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Abstract—Robust stability and performance are the two most 

basic features of feedback control systems. The harmonic balance 
analysis technique enables to analyze the stability of limit cycles 
arising from a neural network control based system operating over 
nonlinear plants. In this work a robust stability analysis based on the 
harmonic balance is presented and applied to a neural based control 
of a non-linear binary distillation column with unstructured 
uncertainty.  We develop ways to describe uncertainty in the form of 
neglected nonlinear dynamics and high harmonics for the plant and 
controller respectively. Finally, conclusions about the performance of 
the neural control system are discussed using the Nyquist stability 
margin together with the structured singular values of the uncertainty 
as a robustness measure. 
 

Keywords—Robust stability, neural network control, 
unstructured uncertainty, singular values, distillation column. 

I. INTRODUCTION 
key reason for using feedback in model based control 
systems is to reduce the effects of uncertainty which 

appear in different forms as disturbances or as other 
imperfections in the model assumed during the control law 
design process.  

The design of feedback compensators in general has to 
satisfy the four objectives of nominal closed loop stability, 
nominal performance, robust stability and robust performance 
[1]. Robust stability implies stability not only for the nominal 
model of a process but also for the family of models of the 
process under the uncertainty assumptions made. To deal with 
the robust stability of linear systems with uncertainty some 
well known controller design methods has been applied like 
the LQG, H∞ and QFT [2] and several results have been 
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reported to quantify robustness measures [3],[4].  
Besides, the most of plants under control are nonlinear in 

nature, showing multiple steady regimes and complex 
behaviours such as limit cycles. The harmonic balance 
analysis approach is an approximate technique for analysing 
nonlinear system oscillations, based on the calculation of the 
sinusoidal input describing function (SIDF) of a nonlinear 
system, representing a static nonlinearity by a variable gain 
[5]. 

Neural networks offer a promising approach to model based 
control of multivariable (MIMO) complex nonlinear plants, 
and several neural control schemes such as predictive control, 
inverse model control and adaptive control has been reported 
[6].  

In order to be able to design a robust controller for a given 
process, it is necessary not only to derive a nominal model of 
the process but also the model uncertainty to which the control 
system has to be robust. The uncertainty can be used to 
represent the difference between the real open loop dynamics 
and the nominal open loop model at any time, or to represent 
the change of plant behaviour with time. Methods for 
identifying uncertainty models have been developed for time 
and frequency domain data [7], [8]. 
In this paper we analyze the robustness of neural based 
multivariable control systems with uncertainty, provided that 
both the neural controller and plant are represented by its 
SIDF approximation and linearized model respectively. For 
this purpose we make use of the generalized Nyquist stability 
criterion applied to analyze nominal stability. The plant 
uncertainty model is derived using an identification procedure 
applied to a binary distillation column under feedback 
neurocontrol, while controller higher harmonics stands for the 
controller uncertainty, both treated as additive input 
perturbations.  The approach here developed gives alternatives 
to computing stability margins fro the real closed loop when 
multivariable uncertainty is defined by its singular value 
decomposition.  

II. THE HARMONIC BALANCE METHOD 
The basic idea of the describing function DF approach for 

analysing nonlinear system behaviour is to replace nonlinear 
elements with (quasi)linear descriptors whose gains are a 
function of input amplitude. These descriptors are governed 
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by the form of input signal, which is assumed in advance. The 
sinusoidal input describing function SIDF approach here used 
can be used for two primary purposes, limit cycle analysis and 
characterizing the input/output (I/O) behaviour of a nonlinear 
plant in the frequency domain. [9]. For obtaining an SIDF I/O 
model of a nonlinear plant, each static nonlinearity in the 
plant’s differential equation set is replaced with the 
corresponding describing function in analytic form and then 
set up to solve the equations of harmonic balance. 

