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Robust stability criteria for uncertain genetic
regulatory networks with time-varying delays

Wenqin Wang and Shouming Zhong

Abstract—This paper presents the robust stability criteria for
uncertain genetic regulatory networks with time-varying delays. One
key point of the criterion is that the decomposition of the matrix
D̃ into D̃ = D̃1 + D̃2. This decomposition corresponds to a
decomposition of the delayed terms into two groups: the stabilizing
ones and the destabilizing ones. This technique enables one to take
the stabilizing effect of part of the delayed terms into account.
Meanwhile, by choosing an appropriate new Lyapunov functional,
a new delay-dependent stability criteria is obtained and formulated
in terms of linear matrix inequalities (LMIs). Finally, numerical
examples are presented to illustrate the effectiveness of the theoretical
results.

Keywords—Genetic regulatory network; Time-varying delay; Un-
certain system; Lyapunov-Krasovskii functional

I. INTRODUCTION

GENETIC networks are biochemically dynamical sys-
tems, which are attracting more and more attention

from biology, engineering and other research fields. Genetic
regulatory networks (GRNs) are the mechanisms which have
evolved to regulate the expression of genes, and the expression
of a gene is regulated by its production. They have become an
very important research area in the biological and biomedical
sciences [1], [2], [3], [4], [5], [6], [7], [8].

Recently, the mathematical models are useful for studying
the mechanisms of organisms and the behavior of gene net-
works from the data observed. Generally, there are two types of
genetic regulatory network models: the Boolean model [1], [2],
[3], [4] and the differential equation model [5], [6], [7], [8]. In
Boolean models, the activity of each gene is expressed in one
of two states: ON or OFF, and the state of a gene is described
by a Boolean function of states of other related genes. On the
other hand, the concentration of gene products are determined
by variables, such as mRNAs, proteins and continuous values
of the gene regulation systems in the differential equation
model. In practical biological model, gene expression rates
are usually continuous variables rather than ideal ON-OFF
switches. Several typical GRNs have been modelled and
studied, both in theories and in experiments (see [8], [9], [10]).

Due to the completion of the transcription and translation
of DNA, mRNA, and the diffusion to a certain place of a

This research was supported by the National Basic Research Program of
China, (2010CB732501).

Wenqin Wang and Shouming Zhong are with the School of Mathematics
Science, University of Electronic Science and Technology of China, Chengdu
611731, PR China.

Shouming Zhong is with Key Laboratory for NeuroInformation of Ministry
of Education, University of Electronic Science and Technology of China,
Chengdu 611731, PR China.

Email address: wenqinwang123@163.com.

protein need time, time delay is a common occurrence in
modeling gene regulation processes (see [11], [12]). Therefore,
mathematical models without addressing time delays may even
provide the wrong predictions of the mRNA and protein con-
centrations. Furthermore, the gene regulation process is always
subject to intrinsic noise which is due to the random births and
deaths of individual molecules, and extrinsic noise which is
derived from environment. Meanwhile, because of the use of
an approximate system model for the purpose of simplifying
models, the uncertainties are inevitable. This means that one
has to investigate the robust stability of uncertain systems [13],
[14], [20], [21], [22].

In the paper, we consider the stability problem of the
uncertain genetic regulatory networks based on a descriptor
model transformation and the decomposition technique of
discrete delay term matrix which have been introduced for
stability analysis of delayed systems. We construct a differen-
tial equation model for the uncertain gene regulation networks
with time-varying delays. By choosing an appropriate new
Lyapunov functional and employing control theory analysis
methods, some less conservative delay-derivative-dependent
stability criteria have been derived in LMIs forms, which can
be easily checked in practice. Finally, two examples are also
given to demonstrate the effectiveness and advantages of our
analysis.

II. PROBLEM FORMULATION AND SOME PRELIMINARIES

Based on the structure of the genetic regulatory network , a
single gene auto-regulatory genetic network with time delays
containing n mRNAs and n proteins was considered by the
following equations [15]:
{

ṁi(t) = −aimi(t) + bi(p1(t − σ(t)), · · · , pn(t − σ(t)))
ṗi(t) = −cipi(t) + dimi(t − τ(t)), i = 1, 2, · · · , n.

(1)
where mi(t), pi(t) are concentrations of mRNA and protein
of the ith node at time t, respectively. ai and ci are the
degradation rates of the mRNA and protein, di is the trans-
lation rate, and bi(·) is the regulatory function of the ith
gene, which is generally a nonlinear function of variables
(p1(t), p2(t), · · · , pn(t)), but has a form of monotonicity with
each variable, τ(t) and σ(t) are the time-varying delays.

