
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1450

Abstract—Mobile applications are verified to check the

correctness or evaluated to check the performance with respect to

specific security properties such as Availability, Integrity and

Confidentiality. Where they are made available to the end users of the

mobile application is achievable only to a limited degree using

software engineering static verification techniques. The more

sensitive the information, such as credit card data, personal medical

information or personal emails being processed by mobile

application, the more important it is to ensure the confidentiality of

this information. Monitoring untrusted mobile application during

execution in an environment where sensitive information is present is

difficult and unnerving. The paper addresses the issue of monitoring

and controlling the flow of confidential information during untrusted

mobile application execution. The approach concentrates on

providing a dynamic and usable information security solution by

interacting with the mobile users during the runtime of mobile

application in response to information flow events.

Keywords—Mobile application, Run-time verification, Usable

security, Direct information flow.

I. INTRODUCTION

S our education, businesses and government become

increasingly depending on modern information

technology, mobile application security against malicious code

and mobile system bugs become increasingly important. The

more sensitive the information, such as banking data,

personals medical information and other information i.e.

(emails, massages and notes) being processed by mobile

application , the more important it is to ensure this information

privacy and confidentiality. The loss or destroy of the private

or sensitive information may cause leak of confidential

information which may lead to financial damage. Information

flow occurs from source object to a target object whenever

information stored in source is propagated directly or

indirectly to target object. An example flow would be the

copying of a file into an email that is subsequently sends

through the network to another mobile device.

Assuming that some private sensitive information is stored

on your mobile device, how can we prevent it from being

leaked? The first approach that comes to mind is to limit

access to this private sensitive information, using any type of

the traditional access control mechanisms. The access control

mechanisms are useful but they have their limitations because

M. Sarrab is a research associate with the Communication and Information

Research Center, Sultan Qaboos University, Muscat 123,Sultanate of Oman
(phone: 968-2414-3698; fax:968-2414-1325; e-mail: sarrab@ squ.edu.om).

H. Bourdoucen is the director of Communication and Information

Research Center, Sultan Qaboos University, Muscat 123,Sultanate of Oman
(phone: 968-2414-3696; fax:968-2414-1325; e-mail: hadj@ squ.edu.om).

they are focused only on controlling the release of information

but no restrictions are placed on the propagation of that private

sensitive information and thus are unsatisfactory for protecting

confidential information.

Suppose that all our colleagues in the Communication and

Information Research Center (CIRC) at Sultan Qaboos

University are mobile application software processes and all

of them are authorized to access the center offices using their

access key. Therefore, no process (staff) can access the center

without an access key. The problem is that no restrictions are

placed on the process (staff) behavior after access is granted,

each process can execute, read and write any available

information in that area. Thus, it is impossible to make sure

that the process accesses only its authorized data or

information and also cannot guarantee that there is not a leak

of information between two processes. The issue of private

sensitive information flow starts after access is granted. To

overcome this limitation a usable, reliable and flexible

monitoring mechanism are required to detect and prevent any

leak of private and confidential information. Software

engineering standard security mechanism such as access

control, encryption [2] and firewall [3] are only focus on

controlling the release of information but no limitations are

placed on controlling the propagation of that private and

confidential information. There is no monitoring mechanism

for controlling information flow during runtime for mobile

applications. The aim of this research is to provide a usable

security mechanism for controlling information flow within

mobile application during runtime. The provided information

flow control mechanism should enable users to manage their

applications security without defining elaborate security rules

before starting the mobile application. Security will be

achieved by an interactive process in which the provided

mechanism will query the user for security requirements for

specific pieces of information that are made available to the

application and then continue to enforce these requirements on

the application using a novel runtime verification technique

for tracing information flow during mobile application

runtime.

