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Abstract—This paper presents an investigation into the design of 

a flight control system, using a robust sliding mode control structure, 
designed using the exact feedback linearization procedure of the 
dynamic of a small-size autonomous helicopter in hover. The 
robustness of the controller in the context of stabilization and 
trajectory tracking with respect to small body forces and air 
resistance on the main and tail rotor, is analytically proved using 
Lyapunov approach. Some simulation results are presented to 
illustrate the performance and robustness of such controller in the 
presence of small body forces and air resistance. 
 

Keywords—Robust control, sliding mode, stability, Lyapunov 
approach. 

I. INTRODUCTION 
MONG the many Unmanned Aerial Vehicle 
configurations available today, helicopters are one the 

most maneuverable and versatile platforms. They can take-off 
and landing without a runway and can hover in place. These 
capabilities have brought about the use of autonomous 
miniature helicopters. For these reasons, there is currently 
great interest in using these platforms in a wide range of civil 
and military applications that include traffic surveillance, 
search and rescue, air pollution monitoring, area mapping, 
agriculture applications, bridge and building construction 
inspection. For performing safely many types of these tasks, 
high maneuverability and robustness of the controllers with 
respect to disturbances and modeling errors are required. This 
has generated considerable interest in the robust flight control 
design. A number of recent works focused on autopilot for 
autonomous helicopters, [1] use the feedback linearization 
techniques to a good approximation to the helicopter 
dynamics and a trajectory planning is considered in [2], [3] 
based on differential flatness properties. In [4], [5] the 
Backstepping techniques have been applied to design a robust 
nonlinear control law of the approximate dynamic model of a 
scale model autonomous helicopter by ignoring the small 
body forces and later analyze the performance of the full 
system to ensure that for desired trajectories the unmodelled 
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dynamics do not destroy the stability of the closed loop 
system. The dynamical variable structure controller scheme 
has been presented [6] for vertical regulation in helicopter 
which achieves robust asymptotic stabilization for altitude 
flight. 

The paper addresses the design of a robust flight control for 
a small-size autonomous helicopter with six degrees of 
freedom model obtained using Newton’s equations. The 
proposed controller based on sliding mode control approach 
combined with the exact feedback linearization procedure. 
Sliding mode controllers [6], [7] are known to be highly 
insensitive to external perturbation signals, modelling errors 
and parameter variations. The superiorities of this technique 
are its applicability on nonlinear systems, simplicity, high 
performance and robust character. To simplify the synthesis of 
the controller, we have neglected the small body forces (which 
couple torque inputs to translational dynamics) and we have 
considered that the air resistance on the main and tail rotor as 
an external perturbation, the simplified model is used in the 
control design which achieves a desired helicopter position 
and orientation in hover and achieves also tracking of a 
desired trajectory. To prove the robustness of the control law 
despite these perturbations a stability analysis based on the 
Lyapunov theory is presented for the complete helicopter 
dynamics.       

The paper is arranged as follows: Section 2 introduces a 
general helicopter model and presents the simplification 
needed to control synthesis. Section 3 presents sliding mode 
controller design. Section 4 summarizes the stability analysis 
to prove the robustness of flight control. Section 5 presents the 
simulation results obtained with the full dynamic model. 
Finally, we present the conclusion of this paper.  

II. DYNAMIC MODEL OF AUTONOMOUS HELICOPTER 
This section presents the dynamic model of a single main 

rotor and tail rotor autonomous helicopter. The dynamics of 
the helicopter [4] are described using a conventional six 
degree of freedom rigid body model driven by forces and 
moments that explicitly include the effects of main and tail 
rotor. Consider the helicopter depicted in Fig.1. Let 
( , , )x y zξ =  denote the position vector of the center of mass 

of the helicopter relative to the inertial frame 
{ , , }x y zE E E=I . The linear velocity of the center of mass 

expressed in the inertial frame is denoted v ξ= . Let 
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( , , )η ψ θ φ=  denote the vector of three Euler angles (yaw, 
pitch and roll angles). Let :R →B I  be the rotation matrix 
representing the orientation of the body fixed frame 

1 2 2{ , , }b b bE E E=B  with respect to the inertial frame I , where 
(3)R SO∈  is an orthogonal matrix. The vector 

1 2 3( , , )Ω = Ω Ω Ω  denotes the angular velocity of the vehicle 
in the body fixed frame. Let m  denotes the total mass and 

( )diag= 1 2 3I I , I , I  is a diagonal matrix representing the 
inertia matrix of the helicopter expressed in the body fixed 
frame and g  represents the gravity acceleration. 1e , 2e  and 

3e  are standard basis in 3 .  
 

