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Robust H∞ Fuzzy Control Design for Nonlinear

Two-Time Scale System with Markovian Jumps

based on LMI Approach
Wudhichai Assawinchaichote∗ and Sing Kiong Nguang

Abstract—This paper examines the problem of designing a robust
H∞ state-feedback controller for a class of nonlinear two-time scale
systems with Markovian Jumps described by a Takagi-Sugeno (TS)
fuzzy model. Based on a linear matrix inequality (LMI) approach,
LMI-based sufficient conditions for the uncertain Markovian jump
nonlinear two-time scale systems to have an H∞ performance are
derived. The proposed approach does not involve the separation of
states into slow and fast ones and it can be applied not only to
standard, but also to nonstandard nonlinear two-time scale systems.
A numerical example is provided to illustrate the design developed
in this paper.

Keywords—TS fuzzy, Markovian jumps, LMI, Two-time scale
systems.

I. INTRODUCTION

M
ARKOVIAN jump systems, sometimes called hybrid sys-
tems with a state vector, consists of two components;

i.e., the state (differential equation) and the mode (Markov

process). The Markovian jump system changes abruptly from

one mode to another mode caused by some phenomenon such

as environmental disturbances, changing subsystem intercon-

nections and fast variations in the operating point of the system

plant, etc. The switching between modes is governed by a

Markov process with the discrete and finite state space. Over

the past few decades, the Markovian jump systems have been

extensively studied by many researchers; see [1]-[12]. This is

due to the fact that jumping systems have been a subject of

the great practical importance.

For the past three decades, singularly perturbed systems

have been intensively studied by many researchers; see [12]-

[15]. Singularly perturbed systems also known as multiple

(two) time-scale dynamic systems normally occur due to

the presence of small “parasitic” parameters, typically small

time constants, masses, etc. In state space, such systems

are commonly modelled using the mathematical framework

of singular perturbations, with a small parameter, say ε,

determining the degree of separation between the “slow” and

“fast” modes of the system. However, it is necessary to note

that it is possible to solve the singularly perturbed systems

without separating between slow and fast mode subsystems.
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But the requirement is that the “parasitic” parameters must

be large enough. In the case of having very small “parasitic”

parameters which normally occur in the description of various

physical phenomena, a popular approach adopted to handle

these systems is based on the so-called reduction technique.

According to this technique the fast variables are replaced

by their steady states obtained with “frozen” slow variables

and controls, and the slow dynamics is approximated by

the corresponding reduced order system. This time-scale is

asymptotic, that is, exact in the limit, as the ratio of the speeds

of the slow versus the fast dynamics tends to zero.

In the last few years, the research on singularly perturbed

systems in the H∞ sense has been highly recognized in control

area due to the great practical importance. H∞-optimal control

of singularly perturbed linear systems under either perfect state

measurements or imperfect state measurements has been in-

vestigated via differential game theoretics approach. Although

many researchers have studied the H∞ control design of linear

singularly perturbed systems for many years, the H∞ control

design of nonlinear singularly perturbed systems remains as

an open research area. This is due to, in general, nonlinear

singularly perturbed systems can not be decomposed into slow

and fast subsystems.

Recently, a great amount of effort has been made on the

design of fuzzy H∞ for a class of nonlinear systems which

can be represented by a Takagi-Sugeno (TS) fuzzy model; see

[16]-[18]. Recent studies [16]-[19] show that a fuzzy model

can be used to approximate global behaviors of a highly

complex nonlinear system. In this fuzzy model, local dynamics

in different state space regions are represented by local linear

systems. The overall model of the system is obtained by

“blending” of these linear models through nonlinear fuzzy

membership functions. Unlike conventional modelling which

uses a single model to describe the global behavior of a

system, fuzzy modelling is essentially a multi-model approach

in which simple sub-models (linear models) are combined to

describe the global behavior of the system. Employing the

existing fuzzy results [16]-[19] on the singularly perturbed

system, one ends up with a family of ill-conditioned linear

matrix inequalities resulting from the interaction of slow and

fast dynamic modes. In general, ill-conditioned linear matrix

inequalities are very difficult to solve.