In this network, gene regulation function bi(·) plays
an important role in the dynamics. Typical regulatory log-
ics include AND-like gates and OR-like gates [16], [17],
[18] for bi(·). Here, we focus on a model of genetic net-
works where each transcription factor acts additively to reg-
ulate the ith gene. The regulatory function is of the form
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bi(p1(t), p2(t), · · · , pn(t)) =
∑n

j=1 bij(pj(t)), which is called
SUM logic [19], [23]. The function bij(pj(t)) is a monotonic
function of the Hill form, and if transcription factor j is an acti-
vator of gene i, bij(pj(t)) = αij

(pj(t)/βj)
Hj

1+(pj(t)/βj)
Hj

; if transcription

factor j is a repressor of gene i, bij(pj(t)) = αij
1

1+(pj(t)/βj)
Hj

.
where Hj(j = 1, 2, · · · , n) is the Hill coefficient, βj is a
positive constant, αij is the dimensionless transcriptional rate
of transcription factor j to gene i, which is a bounded constant.
Therefore, (1) can be rewritten as:
{

ṁi(t) = −aimi(t) +
∑n

j=1 wijhj(pj(t − σ(t))) + ui

ṗi(t) = −cipi(t) + dimi(t − τ(t)), i = 1, 2, · · · , n.
(2)

where hj(x) = (x/βj)Hj /(1 + (x/βj)Hj ), ui is defined as a
basal rate, ui =

∑
j∈Ii

αij and Ii is the set of all the j which
is a repressor of gene i. The matrix W = (wij) ∈ Rn×n is
defined as follows:wij =
⎧
⎨

⎩

αij if transcription factor j is an activator of gene i
0 if there is no link from node j to node i

−αij if transcription factor j is a repressor of gene i

In compact matrix form, system (2) can be rewritten as
{

ṁ(t) = −Am(t) + Wh(p(t − σ(t))) + u
ṗ(t) = −Cp(t) + Dm(t − τ(t)) (3)

where m(t) = [m1(t), m2(t), · · · , mn(t)]T ,
p(t) = [p1(t), p2(t), · · · , pn(t)]T ,
h(p(t)) = [h1(p1(t)), h2(p2(t)), · · · , hn(pn(t))]T ,
A =diag(a1, a2, · · · , an), u = (u1, u2, · · · , un)T ,
C=diag(c1, c2, · · · , cn), D =diag(d1, d2, · · · , dn),
It should be noted that the definition of h(·) guarantee the ex-
istence of an equilibrium for system (3). Let [(m∗)T , (p∗)T ]T

be an equilibrium point of the system (3), and we always
shift the intended equilibrium point to the origin by letting
m̃(t) = m(t) − m∗, p̃(t) = p(t) − p∗. Thus, we have

{ ˙̃m(t) = −Am̃(t) + Wh̃(p̃(t − σ(t)))
˙̃p(t) = −Cp̃(t) + Dm̃(t − τ(t))

(4)

where m̃(t) = [m̃1(t), m̃2(t), · · · , m̃n(t)]T ,
p̃(t) = [p̃1(t), p̃2(t), · · · , p̃n(t)]T ,
h̃(p̃(t)) = [h̃1(p̃1(t)), h̃2(p̃2(t)), · · · , h̃n(p̃n(t))]T , with
h̃j(p̃j(t)) = hj(p̃j(t) + p∗j ) − hj(P ∗

j ).
Let x(t) = [m̃T (t), p̃T (t)]T ,the system (4) is equivalent to:

ẋ(t) = −Ãx(t) + D̃x(t − τ(t)) + W̃f(x(t − σ(t))) (5)

where Ã = [ A 0
0 C ] , D̃ = [ 0 0

D 0 ] , W̃ = [ 0 W
0 0 ] , f(x(t)) =[

h̃(m̃(t))

h̃(p̃(t))

]
with h̃(m̃(t)) = 0.

Due to the modeling inaccuracies and changes in the en-
vironment, the parametric uncertainties may enters into GRN
(5), the uncertain GRN can be formulated as follows:

ẋ(t) = − (Ã + ΔÃ)x(t) + (D̃ + ΔD̃)x(t − τ(t))

+ (W̃ + ΔW̃ )f(x(t − σ(t)))
(6)

where ΔÃ = [ ΔA 0
0 ΔC ] , ΔD̃ = [ 0 0

ΔD 0 ] , ΔW̃ = [ 0 ΔW
0 0 ] .

In order to conduct the stability analysis for the above
genetic networks, the following assumptions are necessary.

Assumption.1 The parametric uncertainties ΔA,ΔW, ΔC,
ΔD satisfy: [ΔA,ΔW, ΔC, ΔD] = ĒF̃ (t)[Ha,Hw,Hc,Hd],
where Ē, Ha,Hw,Hc and Hd are some given constant
matrices with appropriate dimensions, and F̃ (t)
satisfies : F̃T (t)F̃ (t) ≤ I, for any t ≥ 0. And
let [ΔÃ,ΔW̃ , ΔD̃] = ẼF (t)[H̃a, H̃w, H̃d], where
Ẽ =

[
Ē 0
0 Ē

]
, F (t) =

[
F̃ (t) 0

0 F̃ (t)

]
, H̃a =

[
Ha 0
0 Hc

]
, H̃w =

[
0 Hw
0 0

]
, H̃d =

[
0 0

Hd 0

]
.

Assumption.2 τ(t) and σ(t) are the time-varying delays
satisfying: 0 ≤ τ(t) ≤ τ2, τ̇(t) ≤ τd < ∞; 0 ≤ σ(t) ≤
σ2, σ̇(t) ≤ σd < ∞.