II. RELATED WORK

Security requirements in mobile applications change more

frequently than functional requirements. Traditional software

engineering runtime verification [5]-[7] has been used to

increase the confidence that the system implementation is

correct by making sure it conforms to its specification at

runtime. The provided approach is similar to [2], [4] which

employ runtime verification for information flow to determine

Runtime Monitoring Using Policy Based Approach

to Control Information Flow for Mobile Apps
M. Sarrab, H. Bourdoucen

A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1451

whether a flow in a given program run violates the

information flow policy. Despite a long history and a large

amount of research on software engineering information flow

control [8]-[12], there seems to be very little research done on

software engineering dynamic information flow analysis and

enforcing information flow based policies. Other interesting

approach such as Jif or JFlow [13] is an extension to the Java

language that adds statically checked information flow

primitives. It is imperative language that works as a source-to-

source translator to check the safety of information flow. Java

run-time environment itself contains a byte-code verifier to

ensure memory, control flow and type safety is verified.

Dynamic analysis in software engineering [14]-[17] began

very earlier in the 1970s by Bell and LaPadula aimed to deal

with confidentiality of military information [18] in their model

they dynamically controlled information flow. Lam and

Chiueh [16] proposed a framework for dynamic taint analysis

for C programs in desktop applications. Vachharajani, et al.

[3] proposed a framework for user centric information flow

security at binary code level of desktop top application. In this

mechanism every storage location associated security level.

Whereas they address the information flow security using

architectural support, RIFLE which allow users to enforce

their own information flow policy on all programs.

Our approach is similar to [4] in which the assertion points

are inserted before the information leaked to untrusted sink to

trace the program execution and it also supports user

interaction if the information flow violates the information

flow policy while the system in running. Cavadini and Cheda

[2] presented a type of information flow monitoring technique

that uses dynamic dependence graphs to track information

flow during runtime. Byte-code instrumentation is a technique

used to modify the byte-code of a program classes before they

are verified and interpreted. Byte-code instrumentation is not

often about adding a new program functionality but used to

enable program to trace its execution and monitor memory

usage [19], [20]. Chander and Mitchell [22] designed safety

technique to modify Java byte-code by transforming Java

applets and Jini proxies to enable user to modify the behavior

of Java byte-code. Also Binder, et al. [23] presented a

framework for dynamic byte-code instrumentation in Java.
Arden et al. [1] provided a new kind of computing platform, a

decentralized platform for running mobile code securely,

subject to explicit policies for confidentiality and integrity.

They have built a prototype of secure mobile code platform as

an extended version of the prototype Fabric system [29]. Taint

Droid [21], an extension to the Android mobile platform that

tracks the flow of privacy sensitive data through third party

applications. The Taint Droid main objectives are to detect

when sensitive data leaves the system via untrusted

applications. However, all previous approaches did not

consider the mobile user interaction during runtime. The

previous sections briefly summarized other approaches but the

provided approach is different of all above because it’s for

mobile applications and its assertion points are inserted before

the flow operation to be able to intercept updates and thus

prevent the mobile application from entering an insecure state.

III. INFORMATION FLOW ANALYSIS VS. RUNTIME

MONITORING

Static information flow analysis for desktop application

verifies whether programs can leak secret information or not

without running the program. Static analysis checks all

possible execution paths including rarely executed ones. The

advantage is that any program that has been successfully

checked is indeed safe to execute as it cannot possibly leak

information. The disadvantage is that any change in the

underlying information flow policy means that the whole

program needs to be analyzed again. Another disadvantage is

that a given program may be capable of leaking information,

but in the way that it is executed by the user such leaks do not

occur. Using static verification this program would be

regarded unsafe. Dynamic information flow analysis is

concerned with monitoring and regulating a program

execution at run time. It is potentially more precise than static

analysis because it does only require that the current execution

path does not leak information and can also handle language

features such as pointers, arrays and exceptions easier that

static analysis. Finally, using runtime monitoring of

information flow it is possible to allow for user interaction that

can influence the further execution of the program. In static

program analysis all possible paths of the program execution

must be free of invalid flows. If any invalid information flow

is detected then the static analysis mechanism will reject the

whole program as insecure. Graphically we can depict the set

of all possible program behavior by a blank circle and the set

of all insecure program behavior (defined in the policy) by the

dotted circle. In these terms a program is rejected by static

analysis if the intersection of both is not empty. In Fig. 1 we

depict the case for dynamic information flow analysis.