 
 
Fig. 1 Reference frames for an autonomous helicopter with force and 

torques control 
 

The equations of motion for the autonomous helicopter are 
as the following: 

3 3

3 2

( )

M T

v

mv mge Rue R

R Rs

Q e Q e

ξ

τ

τ

⎧⎪ =⎪⎪⎪⎪ = − +⎪⎪⎪⎨⎪ = Ω⎪⎪⎪⎪⎪ Ω = −Ω× Ω+ − +⎪⎪⎩
I I

K
       (1) 

where u ∈  is the main rotor thrust input and 
1 2 3( , , )τ τ τ τ= ∈ B  is the torque input applied to the 

helicopter at the center of mass. The term R τK  represents the 
small body force perturbations due to mechanism used to 
obtain torque control and K  is a constant matrix depending 
on the geometric parameters of the helicopter, MQ  and TQ  
represent the air resistance (anti-torque) on the main and tail 
rotor. The notation ( )s Ω  denotes the skew symmetric matrix 
such that ( )s q qΩ = Ω×  for the vector cross product ×  and 

any vector 3q ∈ . 
Notice that the model (1) is highly nonlinear and presents 

the small body forces which couple the torque inputs to 
translational dynamics, therefore control theoretical issues 
such as stability and tracking becomes much more 
complicated. To reduce the computational complexity on the 
control law, we will start by designing a controller for the 

approximate model in the absence of small body forces, it can 
be shown that the resulting approximate system is 
differentially flat, and hence feedback linearizable [1]. For this 
reason, we design a robust controller using sliding mode 
control combined with exact feedback linearization for the 
simplified model, and we analyze the robustness of the closed 
loop system for the full dynamic helicopter model.   

III. SLIDING MODE CONTROLLER DESIGN 
This section focuses on the design of a control flight based 

on the sliding mode control combined with the exact feedback 
linearization procedure for the simplified helicopter model, 
where the small body force and air resistance are neglected. 

Consider the approximate helicopter model 

3 3

( )

v

mv mge Rue

R Rs

ξ

τ

⎧⎪ =⎪⎪⎪⎪ = −⎪⎪⎪⎨⎪ = Ω⎪⎪⎪⎪⎪ Ω = −Ω× Ω+⎪⎪⎩
I I

        (2) 

The objective of the control flight is to design an autopilot 
1 2 2( , , , )u τ τ τ  for the miniature helicopter to let the vertical, 

lateral, longitudinal and yaw attitude dynamics to track a 
desired smooth trajectories ( , , )d d d dx y zξ =  and dψ , for 
which the tracking errors deξ ξ ξ= −  and deψ ψ ψ= −  
converge asymptotically to zero. 

In order to render the approximate model (2) completely 
linearizable, we will use a dynamic extension procedure. This 
is done by two integrators of the thrust control input u , we 
will thus consider as the control inputs the vector 

1 2 2( , , , )u τ τ τ  . 
To simplify the following analysis, consider a linearizing 

control input transformation given by 
1 1τ τ− −= − Ω× Ω+I I I        (3) 

With this choice, we have τΩ = , where 1 2 3( , , )τ τ τ τ=  is 
the new control input. 

Using the input-output feedback linearization procedure of 
the position ξ  which has relative degree of 4 with respect to 
the control input, we have: 
The third time derivative of ξ  which any input appears in its 
expression yields 

(3)
3 3

1 1
( )Rus e Rue

m m
ξ = − Ω −         (4) 

Taking the fourth time derivative of the position ξ , it follows 
that 

(4)
3 3 3

2 1 1
( ) ( )Rus e Rus e Rue

m m m
ξ = − Ω − Ω −    (5) 

3 3 3
2 1 1

( ) ( )Rus e Ru e Rue
m m m

= − Ω − Ω× −  

Combining equation (3) and recalling that 3( )s eΩ =  

3 3 2 1( , , 0)Te eτ τ τΩ× = × = − , equation (5) can be written 
as 

 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:2, 2007

74

 

 

(4)
3 1 2

2 1
( ) ( )( , , )TRus e RA u u

m m
ξ τ τ= − Ω −    (6) 

where  

0 0

( ) 0 0

0 0 1

u

A u u

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 and 
2

3 1( )

0

u

us e u

⎛ ⎞Ω ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Ω = − Ω⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, since the thrust 

input u  is never to be zero while the helicopter is in hover 
then the matrix ( )A u  is nonsingular and the control signals u , 

