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Robust Numerical Scheme for Pricing American
Options under Jump Diffusion Models

Salah Alrabeei, Mohammad Yousuf

Abstract—The goal of option pricing theory is to help the investors
to manage their money, enhance returns and control their financial
future by theoretically valuing their options. However, most of the
option pricing models have no analytical solution. Furthermore,
not all the numerical methods are efficient to solve these models
because they have nonsmoothing payoffs or discontinuous derivatives
at the exercise price. In this paper, we solve the American option
under jump diffusion models by using efficient time-dependent
numerical methods. several techniques are integrated to reduced
the overcome the computational complexity. Fast Fourier Transform
(FFT) algorithm is used as a matrix-vector multiplication solver,
which reduces the complexity from O(M2) into O(M logM).
Partial fraction decomposition technique is applied to rational
approximation schemes to overcome the complexity of inverting
polynomial of matrices. The proposed method is easy to implement
on serial or parallel versions. Numerical results are presented to prove
the accuracy and efficiency of the proposed method.

Keywords—Integral differential equations, American options,
jump–diffusion model, rational approximation.

I. INTRODUCTION

OPTION pricing models have been developed rapidly

after the classical Black-Scholes model [1]. Just years

later, empirical studies revealed that the Black-Scholes model

is inconsistent with the market movements. Many studies

have revealed to overcome these shortcomings, such as Lèvy

models and jump-diffusion models (JDM) [2], [3]. Unlike

in the European options [4], [5], American options do

not have closed-form to calculate. Thus, extensive research

in numerical methods has been conducted and applied

in valuating American options [6], [7]. Different methods

have been used to approximate the linear complementary

problems (LCPs), such as the penalty method proposed by

[8], [9]. operator splitting method [10], IMEX [11]–[14].

Khaliq et al. [15] developed numerical schemes based on

Padè approximations of matrix exponential functions using

exponential time differencing combined with Runge-Kutta

(ETDRK) applied to the Black-Scholes model, Burgers

equation, etc. (see [16], [17]). In this paper, we extend the

work of Khaliq et al. [15] to apply it for American options

with jump diffusion model. We use several methods to increase

the computation speed, such as the FFT algorithm, partial

fraction decomposition technique. This paper is organized as

follows: the continuous problem is described in Section I.

Discretization in space as well as in time are given in Sections
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III and IV respectively. The fast Fourier transform algorithm

(FFA) is described in Section V. Several numerical examples

are given in Section VI to show the efficiency and accuracy of

our algorithms. We finalized the paper by a short conclusion

in Section VII.

II. JUMP DIFFUSION MODEL

Consider that v(x, τ) is the value price of the asset x at time 
τ satisfying the integral differential equation

vτ − 1

2
σvxx − (r − 1

2
σ2 − κλ)vx + (r + λ)v−

λ

∫ ∞

−∞
v(z, τ)φ(z − x)dz = p̃(v, ṽ) (1)

with the the following are the initial and boundary conditions:

• Call option

⎧⎨
⎩

v(x, 0) = max(Eex − E),
v(Xmin, τ) = 0,

v(Xmax, τ) = Eexmax − E,

• Put option

⎧⎨
⎩

v(x, 0) = max(E − Eex),
v(Xmin, τ) = E,
v(Xmax, τ) = 0,

where v˜(x, τ) is the payoff received at the exercising time τ ≤ 
T and p˜(V, V˜ ) is the penalty term [18] given by

p(v, ṽ) =
1

ε
max

{
v(x, τ)− ṽ(x, τ), 0

}
, 0 ≤ ε ≤ 1

where E is the exercise price, σ is the volatility and r is

the rate of interest, λ is the Poisson intensity and κ is the

expectation of the the impulse function. For the boundary

conditions, Xmin and Xmax are a boundaries of the truncated

domain Ω ∈ (−∞,∞) and φ is the density function of the

normal distribution function with mean μ, variance δ2 and

κ = e(μ−
δ2

2 ) − 1.
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III. SPATIAL DISCRETIZATION

The infinite space is truncated to Ω = [Xmin, Xmax] [19].