Consider that a program is in a state 0 and performs an

operation α that causes an information flow. Two cases can be

distinguished:

Fig. 1 Runtime monitoring

1. After execute α the program is in a secure state.

2. After the execute α the program is in an insecure state.

The hypothetical third case, that the program exhibits a

behavior that is defined by the policy as insecure, but is

outside of the set of possible behaviors, can be ignored. Our

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1452

framework Fig. 2 checks whether the program is about to enter

an insecure state by intercepting the operation α.

In case 1, that α leads to another secure state the program

will be allowed to perform α. In case 2, the runtime

monitoring mechanism will send feedback to the user asking

about the violation of information flow. The user has two

options on how to proceed:

A. S/he changes the operation α to another operation α ' in

such a way that the resulting state is secure with respect to

the policy. Such changes can for example be the

termination of the program or (manually) sanitizing the

information that flows in α.

B. The other option B is to modify the Policy into a Policy'

for which α leads to a secure state. This could for example

be introducing a one-off exception for the current flow or

defining a separate context in which the information flow

is considered legal.

Our approach consists of two main steps:

• Loading and Instrumentation of class _les of the target

program.

• Execution of the target program and monitoring the

information flow with respect to the information flow

policy.

Fig. 2 Monitoring mechanism steps

IV. APPLICATION DOMAIN

The Runtime verification of information flow framework

[4] is designed to address government and military security

needs; our approach uses the framework of runtime

verification of information flow [4] with slight modification to

be suitable for mobile application to address the

confidentiality of mobile applications. Suppose that an

application (attacker) requires a piece of confidential

information on a mobile device; Can we make sure that the

information is not somehow being leaked? Simply trusting the

application is dangerous. A better approach is to execute the

mobile application in a safe environment and monitor its

behavior to prevent confidential information from flowing to

untrusted entities. The user feedback component handles all

interactions with the system (Monitoring mechanism and

Mobile application) and the user. It runs in a separate thread of

control so that user interaction can be overlapped with

information flow control.

Fig. 3 Mobile runtime information flow control

The user feedback component also allows the user to

administrate the policy. When the application is running, the

user feedback component receives feedback from the runtime

checker (Steering). If the application is about to enter an

insecure state then the user will be asked to determine whether

the information flow should be aborted or allowed to flow and

continue under a modified policy. Our approach will detect

this violation of information flow and ask the user how to

proceed. The provided approach is based on the observation of

information flow during mobile application runtime. The

approach will not treat the application as a black box (with the

general assumption that once information has passed into it

can find its way to any destination the application writes to),

instead the actual flows that take place at runtime are traced

and the application is only interrupted when a policy violation

does occur. This means that even “unsafe” applications may

be executed within “safe” parameters, i.e. as long as they do

not actually violate the information flow policy. We argued

the case for our approach using realistic, case study of an

information sharing system between mobile devices and

showed clearly how the provided approach can capture the

confidentiality requirements of a specific scenario. The

following are the components of our framework Fig. 3.

A. Information Flow Policy

Information flow policy is a security policy that defines the

authorized paths, which can be a set of laws, rules, and

practices that regulate how information must flow to prevent

leak of information. Stakeholders normally have a number of

concerns that come with their desired system and are typically

high-level strategic goals. In this component the stakeholders

specify the desired characteristics that a system or subsystem

must possess with respect to sensitive information flow. For

example, information contained in file named

/home/msarrab/secret.txt is not allowed to leak to internet

U
se

r F
e

e
d

b
a

ck
 C

o
m

p
o

n
e

n
t

M
e

m
o

ry

Mobile User

Informatio

n

Gest

(Mobile

Apps)

Mobile

App

Assertion

Point

 Low level Information

Event

Recognize

Runtime

Checker

Steering

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1453

socket address 127.1.66.127:2000. In our approach, the

information flow policy expresses the security requirements as

specified by the stakeholder/user to a set of rules that are

understandable by our monitoring mechanism. Suppose that

the information flow policy rule consists of the following three

components (Action A, source S, destination D).