Assumption.3 Since hj is a monotonically increasing func-
tion with saturation, and from the relationship of f(·) and h(·),
we know that f(·) satisfies the sector condition: l−j ≤ fj(xj)

xj
≤

l+j , for j = 1, 2, · · · , n. which implies that
fj(xj)−l−j xj

xj
≥ 0,

l+j xj−fj(xj)

xj
≥ 0, where l−j and l+j are some constants. Let

L0=diag(l−1 , l−2 , · · · , l−n ), L1=diag(l+1 , l+2 , · · · , l+n ).

Remark 1 It should be noted that the activation functions
in [19],[24] need to satisfy the following condition: 0 ≤
fj(x)/x ≤ k∗

j , for j = 1, 2, · · · , n. which is equivalent to
fj(x)(fj(x)− k∗

j x) ≤ 0. It is easy to see that the assumption
3 endows with less restriction than monotonically increasing
condition in [19],[24], the constants l−j and l+j are allowed to
be positive, negative,or zero. Obviously, the class of functions
satisfying the assumption 3 is larger than the class of functions
satisfying the condition in [19],[24]. Hence, our results will
be less restrictive than those given in the literature.
Lemma 1. For any x, y ∈ Rn and a positive scalar ε,then we
have

2xT y ≤ εxT x + ε−1yT y.
Lemma 2. (Schur complement). Given constant
symmetric matrices S1, S2 and S3,where S1 = ST

1 , and
S2 = ST

2 > 0,then S1 + ST
3 S−1

2 S3 < 0 if and only if :[
S1 ST

3

S3 −S2

]
< 0, or

[ −S2 S3

ST
3 S1

]
< 0.

Lemma 3.[25] For any positive definite matrix M ∈ Rn×n,
a scalar ρ > 0, vector function w : [0, ρ] �→ Rn such that
the integrations concerned are well defined, the following
inequality holds:

[
∫ ρ

0
w(s)ds]T M [

∫ ρ

0
w(s)ds] ≤ ρ

∫ ρ

0
wT (s)Mw(s)ds

Lemma 4.(Lower bounds theorem [26]) Let f1, f2, · · · , fN :
Rm �→ R have positive values in an open subset D of Rm.
Then, the reciprocally convex combination of fi over D
satisfies

min
{αi|αi>0,

∑

i
αi=1}

∑

i

1
αi

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑

i�=j

gi,j(t)

subject to{
gi,j : Rm �→ R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)
gi,j(t) fj(t)

]
≥ 0
}

Remark 2 To handle the integral terms, the Jensen inequality
lemma [25] has been generally adopted. However, from the
application to delayed systems in [26], we can see that the
Lower bounds theorem which is based on the integral in-
equality lemma but with the less number of decision variables,
comparable to those based on the Jensen inequality lemma.
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III. ROBUST STABILITY CRITERIA FOR GENETIC
REGULATORY NETWORKS

In this section, several theorems and corollaries are pre-
sented for the genetic regulatory networks with time-varying
delays.

In order to derive discrete delay-dependent stability condi-
tions, which include the information of time delay τ(t), we
usually uses the fact: x(t − τ(t)) = x(t) − ∫ t

t−τ(t)
ẋ(s)ds

to transform the system (6) into the following system with a
distributed delay:

ẋ(t) = − (Ã + ΔÃ − D̃1)x(t) + (D̃2 + ΔD̃)x(t − τ(t))

+ (W̃ + ΔW̃ )f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)

ẋ(s)ds

(7)

where D̃ = D̃1 + D̃2, D̃1, D̃2 are constant parameter matrix
which make the stability result less restrictive to some degree.
Such process is generically called a parameterized first-order
model transformation [26] since only one-integration over one
delay interval is used herein.

Firstly, a asymptotic stability result is developed for GRNs
(7) with ΔÃ = ΔD̃ = ΔW̃ = 0, that is:

ẋ(t) = − (Ã − D̃1)x(t) + D̃2x(t − τ(t))

+ W̃f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)

ẋ(s)ds
(8)

Theorem 1 For given constants τ2, τd, σd, the system (8) is
asymptotically stable, if there exist matrices P1 > 0, Qi > 0,

i = 1, 2; Ri > 0, i = 1, 2;
[

R1 E1
∗ R2

] ≥ 0,
[

Q2 Q̃2
∗ Q2

]
≥ 0, Λi

= diag(λ1i, λ2i, · · · , λni) > 0, i = 1, 2; Ti =diag (t1i, t2i,
· · · , tni) > 0, i = 1, 2; P2, P3, L0, L1, Q̃2, J1, J2, J3

and E1 with appropriate dimensions respectively satisfying:

Φ1 = Φ11 + Φ12 + ΦT
12 < 0 (9)

where

Φ11 = − WT
x (L1T1L0 + L0T1L1 − Q1 − R1)Wx − WT

y (P2

+ PT
2 − τ2

2 Q2)Wy − WT
f (2T1 − R2)Wf − WT

xτ ((1−
τd)Q1)Wxτ − WT

xσ((1 − σd)R1 + L1T2L0 + L0T2L1)

Wxσ − WT
fσ((1 − σd)R2 + 2T1)Wfσ − WT

s1Q2Ws1

− WT
s2Q2Ws2

(10)