What we intend to do in this paper is to design a robust

H∞ fuzzy state-feedback controller for a class of uncertain

nonlinear two time-scale dynamic systems with Markovian

jumps. First, we approximate this class of uncertain nonlinear
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two time-scale dynamic systems with Markovian jumps by

a Takagi-Sugeno fuzzy model with Markovian jumps. Then

based on an LMI approach, we develop a technique for

designing a robust H∞ fuzzy state-feedback controller such

that the L2-gain of the mapping from the exogenous input

noise to the regulated output is less than a prescribed value. To

alleviate the ill-conditioned linear matrix inequalities resulting

from the interaction of slow and fast dynamic modes, these

ill-conditioned LMIs are decomposed into ε-independent LMIs

and ε-dependent LMIs. The ε-independent LMIs are not ill-

conditioned and the ε-dependent LMIs tend to zero when ε
approaches to zero. If ε is sufficiently small, the original ill-

conditioned LMIs are solvable if and only if the ε-independent

LMIs are solvable. The proposed approach does not involve

the separation of states into slow and fast ones, and it can

be applied not only to standard, but also to nonstandard two

time-scale dynamic systems.

This paper is organized as follows. In Section II, system

descriptions and definition are presented. In Section III, based

on an LMI approach, we develop a technique for designing

a robust H∞ fuzzy state-feedback controller such that the

L2-gain of the mapping from the exogenous input noise to

the regulated output is less than a prescribed value for the

system described in Section II. The validity of this approach

is demonstrated by an example from a literature in Section IV.

Finally, conclusions are given in Section V.

II. SYSTEM DESCRIPTIONS AND DEFINITIONS

The class of nonlinear uncertain two-time scale systems

with Markovian jumps under consideration is described by

the following TS fuzzy model with Markovian jumps:

Eεẋ(t) =
∑r

i=1 µi(ν(t))
[

[Ai(η(t)) + ∆Ai(η(t))]x(t)

+[B1i
(η(t)) + ∆B1i

(η(t))]w(t)

+[B2i
(η(t)) + ∆B2i

(η(t))]u(t)
]

, x(0) = 0,

z(t) =
∑r

i=1 µi(ν(t))
[

[C1i
(η(t)) + ∆C1i

(η(t))]x(t)

+[D12i
(η(t)) + ∆D12i

(η(t))]u(t)
]

(1)

where Eε =

[

I 0
0 εI

]

, ε > 0 is the singular perturbation

parameter, ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable

that may depend on states in many cases, µi(ν(t)) denote the

normalized time-varying fuzzy weighting functions for each

rule, ϑ is the number of fuzzy sets, x(t) ∈ ℜn is the state

vector, u(t) ∈ ℜm is the input, w(t) ∈ ℜp is the disturbance

which belongs to L2[0,∞), z(t) ∈ ℜs is the controlled

output, the matrix functions Ai(η(t)), B1i
(η(t)), B2i

(η(t)),
C1i

(η(t)), D12i
(η(t)), ∆Ai(η(t)), ∆B1i

(η(t)), ∆B2i
(η(t)),

∆C1i
(η(t)) and ∆D12i

(η(t)) are of appropriate dimensions.

{η(t))} is a continuous-time discrete-state Markov process

taking values in a finite set S = {1, 2, · · · , s} with transition

probability matrix Pr
∆
= {Pık(t)} given by

Pık(t) = Pr(η(t + ∆) = k|η(t) = ı)

=

{

λık∆ + O(∆) if ı 6= k
1 + λıı∆ + O(∆) if ı = k

(2)

where ∆ > 0, and lim∆−→0
O(∆)

∆ = 0. Here λık ≥ 0 is the

transition rate from mode ı (system operating mode) to mode

k (ı 6= k), and

λıı = −
s

∑

k=1,k 6=ı

λık. (3)

For the convenience of notations, we let µi
∆
= µi(ν(t)),

η = η(t), and any matrix M(µ, ı)
∆
= M(µ, η = ı). The

matrix functions ∆Ai(η), ∆B1i
(η), ∆B2i

(η), ∆C1i
(η) and

∆D12i
(η) represent the time-varying uncertainties in the sys-

tem and satisfy the following assumption.