A S D

The possible actions are as follows:

+Allowing the flow of the information.

- Disallowing the information flow.

? Asking the user to allow or disallow the flow of the

information.

According to the above example the information contained in

file named /home/msarrab/secret.txt is not allowed to leak to

internet socket address 127.1.66.127:2000. So the information

flow policy rule should be as following:

- /home/msarrab/secret.txt 127.1.66.127:2000

If the policy has (+) instead of (-) that means the information

is allowed to flow and if the policy has (?) instead of (-) means

the user should be asked before allow or denial the flow thus

the flow should be according to the user decision.

B. Assertion Points

Assertion points are program fragments as a collection of

probes that will be inserted into the software. The essential

functionality of the assertion point is to send pertinent state

information to the event recognizer. This will ensure

monitoring relevant objects during the application execution.

The probes are inserted into all locations where monitored

objects are updated such as (program variables and function

calls); the target program is instrumented before the flow

operation to be able to intercept updates and thus prevent the

mobile application entering an insecure state. Monitoring

applications, either in runtime or by generating report at the

end of the program execution is one of the core application

domains for byte-code instrumentation.

Fig. 4 Assertion points process (byte-code instrumentation process)

Byte-code instrumentation is often not about adding new

functionality, but enhancing a program temporarily to trace its

execution, to give a user chance to observe and alter

application behavior. The main goal of the provided approach

is that during runtime the instrumented mobile application is

executed while being monitored and checked with respect to

information flow policy. Byte-code instrumentation is a

widely used technique [24]-[26], [19], [20] in monitoring

desktop application’s behavior and change the functionality of

an application.

Byte-code instrumentation is often not about adding new

functionality, but enhancing a program temporarily to trace its

execution, to give a user chance to observe and alter

application behavior. The main goal of the provided approach

is that during runtime the instrumented mobile application is

executed while being monitored and checked with respect to

information flow policy. Byte-code instrumentation is a

widely used technique [24]-[26], [19], [20] in monitoring

desktop application’s behavior and change the functionality of

an application. Monitoring normal applications, either in

runtime or by generating report at the end of the program

execution is one of the core application domains for byte-code

instrumentation. In the byte-code filter program resources are

identified and variables that are used to hold data during the

application execution. Resources represent external data

sources and sink that the application can access, e.g. files,

sockets etc...

C. Event Recognizer and Runtime Checker

Event recognizer is used as a communication interface

between the assertion points and the runtime checker. The

Java virtual machine is stack oriented, with most operations

taking one or more operands from the operand stack of the

Java virtual machine's current frame or pushing results back

onto the operand stack. Our approach has idea similar to the

Java virtual machine runtime frames. In our approach a new

runtime frame is created each time a method is invoked. The

runtime frame consists of a stack called information flow stack

(IFS) and Symbol Table for the use by the current method to

store its variables. At any point of the execution, there are thus

likely to be many frames and equally much information flow

stacks (IFS) and Symbol Tables per method invocation. Only

the runtime frame (IFS and Symbol table) of the current

method is active. The event recognizer receives an event that

attempts to change the state of the information flow within the

application. Event recognizer manipulates all labels of

variables using the current runtime frame (IFS and Symbol

table) and implicit information flow stack (IMFS) as

illustrated in Fig. 5.

• Information Flow Symbol Table holds information

needed to trace the information flow during runtime. To

reduce the time of searching our event recognizer uses a

hash table data structure to implement the information

flow Symbol Table. The event recognizer performs the

following operations on the information flow Symbol

Table:

1. Get labels from a specific position.

2. Put labels at a specific position.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1454

Fig. 5 Runtime frame of the current method and IMFS

• Information Flow Stack (IFS). Each runtime frame

contains a last-in-first-out (LIFO) stack known as its

information flow stack (IFS). The event recognizer

supplies instructions to load labels from Symbol Tables

onto the IFS. The information flow stack is also used to

prepare parameters to be passed to other runtime frames

and to receive results of other method traces. Our event

recognizer uses the information flow stack to control

explicit information flow.