Considering the MIMO system of Fig. 1 composed by a 
nonlinear system approximated around an operation point by a 
linear transfer matrix )(sG  and a neural based controller 

)(eNNc , the open loop system can be approximated in two 
parts in series, a linear approximation of the system 

{ })()( sGsG ij=  and a nonlinear part (the neural controller) 

with a describing function matrix { }),(),( 11 ωω aNaN kl= , 
where a is a vector inputs amplitude and ω is its common 
frequency vector.  

),(1 ωaN  

+ 

- 

)( ωjG  
)( ωjY  )( ωjE  )( ωjU  

 
Fig. 1 Structure of the approximated closed loop neural control with 

SIDF  
 

The describing function is merely the fundamental Fourier 
coefficient complex representation of the output divided by 
the amplitude of the assumed sinusoidal input. It is reasoned 
that any nonlinearity generated higher harmonic components 
are filtered out in traversing the feedback loop, which 
classically is composed of low-frequency band components. 
Therefore, it is assumed that the nonlinearity generates no 
sub-harmonics, and only a first harmonic analysis is 
accomplished for the nominal open loop system. 

Under such considerations, if we apply a sinusoidal input 
signal )Re()( tj

kk eate ω⋅= , ω > 0 for nk K1= , at the output 
of the nonlinear neural controller )(eNN  we obtain the 
Fourier series expansion 

K+⋅⋅= ∑
=

)),(Re()(
1

1 tj
l

n

l
lili eaaNtu ωω            (1) 

where 1
ilN  is the first harmonic gain form the lth input of the 

nonlinear controller to its ith output and depends on the 
amplitude ai, computed as  

)()(1),(1 tdetu
a

aN tj
i

l
lil ω

π
ω

π

π

ω ⋅⋅
⋅

= ∫
−

−          (2) 

 
assuming that 0=)(tek  lk ≠ . Therefore, the plant output 
frequency response is given by  

 

                  )(),()()( 1 ωωωω jEaNjGjY ⋅⋅=             (3) 
 
and for null reference command signal we have  

)()( ωω jEjY −=  yielding the harmonic balance matrix 
equation as 
 

0),()( 1 =⋅+ ωω aNjGI                       (4) 
                        
Consequently the condition for fulfillment of the harmonic 
balance equation is given by 

 
                    0)),()(det( 1 =⋅+ ωω aNjGI                  (5) 

 
The existence of limit cycles for the nominal closed loop 
control system of Fig. 1 can be determined through the use of 
the generalized Nyquist stability criterion [10] where 
avoidance of the critical point 1+j0 at the s complex plane is at 
the centre of interest from the point of view of absolute 
stability assessment. This criterion establishes that the number 
of unstable closed-loop poles of the former control 
configuration is equal to the sum of the number of times the 
Nyquist plot Γ of the open loop transfer matrix 

),()( 1 ωω aNjG ⋅  encircles the crticical point in a clockwise 
direction plus the number of unstable open-loop poles. 

III. FREQUENCY DOMAIN APPROACH TO ROBUST STABILITY 
ANALYSIS  

Robust stability means that the system is stable not only for 
the nominal plant )(sG and SIDF approximate controller, but 
also for a family of models containing all the possible models 
of the plant under uncertainty, considering also the uncertainty 
due to the higher harmonics effects in the controller dynamics. 
Therefore, the robustness of the closed loop system is 
guaranteed taken into account both sources of uncertainty. 

The drawback of the previous MIMO harmonic balance 
method for stability analysis is that, in spite of its graphical 
character, it does not supply robustness measurements. These 
measurements can be achieved by means of a different method 
based on the structured singular values.  

A convenient way to formulate the problem is in terms of 
the M-Δ standard configuration comprising the total 
uncertainty Δ and the sensitivity transfer function matrix M as 
is depicted in Fig. 2. For the case of input additive 
uncertainties the M matrix is given by the control sensitivity 
matrix while in case of multiplicative uncertainty M stands for 
the complementary sensitivity matrix. 
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Fig. 2 Robustness analysis with the Δ-M configuration 
 
The open loop system comprises a linear nominal model 

transfer function matrix )(sG with additive uncertainty plant 

matrix )(sGΔ  and a nonlinear SIDF matrix ),(1 ωaN with 

high order neglected harmonics ),( ωaNΔ  as controller 
uncertainty (Fig. 3). 