Φ12 =WT
x (P1 − PT

3 )Wy + WT
x (PT

3 + L1Λ2 − L0Λ1)Wxy

+ WT
y PT

2 Wxy + WT
f (Λ1 − Λ2)Wxy + WT

x (E1+

L0T1 + L1T1)Wf + WT
x J1Wxs + WT

xτJ2Wxs + WT
s

J3Wxs + WT
xσ(−(1 − σd)E1 + L0T2 + L1T2)Wfσ

− WT
s1Q̃2Ws2

(11)
with
Wx =

[
In On,7n

]
, Wy =

[
On,n In On,6n

]
,

Wf =
[
On,2n In On,5n

]
, Wxτ =

[
On,3n In On,4n

]
,

Wxσ =
[
On,4n In On,3n

]
, Wfσ =

[
On,5n In On,2n

]
,

Ws1 =
[
On,6n In On,n

]
, Ws2 =

[
On,7n In

]
,

Wxs =
[
In On,2n − In On,2n − In On,n

]
,

Wxy =
[−(Ã − D̃1) On,2n D̃2 On,n W̃ − D̃1 On,n

]
.

Proof. Following [27], we represent (8) in the following
equivalent descriptor system form:
⎧
⎪⎨

⎪⎩

ẋ(t) = y(t),
y(t) = −(Ã − D̃1)x(t) + D̃2x(t − τ(t))

+W̃f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)
y(s)ds

(12)

Then, take the following Lyapunov-Krasovskii functional for
system (12):
V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t)
where

V1(t) = xT (t)P1x(t)

=
[
xT (t) yT (t)

]
[
I 0
0 0

] [
P1 0
P3 P2

] [
x(t)
y(t)

]

V2(t) =2
n∑

i=1

λi1

∫ xi

0

(fi(s) − l−i s) ds

+ 2
n∑

i=1

λi2

∫ xi

0

(l+i s − fi(s)) ds

V3(t) =
∫ t

t−τ(t)

xT (s)Q1x(s)ds +
∫ t

t−σ(t)

[
x(s)

f(x(s))

]T

× [R1 E1
∗ R2

] [ x(s)
f(x(s))

]
ds

V4(t) = τ2

∫ 0

−τ2

∫ t

t+θ

yT (s)Q2y(s)dsdθ

Let ξT (t) = [xT (t) yT (t) fT (x(t)) xT (t − τ(t)) xT (t −
σ(t)) fT (x(t − σ(t))) (

∫ t

t−τ(t)
y(s)ds)T (

∫ t−τ(t)

t−τ2
y(s)ds)T ]

Taking the derivative of V (t) along the trajectories of system
(12) yields
V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t).
while
V̇1(t) =2

[
xT (t) yT (t)

]
[
P1 PT

3

0 PT
2

] [
ẋ(t)
0

]

=2
[
xT (t) yT (t)

]
[
P1 PT

3

0 PT
2

]

×

⎡

⎢
⎣

y(t)
−y(t) − (Ã − D̃1)x(t) + D̃2x(t − τ(t))
+W̃f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)
y(s)ds

⎤

⎥
⎦

=ξT (t)[2WT
x (P1 − PT

3 )Wy − WT
y (P2 + PT

2 )Wy

+ 2WT
x PT

3 Wxy + 2WT
y PT

2 Wxy]ξ(t)
(13)

V̇2(t) =2[f(x(t)) − L0x(t)]T Λ1[−(Ã − D̃1)x(t) + D̃2

x(t − τ(t)) + W̃f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)

y(s)ds]

+ 2[L1x(t) − f(x(t))]T Λ2[−(Ã − D̃1)x(t) + D̃2

x(t − τ(t)) + W̃f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)

y(s)ds]

=ξT (t)[2WT
f (Λ1 − Λ2)Wxy + 2WT

x (L1Λ2 − L0Λ1)
Wxy]ξ(t)

(14)
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V̇3(t) ≤xT (t)Q1x(t) − (1 − τd)xT (t − τ(t))Q1

x(t − τ(t)) +
[

x(t)
f(x(t))

]T [
R1 E1
∗ R2

] [ x(t)
f(x(t))

]
− (1

− σd)
[

x(t−σ(t))
f(x(t−σ(t)))

]T [
R1 E1
∗ R2

] [ x(t−σ(t))
f(x(t−σ(t)))

]

=ξT (t)[WT
x (Q1 + R1)Wx − WT

xτ ((1 − τd)Q1)

× Wxτ + WT
f R2Wf + 2WT

x E1Wf − WT
xσ

× ((1 − σd)R1)Wxσ − WT
fσ((1 − σd)R2)Wfσ

− 2WT
xσ((1 − σd)E1)Wfσ]ξ(t)

(15)

V̇4(t) ≤τ2
2 yT (t)Q2y(t) − τ2

∫ t

t−τ2

yT (s)Q2y(s)ds

≤τ2
2 yT (t)Q2y(t) − τ2

∫ t−τ(t)

t−τ2

yT (s)Q2y(s)ds

− τ2

∫ t

t−τ(t)

yT (s)Q2y(s)ds

≤τ2
2 yT (t)Q2y(t) − τ2

τ2 − τ(t)

∫ t−τ(t)

t−τ2

yT (s)ds

× Q2

∫ t−τ(t)

t−τ2

y(s)ds − τ2

τ(t)