• Implicit Information Flow Stack (IMFS) is similar to the

information flow stack (IFS). The event recognizer uses

shared implicit information flow stack between all

runtime frames as illustrated in Fig. 4. The implicit

information flow stack is shared to control any implicit

information flow that may occurs during runtime such as

a method invocation inside a conditional statement.

The runtime checker receives events from the event

recognizer that may cause information flow within the

application. The runtime checker determines whether or not

the current events of the execution trace as obtained from the

event recognizer satisfies the information flow policy and

sends feedback to the user feedback component when it

determines that the application is about to enter an insecure

state. The runtime checker essentially checks the received set

of events that potentially causes information flow.

D. User Feedback Component

User feedback component is an interface between a user

and the monitored mobile application. An essential

functionality of the user feedback component is that all user

interaction passes through this component. The user feedback

component informs the user about any feedback received from

the runtime checker. As illustrated in Fig. 1 if the runtime

checker determined that this state execution would violate the

information flow policy then it sends feedback to the user

through the user feedback component, the application

behavior will be changed accordingly, and the information

flow policy will be modified according to the user decision.

Assuming that an application attempts to leak information

from source S= /home/msarrab/secert/msarrab.sec to

destination D=127.1.66.177:3000 then the runtime checker

will check the information flow policy rules to figure out if the

source S is allowed or denial the flow of this information to

destination D. The runtime checker compares all sources in

the information flow policy to find any policy rule that has the

same source as the present source

S=/home/msarrab/secert/msarrab.sec and then checks the same

rule destination if is it equal to the present destination

D=127.1.66.177:3000 and checks the action of the rule,

assuming that the action is (?) as indicated in the following

information flow policy rule:

?/home/msarrab/secert/msarrab.sec 127.1.66.177:3000

Fig. 6 A snapshot of monitored flow

According to the action (?) of the information flow policy

rule the user should be asked as shown in Fig. 2. The runtime

checker sends feedback to the user through the user feedback

component where the user made the decision to approve or

deny the flow of the information from the source S

(/home/msarrab/secert/msarrab.sec) to the destination D

(127.1.66.177:3000).

V. CASE STUDY

To show the feasibility of our approach, a representative

case-study of a peer to peer file sharing application is started

to be developed. The following presents the file-sharing

application and information flow requirements for a single

peer. Peers are programs that can share information (files)

over the network with other known peers.

Fig. 7 Peer Program Schematics

A peer can transfer files from the local machine to remote

peers using sockets as a means of communication and

implementing a proprietary protocol for the transfer itself.

Each peer is an interactive program, repetitively asking the

user for a file to transfer to a destination in the network. Once

entered, the program will open and load the file and transfer

the file in sizable chunks to the peer at the destination address.

Schematically the program behaves as depicted in Fig. 7.

Fig. 7 depicts a particular instance of bespoke file sharing

with the peers Laptop, PDA and Mobile, which will be used to

evaluate our approach. Considering the Laptop’s view of the

system, Laptop locally stores secret and public information

(directories Files/Secret and Files/Public). Laptop trusts PDA

Method

Symbol

Table

Method
Symbol

Table

Implicit

Info
Flow

Stack

Runtime Frames

Method

Info
Stack

Method

Info

Stack

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1455

and is willing to share secret information with this device.

Mobile is not trusted and thus should only be sent public files.

The four different flows possible (originating from Laptop) in

this scenario are depicted Fig. 8. Given the nature of our

program, Laptop must always determine the destination and

the file to send, and thus has control over the sending of files.

There are two issues here:

a. Can the provided approach help the Laptop users in

preventing accidental transfer of secret information to

Mobile? and

b. Assuming that Laptop user received a copy of the peer

application from Mobile and therefore cannot place trust

in the application itself, can our approach help Laptop to

ensure that the application is not sending secret

information to mobile without its knowledge.

Fig. 8 Scenario with information flows

Both points are very relevant to the way information

sharing application is used today. Mobile application is

typically complex and many users are not aware of what data

is being stored or transferred by the application. Especially

with the increasing use of web-based data storage and cloud

computing the question of where data is being stored and

processed is beyond the intuitive understanding of any user.

