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Robust Parameter and Scale Factor Estimation 
in Nonstationary and Impulsive Noise 

Environment

Zoran . Banjac, Branko D. Kova evi

Abstract— The problem of FIR system parameter estimation has 
been considered in the paper. A new robust recursive algorithm for
simultaneously estimation of parameters and scale factor of 
prediction residuals in non-stationary environment corrupted by
impulsive noise has been proposed. The performance of derived 
algorithm has been tested by simulations. 
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I. INTRODUCTION
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algorith

PTIVE filtering provides a powerful approach to many
 processing problems. Most signal processing

ms, developed for adaptive filtering, are based on the
assumption that the interfering noise is Gaussian distributed.
Recursive least squares (RLS) algorithm is one of them, and 
has been used extensively for its good convergence property
and small mean square error. However, sparse impulses arise
frequently in many physical environments. Namely, impulsive
noise is relatively short duration pulses, characterized by
heavy-tailed non-Gaussian distribution. A such type of 
disturbances is typical for communications system,
atmospheric environment, relay switching systems etc.
Impulsive noise highly depends on physical environment and 
may be non-stationary, which makes it impossible to obtain
accurate statistical description. It is also well known that the 
standard gradient based adaptive algorithms degrade badly
when the filter is subjected to input signals, like additive noise 
corrupted by impulsive interference, represented by
unexpected number of large noise values that are generated by
non-Gaussian distribution. Namely, the standard estimation
procedures minimize the sum of squared residuals, and weight
all prediction residuals equally, so that small changes from
assumed nominal normal model in noise distribution can
produce great changes in estimates. Possible treatments for
parameter estimation problem in impulsive noise environment

include nonlinear transformations of residuals, and such 
estimators are called robust. Some of the most popular robust
estimators are M-estimators (the M stands for approximate
maximum-likelihood) first introduced by Huber [1]. Robust
version of RLS algorithm, named robust recursive least square 
(RRLS) algorithm minimizes the sum of weighted residuals
[2, 3]. In the RRLS procedures the assigned weight is a
function of prediction residuals, and a convex cost function is
selected to assign more weight to the bulk of small residuals
while down weighting the small number of large residuals.
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One important part of the RRLS algorithm is an estimate of
the scale factor s. Traditionally, the scale is used to make
robust algorithm invariant to noise level. It should reflect the
minimum mean square error, and provides robustness to
shorter burst disturbances, together with adequate tracking of 
longer changes of the residual error. A popular robust estimate
of s is the median of absolute median deviations [2, 4]
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d i median d i
s median i M , (1) 

where M is the frame, or data window, size. However, RRLS
algorithm using (1) found to be sensitive to abrupt noise level 
changes.

In order to overcome this difficulty, we proposed a RRLS
based algorithm with the new scheme for scale factor
estimation.

II. REVIEW OF ROBUST RECURSIVE LEAST SQUARE

ALGORITHM

In FIR system identification applications, the error signal at
time k, representing the difference between the unknown 
system and adaptive filter outputs is given by:

ˆ( )
T

e k y k k kH X , (2)

where 0 1
ˆ ...

T

Lh h hH  is the parameter vector, the

superscript T denotes the transpose of vector, and 

1 ...
T

k x k x k x k LX  is a vector containing

the last 1L samples of input signal x [5, 6].
The unknown system parameter vector H is estimated at 

each step by minimizing the performance criterion J:
2ˆ( )J E e kH , (3)
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where is the Huber's robust score or loss function which

has to suppress the influence of impulsive noise [1, 4]:
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In (4) standard deviation is denoted by , m is an 
efficiency-tuning constant, which has to be chosen so to give 
the desired efficiency at the assumed nominal Gaussian 
model, and are some constants. The derivate of loss 

function is known in the literature as influence function [1, 4] 
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To derive a recursive form of the proposed robust LS
procedure, instead of criterion (3) the empirical criterion can 
be used: 

1

1

ˆ ,
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k

J i e kH . (6) 

Under certain conditions, with i growing iJ  converges to J

in (3). Furthermore, one can resort to the approximate
Newton-Raphson type method for solving a set of nonlinear 
equations, which result from the optimality condition 

, where /iJ H H 0 / H  denotes the partial 

derivative operator, [5, 6]. Using this notation, and applying
the Newton-Raphson algorithm for solving iteratively the 
mentioned equation, one can obtain the robust recursive least-
squares (RRLS) algorithm
ˆ ˆ 1 ;
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However, the standard deviation in (5) is usually unknown
and must be estimated.

A commonly used sample variance cannot be used for this 
purpose, since it is highly sensitive to impulsive noise. A 
better choice is to use the median of absolute median
deviation in (1). An alternative approach that provides the 
simultaneous estimation of FIR filter parameters and scaling 
factor has been proposed in the next section.

III. RECURSIVE PARAMETER AND SCALE FACTOR ESTIMATION

Assume that probability density function (pdf) of stochastic 
disturbance is known with accuracy up to scale factor s.