∫ t

t−τ(t)

yT (s)ds

× Q2

∫ t

t−τ(t)

y(s)ds

≤τ2
2 yT (t)Q2y(t) −

[ ∫ t
t−τ(t) y(s)ds
∫ t−τ(t)

t−τ2
y(s)ds

]T [
Q2 Q̃2
∗ Q2

]

×
[ ∫ t

t−τ(t) y(s)ds
∫ t−τ(t)

t−τ2
y(s)ds

]

=ξT (t)[WT
y (τ2

2 Q2)Wy − WT
s1Q2Ws1

− WT
s2Q2Ws2 − WT

s1Q̃2Ws2]ξ(t)

(16)

In addition, for any Tj =diag(t1j , t2j , · · · , t2j) ≥ 0, j =
1, 2; it follows that:

− 2[f(x(t)) − L1x(t)]T T1[f(x(t)) − L0x(t)]

− 2[f(x(t − σ(t))) − L1x(t − σ(t))]T T2

× [f(x(t − σ(t))) − L0x(t − σ(t))]

=ξT (t)[−2WT
x L1T1L0Wx − 2WT

f T1Wf + 2WT
x

(L0T1 + L1T1)Wf − 2WT
xσL1T2L0Wxσ − 2WT

fσ

× T1Wfσ + 2WT
xσ(L0T2 + L1T2)Wfσ]ξ(t) ≥ 0

(17)

Meanwhile, by the Leibniz-Newton formula, the following
equality is true for any matrices J with appropriate dimension:

2ξT (t)J [x(t) − x(t − τ(t)) −
∫ t

t−τ(t)

y(s)ds] = 0. (18)

where J = [JT
1 0 0 JT

2 0 0 JT
3 0]T

Combing (13)-(18) ,we have

V̇ (t) ≤ξT (t)Φ1ξ(t) (19)

Therefore, V̇ (t) < 0 holds if Φ1 < 0. From (9), we can see
that the GRN (8) with time-varying delays is asymptotically
stable. This complete the proof.
Remark 3 One key point of the criterion in Theorem 1 is

that the decomposition of the matrix D̃ into D̃ = D̃1 + D̃2.
This decomposition corresponds to a decomposition of the
delayed terms into two groups: the stabilizing ones and the
destabilizing ones. This technique enables one to take the
stabilizing effect of part of the delayed terms into account.
Remark 4 In [22], the stability conditions were obtained
for the delays τ(t) and σ(t) satisfying τ̇(t) ≤ τμ < 1 and
σ̇(t) ≤ σμ < 1, however, in Theorem 1, the delays τ(t) and
σ(t) satisfy τ̇(t) ≤ τd < ∞ and σ̇(t) ≤ σd < ∞ respectively.
Therefore the stability criteria derived turn out to be less
conservative.

If there is no decomposition (D̃1 = 0, D̃ = D̃2), the
following Corollary can be turned for checking the stability
of system (5).
Corollary 1 For given constants τ2, τd, σd, the system (5)
is asymptotically stable, if there exist matrices P1 > 0, Qi >

0, i = 1, 2; Ri > 0, i = 1, 2;
[

R1 E1
∗ R2

] ≥ 0,
[

Q2 Q̃2
∗ Q2

]
≥

0, Λi =diag(λ1i, λ2i, · · · , λni) > 0, i = 1, 2; Ti =diag
(t1i, t2i, · · · , tni) > 0, i = 1, 2; P2, P3, L0, L1, Q̃2 and
E1 with appropriate dimensions respectively satisfying:

Φ̃1 = Φ̃11 + Φ̃12 + Φ̃T
12 < 0 (20)

where

Φ11 = − WT
x (L1T1L0 + L0T1L1 − Q1 − R1 + Q2)

× Wx − WT
y (P2 + PT

2 − τ2
2 Q2)Wy − WT

f (2T1

− R2)Wf − WT
xτ ((1 − τd)Q1 + Q2)Wxτ

− WT
xσ((1 − σd)R1 + L1T2L0 + L0T2L1)Wxσ

− WT
fσ((1 − σd)R2 + 2T1)Wfσ − WT

s2Q2Ws2

(21)

Φ12 =WT
x (P1 − PT

3 )Wy + WT
x (PT

3 + L1Λ2 − L0Λ1)

× Wxy + WT
y PT

2 Wxy + WT
f (Λ1 − Λ2)Wxy

+ WT
x (E1 + L0T1 + L1T1)Wf + WT

x Q2Wxτ

+ WT
xσ(−(1 − σd)E1 + L0T2 + L1T2)Wfσ

− WT
x Q̃2Ws2 + WT

xτ Q̃2Ws2

(22)

with
W̃x =

[
In On,6n

]
, W̃y =

[
On,n In On,5n

]
,

W̃f =
[
On,2n In On,4n

]
, W̃xτ =

[
On,3n In On,3n

]
,

W̃xσ =
[
On,4n In On,2n

]
, W̃fσ =

[
On,5n In On,n

]
,

W̃s2 =
[
On,6n In

]
,

W̃xy =
[−Ã On,2n D̃ On,n W̃ On,n

]
.