Secondly, relying solely on trust in the vendor/distributor of

mobile application s does not provide sufficient protection to

the user’s/ organization’s data and will become increasingly

more questionable as an approach to security. The protection

requirement in the above scenario states that the permissible

flows are (0,1,2) and the denied flow is (3). Next section will

describe how the peer program is instrumented at the Java

byte-code level to allow these flows to be controlled.

TABLE I
POSSIBLE SCENARIO OF INFORMATION FLOW

S From To

0 Files/Public PDA

1 Files/Public Mobile

2 Files/Secret PDA

3 Files/Secret Mobile

VI. PROTOTYPE

Our goal is to trace mobile application execution and

monitor it when flow may happen. Javassist library has been

used to instrument the byte-code of any Java class file at

compile or runtime [27]. An important aspect of Javassist is

that the instrumentation can be performed just before Java

Virtual Machine loads the class [28]. The Javassist is used to

edit class file during class loading that enable the provided

framework to deal with arbitrary class files that are executed

by the user without unnecessary interference. A dedicated

class loader is used to load and instrument classes those are

provided by Javassist’s ’java assist. Loader’ class, as shown in

Fig. 3. The following section will show how different parts of

the peer application are instrumented by our byte-code filter.

Recall from Fig. 3 the following critical steps in the

application execution:

1. Get Destination (kkSocket)

2. Get Filename (FILE)

3. Get FileInputStream (FIS)

4. Get SocketOutputStream (SOS)

5. Read 128 bytes from FIS into buffer (BUFF)

6. Write BUFF to SOS

To build up information flow trace structure these parts of

the program have to be instruments using the byte-code filter.

• Filtering Socket Creation

• Filtering File Creation

• Filtering File Input Stream Creation

• Filtering Output Stream Creation

• Filtering Read Method

• Filtering Write Creation

The information will flow as shown in Table II:

If a local machine “Laptop” trying to transfer File/Secret to

a remote socket address 146.227.5.190:2000 ”Mobile” which

depicted in Fig. 7 case (3) as denied flow.

TABLE II

CASE STUDY POSSIBLE INFORMATION FLOW

Location 6 (File) → Location 8 (FIS)

Location 8 (FIS) → Buffer

Buffer → Location 9 (SOS)

location 9 (SOS) → Location 1 (Socket)

Our mechanism will throw an exception and terminate the

program as following:

File: / File/Secret/a1.txt Will flow to:

java.io.FileInputStream@ed0338-->

java.net.SocketOutputStream@228a020-->

Socket[addr=/146.227.5.190 ,port=1000, localport=43384]

VII. EVOLUTION

The provided approach is evaluated against other methods

of restricting information flow.

A. Trusted Code

If the Laptop user could trust the peer code s/he is

executing, s/he can be sure that no breach of security can

happen if s/he uses the code right (i.e. does not instruct the

application to send files from Secret to Mobile). In the

scenario Laptop cannot trust the code as it was obtained from

Mobile, and it would be unreasonable to trust Mobile’s code

but not its user. Also, Laptop user cannot write his/her own

peer program as the protocols used are propriety and s/he also

may lack the required skills to do so. Only in very few

domains (i.e. those where only certified application can be

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1456

used) the user/organization can trust the application s s/he is

executing. Our approach does not make an assumption on the

level of trust that place in the mobile application and is

formally designed to deal with untrusted mobile application.

B. Cryptography

Laptop user could use encryption techniques to prevent

Mobile user from reading (note: not receiving) secret

information. This would assume that a key infrastructure is

present and managed. It also complicates the issue in any more

general settings where groups of users should access secret

information, or the underlying requirements are bound to

change frequently. The advantage of cryptographic solutions

is that they provide end-to-end security, i.e. even if

information for PDA is sent via Mobile, Mobile would not be

able to use the information. The provided framework takes a

different approach in preventing local flows. The advantage is

that no assumptions on existing key-infrastructure are made

and it is also transparent to the application.