Then we descritize the differentiation term by the 2nd order

central finite difference and fourth order Chebyshev Spectral

Method [20] whereas the integral term is approximated the

2nd order composite Trapezoidal Rule and a fourth order

quadrature rule at each subinterval in space. Therefore, the

PIDE(1) can be written as a semi-linear system of ODEs given

by

v′(τ) +Av = λF (v, τ) (2)

where A is given by

A =
1

2
σ2D2

M +

(
r − 1

2
σ2 − κλ

)
DM − (r + λ)I

in case of Chebyshev spectral methods, where DM and D2
M

are the first and second Chebyshev spectral differentiation

matrices respectively whereas, in case of the FDM, A is given

by

A = tridiag

(
c1
2h2

− c2
2h

,− c1
h2

− r − λ ,
c1
2h2

+
c2
2h

)

where

c1 = σ2 and c2 = r − λκ− σ2

2

Approximating the integral term by either composite

Trapezoidal Rule, which is less accurate or Clenshaw-Curtis

Quadrature, which is higher accurate, will end up with

either tridiagonal Toeplitz matrix which is computationally

cheaper or a dense matrix which is computationally exhaustive

respectively. The semi-linear function F is the approximated

integral term and the penalty term of the PIDE(1).

IV. FULL DISCRETIZATION

For the semi-discretized system of the ODEs given in (2),

define k ≥ 0 by the time step size, τn = nk, 0 ≤ n ≤
N. Thus,using Duhamel principle [15], the semi-discretized

system of the ODEs has exact solution given by

v(τ) = e−kAv(τ) +

∫ τ

0

e−kA(τ−ν)F (v(ν), ν)dν, (3)

by changing variable, ν− τ = ks and putting vn = v(τn), we

get a simpler form of the exact solution

vn+1 = e−kAvn + k

∫ 1

0

e−kA(1−s)F (v(τn + ks), τn + ks)ds, (4)

Several time stepping schemes were developed (see [21], [22])

to approximate the recurrence formula (4). However, their

schemes require to invert matrix higher order polynomials

which is computationally expensive. Later, [23] used partial

fraction form of rational approximations to approximate the

matrix exponential functions arising in the exact solutions.

A. Padé Approximation

Padè approximation, type of rational approximation, is an

important tool to approximate matrix exponential functions.

It is named after the French mathematician Henri Padé

(1863-1953). Padè schemes are the approximants derived

by a ratio of two power series approximations.Due to the

rational form of Padè approximations, it is better than Taylor

expansions when approximating functions containing poles.

Following [24], Padé approximation of order (n+m+ 1) of

the exponential function e−x is given by

Rn
m(x) =

Pn
m(x)

Qn
m(x)

+O(xn+m+1)

where Pn
m(x) and Qn

m(x) are polynomials of order n and m
respectively given by

Pn
m(x) =

n∑
i=0

(m+ n+ i)n!

(m+ n)!i!(n− i)!
(−x)i

Qn
m(x) =

m∑
j=0

(m+ n+ j)n!

(m+ n)!j!(m− i)!
(x)j

with the property Rn
m(x) = e−x +O(xn+m+1) when x → 0.

Illustrative examples: The following functions are different

lower and higher orders Padé approximations of e−x :
R0

1(x) = (1 + x)−1 ( Backward Euler)

R1
1(x) = (1− 1

2x)(1 +
1
2x)

−1 (Crank-Nicolson)

R1
2(x) = (1− 1

3x)(1 +
2
3x+ 1

6x
2)−1

R0
4(x) = 24(24 + 24x+ 12x2 + 4x3 + x4)−1

B. Partial Fraction form Padè Approximation

The ETDRK schemes mentioned in the previous section

contain lower and higher order polynomials of matrices which

cause computational difficulties. In this regard, [25] and [26]

have made important contributions to address this issue. They

used the partial fraction technique to implement the Padè

schemes. Not only this, but also they implemented efficient

serial and parallel algorithms. Yousuf et al. [27] developed

algorithms to implement diagonal and damping subdiagonal

schemes and obtained the following version of schemes.

Although we are interest only on two particular types of Padè

approximations, for the sake of generalization, we shall give

schemes of (n,m)- Padè in general for any positive integer

numbers n, m.

Case1: n < m,

Rn
m(x) =

q1∑
j=1

ωj

x− cj
+ 2

q1+q2∑
j=q1+1

R

(
ωj

x− cj

)

Case2: n = m,

Rm
m(x) = (−1)m +

q1∑
j=1

ωj

x− cj
+ 2

q1+q2∑
j=q1+1

R

(
ωj

x− cj

)

where q1 and q2 are the number of real and non-real poles c̄j
of R̄n

m.
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Therefore, our fully discretized scheme is given by

vn+1 = R0
4(kA)vn+P1(kA)F (vn, tn)+P2(kA)

(
F (αn, tn+k/2)

+F (βn, tn + k/2)
)
+ P3(kA)F (γn, tn), (5)

where

αn = R̄0
4(kA)vn+P̄(kA)F (vn, tn),

βn = R̄0
4(kA)vn+P̄(kA)F (αn, tn+k/2),

γn = R̄0
4(kA)vn + P̄(kA)

(
2F (βn, tn + k/2)− F (vn, tn)

)
,

and

R0
4(x) = 2R(

ω1

x− c1
) + 2R(

ω2

x− c2
),

Pi = 2R(
ωi1

x− c1
) + 2R(

ωi2

x− c2
), i = 1, 2, 3.

