003.

[10] Robert J. Ellison Richard C. Linger, Andrew P. Moore Attack Modeling

for Information Security and Survivability CMU/SEI-2001-TN-001,

2001

[11] Jeffrey Barcalow, Joseph Yoder Architectural Patterns for Enabling

Application Security, The 4th Pattern Languages of Programming

Conference 1997.

[12] H. Baghi, P. Jaferian, G. Elahi, M.R. Shirazi, B. Sadeghian, An

Extension on RUP for Developing Secure Systems, Proceedings of the

10th Annual International CSI Computer Conference, 2005

[13] Onn Shehory, Arnon Sturm, Evaluation of modeling techniques for

agent-based systems, Proceedings of the fifth international conference

on Autonomous agents,2001

[14] G. Popp and J. J¨urjens and G. WimmelR. Breu. Security-Critical

System Development with Extended Use Cases, Tenth Asia-Pacific

Software Engineering Conference, 2003

[15] Ruth Breu, Klaus Burger, Michael Hafner, Jan Jürjens, Gerhard Popp,

Guido Wimmel, Volkmar Lotz , Key Issues of a Formally Based Process

Model for Security Engineering, 16th International Conference

"Software & Systems Engineering & their Applications" (ICSSEA),

2003.

[16] Premkumar T. Devanbu, Stuart Stubblebine. Software engineering for

security: a roadmap, ICSE - Future of SE Track ,2000.

[17] John McDermott and Chris Fox Using Abuse Case Models for Security

Requirements Analysis, Proceedings of the 15th Annual Computer

Security Applications Conference ,1999.

[18] Gunnar Petterson, Collaboration in a Secure Development Process – Part

I, Information Security Bulletin, June 2004.

[19] Ruth Breu, Klaus Burger, Michael Hafner, Gerhard Popp, Towards a

Systematic Development of Secure Systems, WOSIS, 2004.

[20] J¨urgen Doser , Torsten Lodderstedt Model Driven Security For Process

oriented Systems David Basin, Proceedings of the eighth ACM

symposium on Access control models and technologies, 2003.

[21] Ross Anderson ,Security Engineering , a guide to building dependable

system. Wiley, 2001.