C. Sandboxing

Laptop can execute the application in a sandbox and restrict

the access the application has to resources, i.e. communication

and file-system access, using policies. A sandbox protection is

implemented for the above scenario using the Java Security

Manager and Policies. This approach is not flexible enough to

express the above scenario. The flow is able to be restricted

using policies to the sets of permissible flows in Table II.

Similar flow restrictions can be achieved by access control

mechanisms present in the underlying operating system (i.e.

Android or iOS).

TABLE III

POSSIBLE FLOW RESTRICTIONS USING JAVA SANDBOXING

()
(0), (1), (2), (3)

(0,1), (2,3)

(0,2), (1,3)
(0,1,2,3)

No access
Single resource/target

Single resource

Single target
No restriction

The List below shows an example policy that restricts the

information flow. Whilst sandboxing is a powerful technique

and allows to restrict access to host resources, it does not

provide the fine grained level of control that is needed for

information flow control.

permission java.net.SocketPermission "146.227.5.189:1000",

"connect";

permission java.io.FilePermission

"/home/msarrab/File/Secret/*","write,read";

permission java.net.SocketPermission"146.227.5.190:1000",

"connect";

permission java.io.FilePermission

"/home/msarrab/File/Public/*", "read";

Laptop user can sandbox the application and run multiple

instances of the application (in general one for each

communication channel, in this case two) for which the access

is adequately restricted. Whilst feasible, the number of

processes running makes the use complicated.

VIII. CONCLUSION

The paper provided a new approach of monitoring and

controlling information flow during runtime of mobile

application. The paper has shown that dynamic code

instrumentation at byte-code level is a viable approach to trace

information flow while the execution of mobile application.

The benefits of the provided approach are: Firstly, monitoring

information flow at runtime has the advantage over traditional

software engineering static verification methods such as [6]-

[8] that it is possible to interact with the mobile user and

therefore allowing more flexible control to be exercised.

Secondly, the provided approach does not treat the application

as a black box. Instead the actual flows that take place at

runtime are traced and the application is only interrupted when

a policy violation does occur. This research has only touched

the surface of runtime monitoring of controlling information

flow for mobile applications. More studies are needed to be

conducted in this field as mobile application advance in our

societies. However, the initial result of this paper encourages

and pushes us in future to generalize the code instrumentation

mechanism to operate with any resources accessible to a Java

program. Another aspect that should be considered is the

interaction with the user in case a violation occurs the user

should be presented with an understandable chain of flows that

enables the mobile user to decide whether to grant the flow,

create an exception or to terminate the program.

REFERENCES

[1] O. Arden, M. George, J. Liu, K. Vikram, A, Askarov, and A. Myers,
“Sharing Mobile Code Securely With Information Flow Control” Proc

of the 2012 IEEE Symposium on Security and Privacy, May 2012.

[2] S. Cavadini and D. Cheda. “Run-time information flow monitoring
based on dynamic dependence graph,” Third International Conference

on Availability Reliability and Security, 2008.

[3] N. Vachharajani, M. Bridges, J. Chang, R. Rangan, G. Ottoni, J. Blome,
G. Reis, M. Vachharajani and D. August. An Architectural Framework

for User-Centric Information-Flow Security,” In Proc of the 37th annual

IEEE/ACM International Symposium on Microarchitecture, 2004.
[4] M. Sarrab, H. Janicke and A. Cau. “Interactive Runtime Monitoring of

Information Flow Policies,” In Second international conference of

Creativity and Innovation in software Engineering, Ravda (Nessebar),
Bulgaria, 2009.

[5] H. Janicke, F. Siewe, K. Jones, A. Cau and H. Zedan. “Analysis and

Run-time Verification of Dynamic Security Policies,” Proc of the
Workshop on Defence Applications & Multi-Agent Systems

(DAMAS05), at 4th international joint conference on Autonomous

Agents & Multi Agent Systems (AAMAS05), July 2005.
[6] H. Ben-abdallah, S. Kannan, L. Insup, O. Sokolsky, M. Kim and M.

Viswanathan, “Mac: A framework for run-time correctness assurance of

real-time systems,” Tech. Rep. MS-CIS-98-37. In Philadelphia, PA,
Department of computer and Information Science University of

Pennsylvania., 1999.