Assumption 1:

∆Ai(η) = F (x(t), η, t)H1i
(η),

∆B1i
(η) = F (x(t), η, t)H2i

(η),

∆B2i
(η) = F (x(t), η, t)H3i

(η),

∆C1i
(η) = F (x(t), η, t)H4i

(η),

and ∆D12i
(η) = F (x(t), η, t)H5i

(η),

where Hji
(η), j = 1, 2, · · · , 5 are known matrices which

characterize the structure of the uncertainties. Furthermore,

there exists a positive function ρ(η) such that the following

inequality holds:

‖F (x(t), η, t)‖ ≤ ρ(η). (4)

We recall the following definition.

Definition 1: Suppose γ is a given positive number. A

system of the form (1) is said to have the L2-gain less than

or equal to γ if

E

[

∫ Tf

0

{zT (t)z(t) − γ2wT (t)w(t)} dt

]

≤ 0, x(0) = 0 (5)

where E [·] stands for the mathematical expectation, for all

Tf and all w(t) ∈ L2[0, Tf ].
Note that for the symmetric block matrices, we use (∗) as

an ellipsis for terms that are induced by symmetry.

III. ROBUST H∞ FUZZY STATE-FEEDBACK CONTROL

DESIGN

This section provides the LMI-based solutions to the prob-

lem of designing a robust H∞ fuzzy state-feedback controller

that guarantees the L2-gain of the mapping from the exoge-

nous input noise to the regulated output to be less than some

prescribed value.

First, we consider the following H∞ fuzzy state-feedback

which is inferred as the weighted average of the local models

of the form:

u(t) =
r

∑

j=1

µjKj(ı)x(t). (6)

Then, we describe the problem under our study as follows.

Problem Formulation: Given a prescribed H∞ performance

γ > 0, design a robust H∞ fuzzy state-feedback controller of

the form (6) such that the inequality (5) holds.
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Before presenting our first main result, we recall the fol-

lowing lemma.

Lemma 1: Consider the system (1). Given a prescribed H∞
performance γ > 0, for ı = 1, 2, · · · , s, if there exist matrices

Pε(ı) = PT
ε (ı), positive constants δ(ı) and matrices Yj(ı),

j = 1, 2, · · · , r such that the following ε-dependent linear

matrix inequalities hold:

Pε(ı) > 0 (7)

Ψii(ı, ε) < 0, i = 1, 2, · · · , r (8)

Ψij(ı, ε) + Ψji(ı, ε) < 0, i < j ≤ r (9)

where

Ψij(ı, ε)=









Φij(ı, ε) (∗)T (∗)T (∗)T

R(ı)B̃T
1i

(ı) −γR(ı) (∗)T (∗)T

Υij(ı, ε) 0 −γR(ı) (∗)T

ZT (ı, ε) 0 0 −P(ı, ε)









(10)

Φij(ı, ε)=Ai(ı)E
−1
ε Pε(ı) + E−1

ε Pε(ı)A
T
i (ı)

+B2i
(ı)Yj(ı) + Y T

j (ı)BT
2i

(ı)

+λııE
−1
ε Pε(ı), (11)

Υij(ı, ε) = C̃1i
(ı)E−1

ε Pε(ı) + D̃12i
(ı)Yj(ı), (12)

R(ı) = diag {δ(ı)I, I, δ(ı)I, I} , (13)

Z(ı, ε) =
(

√

λı1E
−1
ε Pε(ı) · · ·

√

λı(ı−1)E
−1
ε Pε(ı)