Base on Theorem 1,we can perform the robust stability
analysis for the uncertain genetic regulatory network (7).
Theorem 2 For given constants τ2, τd, σd, εi > 0, i=1,2,3,
the system (7) is robustly asymptotically stable, if there exist
matrices P1 > 0, Qi > 0, i = 1, 2;Ri > 0, i = 1, 2;[

R1 E1
∗ R2

] ≥ 0,
[

Q2 Q̃2
∗ Q2

]
≥ 0, Λi =diag(λ1i, λ2i, · · · , λni) >

0, i = 1, 2; Ti =diag (t1i, t2i, · · · , tni) > 0, i =
1, 2; P2, P3, L0, L1, Q̃2, J1, J2, J3 and E1 with ap-
propriate dimensions respectively satisfying:

Ξ1 =

⎡

⎢
⎢
⎣

Φ1 P T
2 Ẽ (Λ1−Λ2)Ẽ (L1Λ2−L0Λ1)Ẽ W T

Δxy

∗ −ε−1
1 0 0 0

∗ ∗ −ε−1
2 0 0

∗ ∗ ∗ −ε−1
3 0

∗ ∗ ∗ ∗ −ε−1
4

⎤

⎥
⎥
⎦ < 0 (23)
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with
WΔxy =

[−Ha On,2n Hd On,n Hw On,2n

]
ε4 = ε−1

1 +
ε−1
2 + ε−1

3 and the others have been defined in Theorem 1.
Proof. Following Theorem 1, we represent (7) in the fol-

lowing equivalent descriptor system form:
⎧
⎪⎨

⎪⎩

ẋ(t) = y(t),
y(t) = −(Ã + ΔÃ − D̃1)x(t) + (D̃2 + ΔD̃)x(t − τ(t))

+(W̃ + ΔW̃ )f(x(t − σ(t))) − D̃1

∫ t

t−τ(t)
y(s)ds

(24)
Consider the same Lyapunov-Krasovskii functional in the
proof of Theorem 1, do the differential along the trajectory
of (24).

Noting that, for any constants εi > 0 i=1,2,3, it is clearly
true that:

2yT (t)PT
2 [−ΔÃx(t) + ΔD̃x(t − τ(t))

+ ΔW̃f(x(t − σ(t)))] = 2yT (t)PT
2 ẼF (t)WΔxyξ(t)

≤ε1ξ
T (t)WT

y PT
2 ẼẼT P2Wyξ(t)

+ ε−1
1 ξT (t)WT

ΔxyWΔxyξ(t)
(25)

2fT (x(t))(Λ1 − Λ2)[−ΔÃx(t) + ΔD̃x(t − τ(t))

+ ΔW̃f(x(t − σ(t)))]

≤ε2ξ
T (t)WT

f (Λ1 − Λ2)ẼẼT (Λ1 − Λ2)Wfξ(t)

+ ε−1
2 ξT (t)WT

ΔxyWΔxyξ(t)

(26)

2xT (t)(L1Λ2 − L0Λ1)[−ΔÃx(t) + ΔD̃x(t − τ(t))

+ ΔW̃f(x(t − σ(t)))]

≤ε3ξ
T (t)WT

x (L1Λ2 − L0Λ1)ẼẼT (L1Λ2 − L0Λ1)

× Wxξ(t) + ε−1
3 ξT (t)WT

ΔxyWΔxyξ(t)

(27)

Combing (13)-(19),and the above inequalities, by Schur com-
plements (Lemma 2), we have:

V̇ (t) ≤ξT (t)Ξ1ξ(t) (28)

From (23), we can see that the uncertain system (7) is robust
asymptotically stable. This complete the proof. �

Similarly to Corollary 1, If there is no decomposition
(D̃1 = 0, D̃ = D̃2), the following Corollary can be turned
for checking the stability of system (6).
Corollary 2 For given constants τ2, τd, σd, εi > 0 i=1,2,3,
the system (6) is asymptotically stable, if there exist matrices
P1 > 0, Qi > 0, i = 1, 2; Ri > 0, i = 1, 2;

[
R1 E1
∗ R2

] ≥
0,
[

Q2 Q̃2
∗ Q2

]
≥ 0, Λi =diag(λ1i, λ2i, · · · , λni) > 0, i = 1, 2;

Ti =diag (t1i, t2i, · · · , tni) > 0, i = 1, 2; P2, P3, L0, L1,
Q̃2 and E1 with appropriate dimensions respectively satisfy-
ing:

Ξ̃1 =

⎡

⎢
⎢
⎣

Φ̃1 P T
2 Ẽ (Λ1−Λ2)Ẽ (L1Λ2−L0Λ1)Ẽ W T

Δxy

∗ −ε−1
1 0 0 0

∗ ∗ −ε−1
2 0 0

∗ ∗ ∗ −ε−1
3 0

∗ ∗ ∗ ∗ −ε−1
4

⎤

⎥
⎥
⎦ < 0 (29)

with W̃Δxy =
[−Ha On,2n Hd On,n Hw On,n

]

IV. ILLUSTRATIVE EXAMPLES

In this section, two numerical examples will be presented
to illustrate the effectiveness of our results.