If we denote the pdf for  by

( )n k

1s ( )p n , then the pdf for 

arbitrarily chosen scale factor is given by: 

1
( )

n
p n p

s s
. (8)

In the case when a real noise pdf belongs to the given class
P, it is necessary to minimize the Cramer-Rao bound in order

to determine the least favorable pdf,
*

( )p n  [1 4]. The choice 

of the optimal loss function for the worst-case pdf
*

( )p n  is 

given by the maximum-likelihood score function:
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and the robust performance index is given by the
mathematical expectation of (9), that is 

,
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Starting from (10), one can obtain an empirical
approximation:
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Linearizing ,kJ sH in the vicinity of the preceding 

estimate ˆ ( 1k )H and using Newton-Raphson procedure to

minimize iteratively the obtained linearised criterion, it can be
written
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Here lim 0
x
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x
, and  denotes the Euclidean 

norm. With respect to (11), we have 
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From (11) further follows: 
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By differentiating (15) twice with respect to H, one obtains
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where .
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where

2

2
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By introducing the following hypothesis:

H1: The estimate  is in the vicinity of the estimate

, yielding:

ˆ ( )kH

ˆ ( 1kH ) ˆ ˆ( ) ( 1) 0O k kH H

H2: The estimate  is optimal at the instantˆ ( 1kH ) 1k ,
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the relation (12) becomes
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Taking into account (18) and (15) for  and 

, and using hypothesis H2, it follows

ˆ ( 1)kH H

ˆ( 1s s k

1
ˆ( , ( 1)) ( )ˆ ˆ( ) ( 1) ( )

ˆ ˆ( 1) ( 1)

e k k k
k k R k

s k s k

H X
H H . (20) 

Similarly to (12), one can define the recurrent Newton-
Raphson estimation procedure. 
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By differentiating (14) twice with respect to s, for 

 and , as using the hypothesis that

 is optimal at the instant , and introducing
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The proposed algorithm is very difficult to be implemented
and we need further approximation in order to obtain simple
and efficient algorithm. Thus, if one assumes that the estimate

 and , for k large enough, are close to the 

optimal solution  and 
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Finally, the algorithm for simultaneous estimation of FIR filter
parameters and scale factor is derived by (19), (20) and (29).

IV. SIMULATION RESULTS

To demonstrate the performance of proposed algorithm, a 
FIR system identification simulation reported in [7] is used.
The desired filter response signal d(k) is formed by inputting
white normal noise x(k) of unit power to the ninth order FIR
filter with the coefficients
H=[0.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1], and independent 
normal noise n(k) of variable variance is added to its output.
The variance of n(k) is chosen in such a way that in the first 
segment the SNR is 30 dB, then 10 dB, and at the last one 20 
dB, before the addition of the impulsive noise component (Fig
1.a). The impulsive noise is generated from the model:

 where  is a binary independent

identically distributed occurrence process with the 

probabilities

( )a k

( ) 1 0.01P a k  and ( ) 0 0.99P a k ,

whereas 4var 10 /12A k . Fig. 1 depicts one realization

of this additive noise without (Fig 1.a) and with (Fig 1.b)
impulsive contamination.
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Fig.1 Additive noise a) pure Gaussian b) corrupted by impulsive noise 

The simulation results are compared in terms of normalized
estimation error (NEE), defined by [6]
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Fig.2 Normalized estimation error in Gaussian noise environment for different
algorithms

In the situations without impulsive noise (see Fig. 2) the two
mentioned robust algorithms start estimation process on the
similar way. At the point of additive noise variance changing
the standard RRLS algorithm degrades its performance,
producing poor variance estimation. On the other hand,
proposed robust algorithm with scale factor estimation is less
sensitive to the changes of variance values.

Fig 3 has shown the obtained results in the case of
simulation with impulsive noise component added to the
Gaussian sequence.

The presented results have shown that the classical RLS 
algorithm is very sensitive to the impulsive noise presence.
The RRLS and RRLS algorithm with adaptive scale factor 
estimation are insensitive to impulsive noise component, but 
the last algorithm has better performance in a non-stationary
noise environment.
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Fig.3 Normalized estimation error in impulsive noise environment for
different algorithms

V. CONCLUSION

The FIR system identification problem in the presence of 
non-stationary additive noise contaminated by impulsive noise 
component has been considered in the paper. The new
algorithm for simultaneously robust estimation of filter
parameters and the scale factor has been proposed. This
algorithm represents a combination of the well-known robust
recursive least square algorithm and adaptive scheme for scale 
factor estimation. The performance of the proposed algorithm
has been tested by simulation. The obtained results have
shown that the proposed algorithm gives similar performance
to the commonly used recursive LS algorithm in the case of 
stationary pure Gaussian additive noise. On the other hand, in
the presence of impulsive noise the proposed algorithm
behaves similarly to the robust recursive LS algorithm,
derived in the literature. However, the proposed algorithm is
more efficient in the case of non-stationary additive noise, 
compared to the robust recursive LS algorithm.
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