√

λı(ı+1)E
−1
ε Pε(ı) · · ·

√

λısE
−1
ε Pε(ı)

)

,

(14)

P(ı, ε) = diag
{

E−1
ε Pε(1), · · · , E−1

ε Pε(ı − 1),

E−1
ε Pε(ı + 1), · · · , E−1

ε Pε(s)
}

, (15)

with

B̃1i
(ı) =

[

I I I B1i
(ı)

]

C̃1i
(ı) =

[

γρ(ı)HT
1i

(ı)
√

2ℵ(ı)ρ(ı)HT
4i

(ı)

0
√

2ℵ(ı)CT
1i

(ı)
]T

D̃12i
(ı) =

[

0
√

2ℵ(ı)ρ(ı)HT
5i

(ı)

γρ(ı)HT
3i

(ı)
√

2ℵ(ı)DT
12i

(ı)
]T

ℵ(ı) =



I + ρ2(ı)

r
∑

i=1

r
∑

j=1

[

‖HT
2i

(ı)H2j
(ı)‖

]





1
2

then the inequality (5) holds. Furthermore, a suitable choice

of the fuzzy controller is

u(t) =
r

∑

j=1

µjKεj
(ı)x(t) (16)

where

Kεj
(ı) = Yj(ı)(Pε(ı))

−1Eε. (17)

Proof: The desired result can be carried out by a similar

technique used in [20], [21], and [22]. The detail of the proof

is omitted for brevity.

Remark 1: The linear matrix inequalities given in Lemma 1

becomes ill-conditioned when ε is sufficiently small, which is

always the case for the singularly perturbed system. In general,

these ill-conditioned linear matrix inequalities are very difficult

to solve. Thus, to alleviate these ill-conditioned linear matrix

inequalities, we have the following theorem which does not

depend on ε.

Now we are in the position to present our first result.

Theorem 1: Consider the system (1). Given a prescribed

H∞ performance γ > 0, for ı = 1, 2, · · · , s, if there exist

matrices P (ı), positive constants δ(ı) and matrices Yj(ı), j =
1, 2, · · · , r such that the following ε-independent linear matrix

inequalities hold:

EP (ı) + P (ı)D > 0 (18)

Ψii(ı) < 0, i = 1, 2, · · · , r (19)

Ψij(ı) + Ψji(ı) < 0, i < j ≤ r (20)

where EP (ı) = PT (ı)E, P (ı)D = DPT (ı), E =
(

I 0
0 0

)

, D =

(

0 0
0 I

)

,

Ψij(ı) =









Φij(ı) (∗)T (∗)T (∗)T

R(ı)B̃T
1i

(ı) −γR(ı) (∗)T (∗)T

Υij(ı) 0 −γR(ı) (∗)T

ZT (ı) 0 0 −P(ı)









(21)
Φij(ı)= Ai(ı)P (ı) + PT (ı)AT

i (ı) + B2i
(ı)Yj(ı)

+Y T
j (ı)BT

2i
(ı) + λıı

˜̄P (ı), (22)

Υij(ı) = C̃1i
(ı)P (ı) + D̃12i

(ı)Yj(ı), (23)

R(ı) = diag {δ(ı)I, I, δ(ı)I, I} , (24)

Z(ı) =
(

√

λı1
˜̄P (ı) · · ·

√

λı(ı−1)
˜̄P (ı)

√

λı(ı+1)
˜̄P (ı) · · ·

√

λıs
˜̄P (ı)

)

, (25)

P(ı) = diag
{

˜̄P (1), · · · , ˜̄P (ı − 1),

˜̄P (ı + 1), · · · , ˜̄P (s)
}

, (26)

˜̄P (ı) =
P (ı) + PT (ı)

2
(27)

with

B̃1i
(ı)=

[

I I I B1i
(ı)

]