R̄0
4(x) = 2R(

ω̄1

x− c̄1
) + 2R(

ω̄2

x− c̄2
),

and

P(x) = 2R(
Ω1

x− c̄1
+ 2R(

Ω2

x− c̄2
),

where the poles ci and c¯i and the corresponding weights ωi, 
ω¯i, ωji and Ωi, i = 1, 2 and j = 1, 2, 3 are given by

c1 = −1.72944423106769 + i0.888974376121862.
c2 = −0.2705557689322− i2.50477590436244.
ω1 = 0.541413348429182− i1.58885918222330.

ω2 = −0.541413348429154− i0.248562520866115.
ω11 = 0.244153693956274− i0.0497524711964030.
ω12 = −0.244153693956268− i0.0750708534900480.
ω21 = −0.0240066687966667− i0.210771761184790.
ω22 = 0.0240066687966698 + i0.110830774318527.
ω31 = 0.473042583717175 + i0.293424221840328.
ω32 = 0.0269574162828241− i0.165188084403066
c̄1 = −3.45888846213543− i1.77794875224371.
c̄2 = −0.541111537864595− i5.00955180872487.
ω̄1 = 1.08282669685827 + i3.17771836444659.

ω̄2 = −1.08282669685831− i0.497125041732246.
Ω1 = −0.621169602486758− i0.599415294095229.
Ω2 = 0.121169602486770− i0.203064159380992.

C. Stability Analysis

Consider the nonlinear ODE,

vt = cv + F (v) (6)

where F (v) is the nonlinear term. We assume that there exist

a fixed point v0 = v(t0), such that cv0 + F (v0) = 0. We

linearize about the fixed point to lead to

vt = cv + λv. (7)

where v becomes the perturbation to v0, whereas, λ = F ′(v0).
If R(c+ λ) < 0, then the fixed point v0 is stable [21].

To obtain the stability region of the numerical methods, we

first denote ξ = λk and η = ck, where k is the time step-size,

Re(η)

Im
(η

)

η=0 η=−5 η=−10 η=−20

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Fig. 1 Stability regions of (0,4)-Pad`e scheme in the complex ξ-plane

then we apply (5) to the ODE (6) leading to a recurrence

relation involving vn and vn+1.

vn+1

vn
= r(ξ, η) =

c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4

D
(8)

where

D = (24−24η+12η2−4η3+η4)(384−192η+48η2−8η3+η4)3

where c, λ, ξ and η are complex numbers. Following [21], for a 
better and useful method, the stability regions grow as |η| 
becomes larger. Therefore, we fix η with several negative real 
values , η = 0 , η = −5, η = −10 and η = −20, in the complex 
ξ-plane.

In Fig. 1, we show the stability region in the complex

ξ-plane for different negative real η, η = 0, η = −5, η = −10
and η = −20. When η → 0 the stability region tends to the

fourth-order Runge-Kutta scheme; and, as η degreases from

−10 to −20 the region grows. This region gives an indication

of the stability of the (0,4)-Padè.

V. THE FFT ALGORITHM

Thanks to the approximation of the integral part is a

Toeplitz matrix, we can reduce the cost of vector-matrix

multiplication using what is so-called Fast Fourier Transform

(FFT) algorithm [28]

Definition 1. The Discrete Fourier Transform (DFT) is a

Transform on Cm given as

[D{b}]j = 1√
m

m−1∑
k=0

bke
−i2πjk/m, j = 0, 1, ...,m− 1

(9)

where b is a vector and D is a Fourier matrix ∈ Cm×m

Whereas the inverse DFT of a vector b is given by

[D−1{b}]j = 1√
m

m−1∑
k=0

bke
i2πjk/m, j = 0, 1, ...,m− 1

(10)

The use FFT algorithm is to evaluate the The Discrete

Fourier Transform (DFT) of a vector b of length M whose

operations cost is O(M2) with a cost of O(M logM)
operation [29].
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Definition 2. A square matrix [A]M×M is called a Toeplitze

Matrix if it has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 . . . a2−M a1−M

a1 a0 a−1
. . . a1−M

...
. . .