1τ  and 2τ  can be determined using sliding mode control 
design. To obtain the control input 3τ  that stabilizes the 
tracking error of the yaw attitude, it is necessary to use the 
kinematic relationship between the Euler angles and the 
angular velocity in the body frame. The generalized velocities 
( , , )η ψ θ φ=  are related to the angular velocity Ω  by the 

relation 
0 sin cos

1
( ) 1 cos sin

cos
1 sin sin cos sin

φ φ

η η φ φ
θ

φ θ φ θ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= Ω = − Ω⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

W    (7)   

 
The first time derivative of the yaw attitude is given by  

 1 2 3
sin cos

( )
cos cos

Te
φ φ

ψ η
θ θ

= Ω = Ω + ΩW      (8) 

Compute the second derivative of ψ  and using equation (3), 
we have 
 

2 3
sin cos

( , , )
cos cos

φ φ
ψ α η η τ τ

θ θ
= Ω + +       (9) 

 
where 1( , , ) ( )Teα η η ηΩ = ΩW  and ] [, /2, /2θ φ π π∈ −  

Define now a nonlinear change of coordinates 1ζ ξ= , 

2ζ ξ= , 3ζ ξ= , (3)
4ζ ξ= , 5ζ ψ=  and 6ζ ψ= . In the new 

system of coordinates, we can put the approximate model (2) 
into the canonical form: 1 2ζ ζ= , 2 3ζ ζ= , 3 4ζ ζ= , 

(4)
4ζ ξ= , 5 6ζ ζ=  and 6ζ ψ= .  

Let us ( ) ( )
1

n n
n deξ ζ ξ+= − , 0,1,2, 3n = , (4) (4)

4 deξ ζ ξ= − , 

5 deψ ζ ψ= − , 6 deψ ζ ψ= −  and 6 deψ ζ ψ= − . 
The first step in designing a sliding mode control for the 

input-output linearized dynamics is to design the sliding 
surface. Let the sliding surfaces ( , )ξ ψσ σ σ=  where  

3
1 2 3( , , )ξσ σ σ σ= ∈  and 4ψσ σ= ∈  associate 

respectively to the position ξ  and yaw attitude ψ . The 
sliding surfaces are chosen as functions of the tracking error 
such that 

(3)
3 2 1e e e eξ ξ ξ ξξσ = +Λ +Λ +Λ                    (10) 

4e eψ ψ ψσ λ= +                          (11) 
where 1 2 3( , , ), 1,2, 3j j j jdiag jλ λ λΛ = =  are positive definite 

diagonal matrices which the diagonal elements are chosen 

such that the polynomials 3 2
3 2 1( )k k k kP s s s sλ λ λ= + + + , 

1,2, 3k =  are Hurwitz  polynomials and 4λ  is a positive 
parameter.  
The sliding surfaces are designed so that the state trajectory, 
restricted to 0σ =  at every 1t t≥ , for some 1 0t >  show 
some desired behavior such as stability or tracking. After this 
step the objective is to determine the control inputs which 
drive the state trajectory along the surfaces (10) and (11).   

The following proposition gives the first result of the 
paper.  
 

Proposition:  
The following discontinuous control signals when applied 

to the approximate helicopter model (2) via the control input 
transformation (3) 

 
(4)1

1 2 3

(3)
3 2 1

( , , ) ( )[ 2 ( ) (

( ))]

T T
du A u us e mR

e e e Gsignξ ξ ξξ

τ τ ξ

σ

−= − Ω − −

Λ −Λ −Λ −
        (12) 

3 2 4

4

cos sin
[ ( , , )

cos cos

( )]

d e

g sign

ψ

ψ

θ φ
τ τ α η η ψ λ

φ θ
σ

= − − Ω + −

−
         (13) 

asymptotically stabilize the tracking errors  deξ ξ ξ= −  and   

deψ ψ ψ= −  to zero. With 1 2 3( , , )G diag g g g=  being a 
strictly positive definite diagonal matrix and 4g  is a positive 
parameter, ‘sign ’ denotes the signum function. 
 