C̃1i
(ı) =

[

γρ(ı)HT
1i

(ı)
√

2ℵ(ı)ρ(ı)HT
4i

(ı)

0
√

2ℵ(ı)CT
1i

(ı)
]T

D̃12i
(ı) =

[

0
√

2ℵ(ı)ρ(ı)HT
5i

(ı)

γρ(ı)HT
3i

(ı)
√

2ℵ(ı)DT
12i

(ı)
]T

ℵ(ı) =



I + ρ2(ı)

r
∑

i=1

r
∑

j=1

[

‖HT
2i

(ı)H2j
(ı)‖

]





1
2

then there exists a sufficiently small ε̂ > 0 such that the

inequality (5) holds for ε ∈ (0, ε̂]. Furthermore, a suitable
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choice of the fuzzy controller is

u(t) =

r
∑

i=1

µjKj(ı)x(t) (28)

where

Kj(ı) = Yj(ı)(P (ı))−1. (29)

Proof: The detail of the proof is omitted for brevity.

IV. ILLUSTRATIVE EXAMPLE

Consider a modified series dc motor model based on [27] as

shown in Fig. 1 which is governed by the following difference

equations:

J dω̃(t)
dt

= KmLf ĩ2(t) − (D + ∆D)ω̃(t)

Ldĩ(t)
dt

= −Rĩ(t) − KmLf ĩ(t)ω̃(t) + Ṽ (t)
(30)

where ω̃(t) = ω(t) − ωref (t) is the deviation of the actual

angular velocity from the desired angular velocity, ĩ(t) =
i(t) − iref (t) is the deviation of the actual current from the

desired current, Ṽ (t) = V (t) − Vref (t) is the deviation of

the actual input voltage from the desired input voltage, J is

the moment of inertia, Km is the torque/back emf constant,

D is the viscous friction coefficient, and Ra, Rf , La and

Lf are the armature resistance, the field winding resistance,

the armature inductance and the field winding inductance,

respectively, with R
∆
= Rf + Ra and L

∆
= Lf + La. Note that

in a typical series-connected dc motor, the condition Lf ≫ La

holds. When one obtains a series-connected dc motor, we have

i(t) = ia(t) = if (t). Now let us assume that |∆J | ≤ 0.1J .

b
V

L

If Ia

V

+

−

back emf

f

aL aR

fR

+

−

Dω

τ

Fig. 1. A modified series dc motor equivalent circuit.

Giving x1(t) = ω̃(t), x2(t) = ĩ(t) and u(t) = Ṽ (t), (30)

becomes
[

ẋ1(t)
εẋ2(t)

]

=

[

− D
(J+∆J)

KmLf

(J+∆J)x2(t)

−KmLfx2(t) −R

]

[

x1(t)
x2(t)

]

+

[

0
1

]

u(t) (31)

where ε = L represents a small parasitic parameter. Assume

that, the system is aggregated into 3 modes as shown in Table

I:

The transition probability matrix that relates the three op-

eration modes is given as follows:

Pık =





0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64



 .

TABLE I
SYSTEM TERMINOLOGY.

Mode ı Moment of Inertia J(ı)±∆J(ı)

(kg·m2)

1 Small 0.0005 ±10%

2 Normal 0.005 ±10%

3 Large 0.05 ±10%

The parameters for the system are given as R = 10 Ω,

Lf = 0.005 H, D = 0.05 N·m/rad/s and Km = 1 N·m/A.

Substituting the parameters into (31), we get

[

ẋ1(t)
εẋ2(t)

]

=

[ − 0.05
J(ı)

0.005
J(ı) x2(t)

−0.005x2(t) −10

] [

x1(t)
x2(t)

]

+

[

0 0
0.1 0

]

w(t) +

[

0
1

]

u(t)

+

[ − 0.05
∆J(ı)

0.005
∆J(ı)x2(t)

0 0

] [

x1(t)
x2(t)

]

z(t) =

[

1 0
0 1

] [

x1(t)
x2(t)

]

+

[

0
1

]

u(t)

(32)

where x(t) = [xT
1 (t) xT

2 (t)]T is the state variables, w(t) =
[wT

1 (t) wT
2 (t)]T is the disturbance input, u(t) is the controlled

input and z(t) is the controlled output.