The nominal model )(sG  has been determined by 
linearization of a nonlinear plant model at a nominal operation 
point, while we have used the theory of estimation in the form 
of unfalsified linear uncertainty models [11] for the plant 
uncertainty determination.  
 On the other hand, the controller uncertainty ),( ωaNΔ  is 
given by the summation of the rest of harmonics  
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Fig. 3 Neural control closed loop with multiplicative plant and 

controller uncertainties 
 

Transforming the additive uncertainties to input 
multiplicative ones, and considering both )(sG  and 

),(1 ωaN  square matrices for inversion (this constraint will 
be later relaxed), then the real open loop (Fig. 3) is given by  

 

),()),((

))()((),(
1 ωω

ωωω

aNaNI

GIjGaLR

Δ+

⋅Δ+=
           (7) 

 
where the matrices )())(()( ωωω GjGinvG Δ=Δ  and 

))(())()( 1 ωωω NinvN NΔ=Δ  define the input multiplicative 
uncertainties. In this way, the feedback system of Fig. 3 
should be robust against the controller uncertainty introduced 
by the SIDF approximation in addition to the robustness 
requirement with respect to the uncertainty in the plant. 

IV. ROBUST ANALYSIS OF LIMIT CYCLES  
Considering the open loop nominal transfer matrix function 

),()(),( 1 ωωω aNjGaL ⋅= , the singular values of  ),( ωaL  

are given by  
 

          )),(),(()),(( * ωωλωσ aLaLaL ii =           (7) 
 
being )(Lσ  and )(Lσ  the maximum and minimum singular 
values respectively, and iλ  the ith eigenvalue.  

It can be easily demonstrated that the α-norm  
))),((sup(sup ωσ

ω
aLL

a
=  fulfills the norm properties [12] 

and can be taken as the MIMO gain of  ),( ωaL . 
The small-gain theorem [7] establishes that if both the 

nominal system )(sM  and the uncertainty system )(sΔ  of 
Fig. 2 are stable and have bounded gains then, the closed loop 
is stable if 1)()( <⋅Δ ωω jM  ω∀ , that is, 

1))(())(( <⋅Δ ωσωσ jM . 
Applying block reduction techniques, the closed loop 

structure of Fig. 3 can be matched to the M-Δ standard 
configuration with total uncertainty  ),( ωaΔ  given by  

 
 )),()()(),(),( ωωωωω aNGGaNa ΔΔ+Δ+Δ=Δ      (8) 

 
and the sensitivity transfer function matrix M corresponds to 
the complementary sensitivity function matrix ),( ωaT  

 
)(),())(),((),( ωωωωω GaNGaNIinvaT ⋅+=       (9) 

  
The small gain theorem then gives the sufficient condition 

for stability of the closed loop with respect to the input 
multiplicative uncertainty verifying that  

 

)),((
1)),((

ωσ
ωσ

aT
a <Δ            (10) 

 
In order to find the maximum singular value of  

)),(( ωσ aΔ we apply the α-norm properties to eq. (8) yielding 
 

  )()()()()( GNGN ΔΔ+Δ+Δ≤Δ σσσσσ            (11) 
 
and substituting in (10) we derive an upper bound on the plant 
uncertainties for the robust stability and therefore absence of 
limit cycle oscillations when 
 

  
)(

1)()()()(
T

GNGN
σ

σσσσ <ΔΔ+Δ+Δ           (12) 

)(1

)(
)(

1

)(
N

N
TG

Δ+

Δ−
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σ

σ
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Then, the ))())(( NTinv Δ−σσ  difference relative to 
)(1 NΔ+σ  can be considered as a measure of robustness. 
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V. APPLICATION 
The proposed robust stability analysis was tested in a 

simulation study of neural based control of a nonlinear binary 
distillation column developed by [13], composed by the mass, 
component mass and enthalpy balance equations implemented 
in SIMULINK [14] and designed to separate a mixture of 
methanol and water, with 9 bubble caps trays provided with 
heated electrically reboiler and water refrigerated tubular 
condenser (Fig. 5). 