Proof:  
Differentiating the sliding surfaces (10) and (11) with 

respect to time, we have 
(4) (3)(4)

3 2 1d e e eξ ξ ξξσ ξ ξ= − +Λ +Λ +Λ               (14) 

4d eψ ψσ ψ ψ λ= − +                        (15) 
Combining (6) and (12) into (14), it follows that 

( )Gsignξ ξσ σ= −                         (16) 
On the other hand, introducing (9) and (13) into (15), we have  

   4 ( )g signψ ψσ σ= −                    (17) 
The dynamics in (16) and (17) guarantees the finite time 

reachability of the sliding surfaces to zero from any given 
initial conditions (0)ξσ  and (0)ψσ  provided that the gains G  
and 4g  are strictly positive. Moreover, the dynamics in (16) 

and (17) guarantees that 0T
ξ ξσ σ <  and 0ψ ψσ σ <  (the 

condition needed to guarantees sliding phase). Hence, ξσ  and 

ψσ  are driven to zero in finite time, the tracking errors eξ  and 
eψ  are governed respectively after such a finite time by the 

third order dynamics (3) 3 2 1 0e e e eξ ξ ξξ +Λ +Λ +Λ =  and the 

first order differential equation 4 0e eψ ψλ+ = . Thus the 
tracking errors will converge asymptotically to zero as 
t → +∞  because 1Λ , 2Λ  and 3Λ  are positive definite 
diagonal matrices and 4λ  is a positive parameter. 
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IV. STABILITY ANALYSIS  
In this section, we present the analysis of the closed loop 

performance of  the controllers given by equations (12), (13) 
and (3) designed above for the approximate model (2) when 
applied to the full dynamic helicopter model (1) by 
considering the small body forces and air resistance.  

Consider the complete helicopter dynamics (1) and compute 
the time derivative of the new system of coordinates, we have 

1 2ζ ζ= , 2 3 /R mζ ζ τ= + K , 3 4ζ ζ= , 

4 3 1 2 1
2

2 1
( ) ( )( , , ) ,TT Q

Rus e RA u u Rue
m m m

ζ τ τ= − Ω − +
I

5 6ζ ζ=  and 6 ( , , )ζ α η η= Ω + 2 3
sin cos
cos cos

φ φ
τ τ

θ θ
+ +  

3 2

cos sin
cos cosM TQ Q
φ φ
θ θ

−
I I

. 

The following theorem gives the second result of the paper.  
  

Theorem:  
Consider the full dynamic (1) and given that the original 

control inputs u  and τ  are bounded. There exist 1 0β > , 

2 0β > , there exist a  positive definite diagonal matrix 

1 2 3( , , )G diag g g g=  satisfy 

min 1 2 2
0 0
sup / sup /T
t t

g Q u m mβ τ
≥ ≥

= + + ΛI K  and a 

positive design parameter 4g  satisfy 

4 2 2 3/ /T Mg Q Qβ= + +I I , then the discontinuous control 
signals given by equations (12) and (13) when applied to the 
full helicopter model (1) via the control input transformation 
(3), stabilize asymptotically the tracking errors to zero. 
 

Proof: 
Consider the quadratic Lyapunov function 

21 1
( )

2 2
TV V Vξ ψ ξ ξ ψσ σ σ σ= + = +               (18) 

with ξσ  and ψσ  are the sliding surfaces defined in (10) and 
(11). The time derivative of  Vξ  along the trajectories of the 
full dynamic (1) gives 

(4) (3)
4 3 2 1( )T T

dV e e eξ ξ ξ ξ ξ ξξσ σ σ ζ ξ= = − +Λ +Λ +Λ    (19) 

Substituting 4ζ  by its expression and introducing into (19) the 
control signals 1 2( , , )uτ τ  from (12), we obtain 

1 2 2

1 2 2

( ( ) / / )

( ) / /

T
T

T T T
T

V Gsign Q Rue m R m

Gsign Q Rue m R m

ξ ξ ξ

ξ ξ ξ ξ

σ σ τ

σ σ σ σ τ

= − + +Λ

= − + + Λ

I

I

K

K
 (20)   

Then it follows that 

2 2/ /TV G Q u m mξ ξ ξ ξσ σ τ σ≤− + + ΛI K (21) 

Thus, one can easily verify that  

min 2 2( / / )TV g Q u m mξ ξτ σ≤ − + + ΛI K     (22) 

where min 1 2 3min{ , , }g g g g= , then there exists a sufficiently 
large positive value of the minimum element diagonals ming  
of the gain matrix G  such that 

 1Vξ ξβ σ≤− , 1 0β >                 (23) 
 We can choose ming  as follows 

min 1 2 2
00

sup / sup /T
tt

g Q u m mβ τ
≥≥

= + + ΛI K  

Similarly, taking the derivative of  Vψ  along the trajectories 
of the closed loop dynamics (1) gives 

6 4( )dV eψ ψ ψ ψ ψσ σ σ ζ ψ λ= = − +           (24) 

Substituting 6ζ  by its expression and using the control input 
given by equation (13), it yields 

4
2 3

sin cos
( ( ) )

cos cosT MV g sign Q Qψ ψ ψ
φ φ

σ σ
θ θ

= − − +
I I

 