[7] I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky, and M.
Viswanathan, “A Monitoring and Checking Framework for Run-time

Correctness Assurance,” In Korea-US Technical Conference on

Strategic Technologies, Vienna, VA, October 22-24 1998.
[8] A. Banerjee and D. Naumann, “History-based access control and secure

information flow,” In Construction And Analysis of Safe, Secure, And

Interoperable Smart Devices (CASSIS 2004), vol 3362 of LNCS,
Springer, 2005a.

[9] D. Denning and P. Denning, “Certification of programs for secure

information flow,” ACM Communications, vol. 20, No. 7, July 1977.
[10] D. Volpano, G. Smith, and C. Irvine, “A sound type system for secure

flow analysis,” Journal of Computer Security, vol. 4, No. 3, 1996.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:11, 2013

1457

[11] G. Smith and D. Volpano, “Secure information flow in a multi-threaded

imperative language,” In Proc. ACM Symp. Principles Programming
Languages, pp. 355–364. Jan. 1998.

[12] F. Pottier and V. Simonet, “Information flow inference for ML,” In

ACM Symposium on Principles of Programming Languages (POPL),
2002.

[13] A. Myers, “Jflow: Practical mostly-static information flow control,”

Proc of 26th ACM Symposium on Principles of Programming
Language. 1999.

[14] J. Fenton, “Memory less subsystems,” The Computer Journal, vol. 17,

No. 2, May 1974.
[15] J. Brown and J. Knight, “A minimal trusted computing base for

dynamically ensuring secure information flow,” Technical Report

ARIES-TM-015, MIT. Nov, 2001.
[16] L. Lam and T. Chiueh, “A General Dynamic Information Flow Tracking

Framework for Security Applications,” In 22nd Annual Computer

Security Applications Conference, Washington, DC, USA. December
2006.

[17] G. Birznieks, “Perl taint mode version 1.0”, june 3, 1998

http://gunther.web66.com/faqs/taintmode.html. 1988.
[18] L. LaPadula and D. Bell, “Secure Computer Systems: A Mathematical

Model,” MITRE Corp., Bedford, MA, MTR-2547, vol. 2, 1973.

Reprinted in Jornal of Computer Security, vol. 4, No. 2–3, 1996.
[19] J. Aarniala, “Instrumenting java bytecode,” Seminar work for the

compilers course, Department of Computer Science University of

Helsinki, Finland, 2005.
[20] K. O’Hair, “Bytecode Instrumentation (BCI),” java. net The source for

java technology collaboration, 2005.
[21] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel and A.

Sheth, “Taintdroid: An information-Flow tracking system for realtime

privacy monitoring on smartphones,” In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2010.

[22] A. Chander, J. Mitchell, and I. Shin, “Mobile code security by Java

bytecode instrumentation,” DARPA Information Survivability
Conference and Exposition (DISCEX II’01),vol. 2. 2001.

[23] W. Binder, J. Hulaas, and P. Moret, “Advanced java bytecode

instrumentation,” In Proceeding of the International Symposium on
Principles and Practice of Programming in Java (PPPJ), New York, NY,

USA, ACM. 2007.

[24] ASM Java bytecode manipulation framework. http://asm.objectweb.org/.
[25] SERP. http://serp.sourceforge.net/.

[26] BCEL. The byte code engineering library. http://jakarta.apache.org/bcel/

2002-2006, Apache Software Foundation.
[27] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient Java

Bytecode Translators,” In Proc of the 2nd International Conference on

Generative Programming and Component Engineering (GPCE ’03),
Springer-Verlag, September 2003.

[28] S. Chiba. “Class loader,” Available from http://www.csg.is.titech.ac.jp/

chiba/javassist/tutorial/tutorial.html load [Accessed 15/06/09], 2007.
[29] J. Liu, M. George, K. Vikram, X. Qi, L. Waye, and A. Myers, “ Fabric: a

platform for secure distributed computation and storage,” In Proc of

22nd ACM Symp on Operating System Principles (SOSP), 2009.