The manipulated variables are the heat input to the reboiler 
Q and the reflux flowrate L, while distillate and bottom 
composition are the controlled variables. 

The training set for the neural identification comprised 200 
data points belonging to the open loop operating range for 
plant inputs reflux flowrate L (0-5E-06 m3/h) and heat flow Q 
(0-2000 J/s) for fixed feed rate conditions F = 1 E-06 m3/h, 
XF = 0.3, and q = 1. An additional data set consisting of 150 
data points was used to test the neural network model 
afterwards. For training pattern generation we assume an 
initial steady state for the column after a start-up process. We 
obtained an optimum 2-10-2 network SIMULINK neural 
identification block.  
 

 
 

Fig. 5 Schematic of the distillation column  
 

The training set for neural control comprised 150 data 
points as inputs and reflux rate and heat flow as outputs 
belonging to the closed loop operating range for desired and 
actual top and bottom compositions values Dx  (0.0-1.0) and 

Bx  (0.0-1.0). An additional data set consisting of 120 data 
points was used to test the neural network controller also. The 
control task was made using the neural identification network 
previously trained, obtaining an optimum 2-12-2 network 
SIMULINK block for the neural controller, with top and 
bottom composition errors (Fig. 6). 

To deal with this problem the singular value approach has 
been used to derive an upper bound on the plant uncertainties 
for the robust stability and therefore absence of limit cycle 
oscillations for the real closed loop system. 

The model uncertainty has been identified through the 
application of the l1-identification toolbox [15] using the  

 
Fig. 6 SIMULINK structure for neural distillation control 

 
discrete version of the linearized plant model as nominal 
model, obtaining the maximum and minimum values for the 
coefficients of the discrete uncertainty model whose 
continuous version defines )(sGΔ . A maximum bound of  

15.0))(( <Δ ωσ G  is obtained. 
The ))(( Minv σ  for controlling sensitivity function has 

been calculated with the )( NΔσ controller uncertainty, and an 
upper bound for plant uncertainties for the absence of limit 
cycle oscillations is calculated by applying (13). It can be 
shown that a minimum robustness margin of 0.22 is obtained, 
therefore the closed loop is stable since 22.0)( <ΔGσ  
condition is fulfilled. 

The response of the neural controller for pulse changes in 
both distillate and bottom composition for original system 
(Fig. 7-a) shows adequate tracking performance, while 
induced changes in plant parameters (change in 20% tray 
efficiencies) out of the enabled uncertainty range causes limit 
cycle behavior or even unstability (Fig. 7-b). 

VI. CONCLUSIONS AND FUTURE WORK 
We have analyzed the robustness of neural based 

multivariable control systems with uncertainty, provided that 
both the neural controller and plant are represented by its 
SIDF approximation and linearized model respectively. For 
this purpose we make use of the generalized Nyquist stability 
criterion applied to analyze nominal stability. The plant 
uncertainty model is derived using an identification procedure 
applied to a binary distillation column under feedback 
neurocontrol, while controller higher harmonics stands for the 
controller uncertainty, both treated as additive input 
perturbations. The approach here developed gives alternatives 
to computing stability margins for the real closed loop when 
multivariable uncertainty is defined by its singular value 
decomposition.  
 Future works are directed toward the development of a 
design method for training the neural controller in order to 
satisfy not only performance requirements but robustness 
conditions.
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Fig. 7 Response for pulse change in set-point distillate and bottom composition for original system (a) and perturbed system (b) 