          (25) 
Therefore, equation (25) become 

4 2 3( / / )T MV g Q Qψ ψσ≤ − + +I I              (26) 

Thus, for a sufficiently large positive value of the gain 
parameter 4g , the derivative of the Lyapunov function Vψ  can 
always be made negative, with the 
choice 4 2 2 3/ /T Mg Q Qβ= + +I I , 2 0β > , we get 

2Vψ ψβ σ≤−                   (27) 
Finally, the dynamic (23) and (27) guarantees the finite time 
reachability of the sliding surfaces to zero from any given 
initial conditions (0)ξσ  and (0)ψσ . Hence the tracking errors 
of the full helicopter dynamics (1) will converge 
asymptotically to zero as t → +∞ . 
 

Remark:  
The implementation of the proposed controller that involves 

the sign  function is not very practical because it involves 
infinitely switching when the sliding surface 0σ = , this leads 
to chattering phenomena and excite high frequency and 
unmodelled dynamics. To avoid the problem with chattering, 
a boundary layer around the sliding surface can be used. For 
this reason, the sign  function can be replaced by a saturation 
function ( / )sat Bσ , where B  is the boundary layer thickness. 

V. SIMULATION RESULTS 
In this section, simulations are presented to illustrate the 

performance and robustness of proposed control law when 
applied to the full helicopter model with the small body forces 
and air resistance in the case of stabilization and trajectory 
tracking. The parameters values used for the dynamic model 
are as follows [4], 9.6m = , (04, 056,0.22)diag=I  and 
9.8g = . The air resistances are estimated to be the following 

constants ( 0.02MQ = , 0.002TQ = ). The matrix K  which 
couple the torques input τ  and the matrix R  is  

0 2.2 0

2.2 0 0.7

0 0 0

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

K . The initial conditions are 

0ξ ξ η= = = Ω = , 0 3R I= , 0u mg= , 0 0u = . The 
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parameters of the controller jΛ , 1,2, 3j =  are chosen such 
that the corresponding poles of ( 1, 1, 1)− − −  and 4 1λ = . The 
control gains selected are (5,5,5)G diag=  and 4 5g = . 
These gains satisfy the conditions of theorem. The simulation 
results presented in Figures 2-5 were obtained in the case of 
stabilization of the helicopter to a set point in hover. The 
desired position and yaw attitude are chosen to be 

(2,2, 3)dξ = −  and /4dψ π= . The simulation results 
presented in figures 6-9 consider the case of trajectory 
tracking. The desired trajectory was chosen as a vertical helix 
ascending given by (3 cos , 3 sin , 0.2 0.5)d d d tξ ψ ψ= − −  and 

/10 0.8d tψ π= + . 
In both simulations, from Fig. 3 and Fig. 7, it can be seen 

that the actual position and yaw attitude of the helicopter 
converge to their desired values. Hence the feedback 
controller is robust with respect to the small body forces and 
air resistance. Fig.4 and Fig.8 show the thrust control input u  
and the torque control input τ . It can be seen that the 
chattering in the control signals is eliminated by introducing 
the boundary layer around the sliding surface. Fig.5 and Fig.9 
show the sliding surfaces ξσ  and ψσ . It can be seen from 
these figures that the sliding surfaces converge to zero.    

VI. CONCLUSION 
In this paper, a robust flight control has been presented for 

a small-size autonomous helicopter using sliding mode control 
combined with the exact feedback linearization procedure. 
The robustness of the proposed controller with respect to 
small body forces and air resistance was analytically analyzed 
that achieves robust tracking and stabilization. To avoid the 
chattering problem and guarantees the smoothed control 
inputs, a boundary layer around the sliding surface was 
introduced. Simulation results show the effectiveness of the 
proposed controller.  
 

 
Fig. 2 3D and 2D motion of the helicopter  

 
Fig. 3 Position ( , , )x y z  and orientation( , , )ψ θ φ  

 
 

 
Fig. 4 Control inputs u  and 1 2 3( , , )τ τ τ τ=  

 
 

 
Fig. 5 Sliding surfaces 1 1 3( , , )σ σ σ  and 4σ  
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Fig. 6 3D and 2D motion of the helicopter 

 
 

 
Fig. 7 Position ( , , )x y z  and orientation ( , , )ψ θ φ  

 
 

 
Fig. 8 Control inputs u  and 1 2 3( , , )τ τ τ τ=  

 

 
Fig. 9 Sliding surfaces 1 1 3( , , )σ σ σ  and 4σ  
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