Example.1 Firstly, let us consider the genetic regulatory
network (5)with time-varying delays. The parameters are listed
as follows:

Ã =diag
[

6 0 0
0 6 0
0 0 6

]
, C̃ =diag

[
2.5 0 0
0 2.5 0
0 0 2.5

]
,

D̃=diag
[

0.8 0 0
0 0.8 0
0 0 0.8

]
, W̃ =

[
0 0 −2.5

−2.5 0 0
0 −2.5 0

]

And f(x) = x2/(x2+1), L0 = diag (0.1, 0.1, 0.1) L1 = diag
(0.65, 0.65, 0.65). The time delays τ(t) and σ(t) are assumed
to be: τd = 0.7, σd = 0.5 [24] .

It should be pointed out that, the delay-dependent conditions
in [24] are not feasible when τ2 > 1.1. However, it can
be checked that system (5) is asymptotically stable from
Corollary 1 and the feasible solution of LMIs (24) − (26) is
obtained when τ2 = 5. Due to the limitation of the length
of this paper, we only provide a part of the feasible solution
here:

P1 =
[

28.1396 16.5614 −0.7061
16.5614 32.1684 −1.5847
−0.7061 −1.5847 6.8041

]

Q1 =
[

39.0312 14.2313 −2.0212
14.2313 37.5365 −1.3875
−2.0212 −1.3875 20.1990

]

Figure.1 shows the trajectories of variables x(t) and y(t)
with the initial condition [0.6 0.5 0.4 0.5 0.4 0.3]T .
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Fig. 1. Trajectories of x(t) and y(t) of the genetic network (5)

Example.2 In this example, we consider system (6) with the
parameters listed as follows:

A =diag (5, 5, 5, 5, 5), C =diag (2.5, 2.5, 2.5, 2.5, 2.5),
D=diag (0.3, 0.2, 0.4, 0.2, 0.2), Ha = Hw = Hc = Hd

= Ẽ =

[
0 0.2 0.2 0 0

0.2 0 0 0.2 0.2
0 −0.2 0 0 0.2

0.2 0 0.2 0 0
0 0 −0.2 0.2 0

]

, W =

[ 0 −1 −1 0 0
−1 0 0 −1 −1
0 1 0 0 −1
−1 0 −1 0 0
0 0 1 −1 0

]

F (t) = I5×5, f(x) = x2/(x2 + 1),

L0 = (0.1, 0.1, 0.1, 0.1, 0.1), L1 = diag (0.65, 0.65, 0.65,
0.65, 0.65). The time delays τ(t) and σ(t) are assumed to be:
τd = 0.7, σd = 0.5, τ2 = 5. It can be checked that system
(6) is asymptotically stable from Corollary 2 and the feasible
solution of LMIs (29) is obtained. A part of the feasible
solution is listed as follows:

P1 =

[ 1.6413 1.0595 1.3013 −1.3011 −0.1889
1.0595 1.5594 1.2432 −1.4562 −1.0437
1.3013 1.2432 2.5833 −1.3414 −0.8862
−1.3011 −1.4562 −1.3414 4.8820 2.1172
−0.1889 −1.0437 −0.8862 2.1172 4.0938

]
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P2 =

[ 0.8154 0.2097 0.2271 −0.2486 −0.0553
0.2410 0.6797 0.2799 −0.3028 −0.2069
0.2842 0.2908 1.0518 −0.2983 −0.2139
−0.2787 −0.2849 −0.2732 1.4173 0.4174
−0.0318 −0.1866 −0.1947 0.4058 1.2281

]

Figure.2 shows the trajectories of variables x(t) and y(t)
with the initial condition [0.6 0.5 0.4 0.3 0.2 0.5 0.4 0.3 0.2 0.1]T .
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Fig. 2. Trajectories of x(t) and y(t) of the genetic network (6)

V. CONCLUSIONS

In this paper, we have worked out some new stability
criteria for genetic regulatory networks with time-varying
delays via the Lyapunov functional method. We consider the
stability problem of the uncertain genetic regulatory networks
based on a descriptor model transformation and the decom-
position technique of discrete delay term matrix which have
been introduced for stability analysis of delayed systems.
This decomposition corresponds to a decomposition of the
delayed terms into two groups: the stabilizing ones and the
destabilizing ones and it enables one to take the stabilizing
effect of part of the delayed terms into account. Finally, the
feasibility and effectiveness of the developed methods have
been shown by numerical simulation.

REFERENCES

[1] S. Huang, Gene expression profilling genetic networks and cellular
states: an integrating concept for tumorigenesis and drug discovery, J.
Mol. Med. 77 (1999) 469.

[2] S.A. Kauffman, Metabolic stability and epigenesis in randomly con-
structed genetic nets, J. Theor. Biol. 22 (3) (1969) 437.

[3] R. Somogyi, C. Sniegoski, Modeling the complexity of genetic networks:
understanding multigenic and pleiotropic regulation, Complexity (1996)
45-63.

[4] R. Thomas, Boolean formalization of genetic control circuits, J. Theor.
Biol. 42 (3) (1973) 563.

[5] X. Lou, Q. Ye, B. Cui, Exponential stability of genetic regulatory
networks with random delays, Neurocomputing, 73 (2010), 759-769

[6] F. Ren, J. Cao, Asymptotic and robust stability of genetic regulatory
networks with time-varying delays, Neurocomputing, 71 (2008), 834-
842

[7] M. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, S. Miyano, Infering
gene regulatory networks from time-ordered gene expression data of
bacillus subtilis using differential equations, in: Proc. Pacific Symposium
on Biocomputing, vol. 8, pp. 17-28, 2003.