. . .
. . .

...

aM−2
. . . a1 a0 a−1

aM−1 aM−2 . . . a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We may generate the toeplitze matrix using the

mathematical software Matlab by calling toeplitz(a),
where a = (aM−1, aM−2, . . . , a0, a−1, a−2 . . . , a1−M )

Definition 3. A Circulant matrix [C]M×M is special case of

a Toeplitz matrix when for each of its rows is a right cyclic

shift of the row preceding it, (i.e)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 aM−1 . . . a2 a1

a1 a0 aM−1
. . . a2

...
. . .

. . .
. . .

...

aM−2
. . . a1 a0 aM−1

aM−1 aM−2 . . . a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

To evaluate the vector-Matrix multiplication

[A]M×M [b]M×1 , we embed [28] the matrix A into a

circulant matrix [C](2M−1)×(2M−1) , let b̂ = [b, 0, · · · , 0]
where b̂ is of size 2M − 1. Next step is to apply the DFT

transform to the vector b̂ and vector c where c is the first row

and column of the circulant matrix C, then apply the inverse

DFT transform to the product of transformed two vectors. (i.e)

v = ifft
(
fft(c).fft(b̂)

)
(11)

Finally we extract the first M elements of the vector v to be

the desired result.

VI. NUMERICAL EXPERIMENTS

We test performance of our scheme by showing its efficiency

and accuracy. Our concern is not only the convergence, but

also on the computational cost.

A. Convergence Test

To compare convergence of finite difference method and

the spectral method, we shall use the second order central

finite difference method and the Chebychev spectral method

to discretize the domain Ω in space. Regarding to the integral

term (jump part), we use composite trapezoidal rule when

using finite difference method. Whereas, the Clenshaw-Curtis

Quadrature is used to approximate the integral term when

using the spectral method. We consider the truncated domain

Ω = [−2.2, 2.2], with E = 100, σ = 0.15, δ = 0.25 r = 0.04,

λ = 1,μ = 0,T = 1 and ε = 0.01.

TABLE I
ORDER OF CONVERGENCE IN SPACE OF FD AND SPECTRAL METHODS AT 

A FIXED NUMBER OF TIME-STEPS N = 100

CENTRAL FD METHOD SPECTRAL METHOD

M VALUE ERROR ORDER VALUE ERROR ORDER

40 12.49678 – – 12.71511 – –
80 12.66399 1.67208E-01 – 12.71794 2.83265E-03 –

160 12.70438 4.03889E-02 2.04960 12.71811 1.74943E-04 4.01719
320 12.71462 1.02421E-02 1.97944 12.71813 1.09423E-05 3.99889
640 12.71723 2.60203E-03 1.97680 12.71813 6.84221E-07 3.99931

From Table I, it is noticed that the second and fourth order

convergence are achieved when using the second order central

finite difference method and spectral method respectively in

the spatial discretizations.

B. Efficiency Test

In this experiment we compare the the efficiency our scheme

when using two different spatial discretization methods as well

as two different integral approximation methods.

TABLE II
COMPUTATIONAL COSTS (TIME IN SECONDS) REQUIRED WHEN USING 

FINITE DIFFERENCE METHOD VS CHEBYCHEV SPECTRAL METHOD

STEPS CENTRAL FD METHOD SPECTRAL METHOD

M=N VALUE CPU VALUE CPU
40 14.84558872 0.040 15.03228280 0.041
80 14.98433811 0.100 15.03467073 0.121

160 15.02087991 0.120 15.03467073 0.184
320 15.03080592 0.418 15.03497510 1.241
640 15.03362563 1.659 15.03498484 9.471

1280 15.03449027 7.661 15.03498720 73.595

It can be observed from Table II that the required

computational time is almost the same in the two different

methods. However, when the discretisation becomes finer,

which makes the matrix is larger, the first method (FDM)

requires much less time compared with the spectral

method. The reason behind that FFT method is used

as a matrix-vector multiplication in the first method

because we have a Toeplitz-tridiagonal matrix. However,when

applying the spectral method, we will have to dense large

matrix-multiplication in each time iteration.

VII. CONCLUSION

We have developed a robust and stable time-dependent

method for pricing American options with Morton’s jump

diffusion model. We use different useful techniques to reduce

the computational complexity. We have used the rational

Padè approximation to approximate the exponential function

of matrices, then used its partial fraction decomposition

technique to overcome inverting polynomials of matrices.

We also applied the FFT methods to as a matrix-vector

multiplication solver. We finally gave numerical examples to

test our algorithm.
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