[8] L. Chen, K. Aihara, Stability of genetic regulatory networks with time
delay, IEEE Transactions on Circuits and Systems I 49 (2002)602-608.

[9] H. Iba, A. Mimura, Inference of a gene regulatory network by
means of interactive evolutionary computing, Information Sciences 145
(2002)225-236

[10] T. Tian, K. Burragea, P.M. Burragea, M. Carlettib, Stochastic delay
differential equations for genetic regulatory networks, Journal of Com-
putational and Applied Mathematics 205 (2007) 696-707

[11] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa,
R. Kageyama, Oscillatory expression of the bHLH factor Hes1 regulated
by a negative feedback loop, Science 298 (2002)840-843.

[12] Y.He, Q.Wang, C.Lin, M.Wu, Delay-range-dependent stability for sys-
tems with time-varying delay. Automatica, 43,(2007). 371-376.

[13] L.Wu, C.Wang, Q.Zeng, Observer-based sliding mode control for a class
of uncertain nonlinear neutral delay systems, J.Franklin Inst.345 (2008)
233-253.

[14] X. Song, S. Xu, H. Shen, Robust H1 control for uncertain fuzzy systems
with distributed delays via output feedback controllers, Information
Sciences 178 (2008) 4341-4356.

[15] Tomioka R, Kimurab H, Kobayashib TJ, Aihara K. Multivariate analysis
of noise in genetic regulatory networks. J Theor Biol (2004) 229,501-21.

[16] C.-H. Yuh, H. Bolouri, and E. H. Davidson, Genomic cis-regulatory
logic: Experimental and computational analysis of a sea urchin gene,
Science, 279, (1998). 1896-1902.

[17] N. E. Buchler, U. Gerland, and T. Hwa, On schemes of combinatorial
transcription logic, Proc. Natl. Acas. Sci. USA, 100, (2003). 5136-5141
.

[18] Y. Setty, A. E. Mayo, M. G. Surette, and U. Alon, Detailed map of a
cis-regulatory input function, Proc. Natl. Acad. Sci. USA, 100,(2003).
7702-7707.

[19] Y. Wang, J. Shen, B. Niu, Z. Liu, L. Chen, Robustness of interval gene
networks with multiple time-varying delays and noise, Neurocomputing,
72 (2009), 3303-3310

[20] L. Li, X. Liu, New results on delay-dependent robust stability criteria
of uncertain fuzzy systems with state and input delays, Information
Sciences 179 (2009) 1134-1148.

[21] X. Song, S. Xu, H. Shen, Robust H∞ control for uncertain fuzzy sys-
tems with distributed delays via output feedback controllers, Information
Sciences 178 (2008) 4341-4356.

[22] G. Wang, J. Cao, Robust exponential stability analysis for stochastic
genetic networks with uncertain parameters, Commun Nonlinear Sci
Numer Simulat 14 (2009) 3369-3378

[23] C. Li, L. Chen, K. Aihara, Stability of genetic networks with SUM
regulatory logic: Lure system and LMI approach, IEEE Transactions on
Circuits and Systems I 53 (2006) 2451-2458.

[24] H. Wu, X. Liao, W. Feng , S. Guo , W. Zhang, Robust stability
for uncertain genetic regulatory networks with interval time-varying
delays,Information Sciences 180 (2010) 3532-3545

[25] L. Xie, Output feedback H∞ control of systems with parameter uncer-
tainty, International Journal of Control, Vol. 63,No.4,741-750,1996.

[26] P. Park, J. W. Ko, C. K. Jeong, Reciprocally convex approach to stability
of systems with time-varying delays, Automatica 47 (2011) 235-238.

[27] D. Yang, C. Hua, Y. Chen, P. Wei, H. Yang, New delay-dependent global
asymptotic stability criteria of delayed BAM neural networks, Chaos,
Solitons and Fractals 42 (2009) 854-864.

[28] C. Shen, S. Zhong, New delay-dependent robust stability criterion
for uncertain neutral systems with time-varying delay and nonlinear
uncertainties, Chaos, Solitons and Fractals 40 (2009) 2277-2285.

Wenqin Wang was born in Hebei Province, China, in 1987. She received the
B.S. degree from the Department of Mathematics and Information Sciences,
Tangshan Normal University, Tangshan, China. Then she take a successive
postgraduate and doctoral program in University of Electronic Science and
Technology of China, Sichuan, China. Currently, she is working towards
the Ph.D. degree. Her current research interests include nonlinear dynamics,
genetic regulatory networks, BAM neural networks and stochastic systems.

Shouming Zhong was born on November 5, 1955. He graduated from
University of Electronic Science and Technology of China, majoring ap-
plied mathematics on differential equation. He is a professor of School of
Mathematical Sciences, University of Electronic Science and Technology
of China, on June 1997-present. He is Director of Chinese Mathematical
Biology Society, the chair of Biomathematics in Sichuan, Editors of Journal of
Biomathematics. He has reviewed for many Journals, such as Journal of theory
and application on control, Journal of Automation, Journal of Electronics,
Journal of Electronics Science. His research interest is Stability Theorem and
its Application research of the Differential System, the Robustness control,
Neural network and Biomathematics.