The control objective is to control the state variable x2(t)
for the range x2(t) ∈ [N1 N2]. For the sake of simplicity, we

will use as few rules as possible. Note that Fig. 2 shows the

plot of the membership function represented by

M1(x2(t)) =
−x2(t) + N2

N2 − N1
and M2(x2(t)) =

x2(t) − N1

N2 − N1
.

Knowing that x2(t) ∈ [N1 N2], the nonlinear system (32)

1 21

0

M  (x  ) M  (x  )

N
21

N x  (t)
2

2 2

−3 30

Fig. 2. Membership functions for the two fuzzy set.

can be approximated by the following TS fuzzy model

Eεẋ(t) =
r

∑

i=1

µi

[

[Ai(ı) + ∆Ai(ı)]x(t)

+B1i
(ı)w(t) + B2i

(ı)u(t)
]

, x(0) = 0,

z(t) =
r

∑

i=1

µi

[

C1i
(ı)x(t) + D12i

(ı)u(t)
]

,

where µi is the normalized time-varying fuzzy weighting

functions for each rule, i = 1, 2, x(t) =

[

x1(t)
x2(t)

]

,
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Eε =

[

1 0
0 ε

]

, ∆A1(ı) = F (x(t), ı, t)H11(ı), ∆A2(ı) =

F (x(t), ı, t)H12
(ı),

A1(1) =

[

−100 10N1

−0.005N1 −10

]

,

A2(1) =

[

−100 10N2

−0.005N2 −10

]

,

A1(2) =

[

−10 N1

−0.005N1 −10

]

,

A2(2) =

[

−10 N2

−0.005N2 −10

]

,

A1(3) =

[

−1 0.1N1

−0.005N1 −10

]

,

A2(3) =

[

−1 0.1N2

−0.005N2 −10

]

,

B11
(ı) = B12

(ı) =

[

0 0
0.1 0

]

,

B21(ı) = B22(ı) =

[

0
1

]

, C11(ı) = C12(ı) =

[

1 0
0 1

]

,

and D121
(ı) = D122

(ı) =

[

0
1

]

,

with ‖F (x(t), ı, t)‖ ≤ 1. Then we have

H11
(ı) =

[ − 0.05
J(ı)

0.05
J(ı)N1

0 0

]

and H12
(ı) =

[ − 0.05
J(ı)

0.05
J(ı)N2

0 0

]

.

In this simulation, we select N1 = −3 and N2 = 3.

Using the LMI optimization algorithm and Theorem 1 with

ε = 0.005, γ = 1 and δ(1) = δ(2) = δ(3) = 1, we obtain the

results given in Fig. 3, Fig. 4 and Fig. 5.

Remark 2: Employing results given in [16]-[19] and Mat-

lab LMI solver [25], it is easy to realize that when ε <
0.005 for the state-feedback control design, LMIs become

ill-conditioned and Matlab LMI solver yields an error mes-

sage, “Rank Deficient”. However, the state-feedback fuzzy

controller proposed in this paper guarantee that the inequality

(5) holds for the system (32). Fig. 3 shows the result of the

changing between modes during the simulation with the initial

mode at mode 1 and ε = 0.005. The disturbance input signal,

w(t), which was used during simulation is the rectangular

signal with magnitude 0.1 and frequency 1 Hz.The ratio of the

regulated output energy to the disturbance input noise energy

obtained by using the H∞ fuzzy controller is depicted in Fig.

4. The ratio of the regulated output energy to the disturbance

input noise energy tends to a constant value which is about

0.0094. So γ =
√

0.0094 = 0.0970 which is less than the

prescribed value 1. Finally, Table II shows the performance

index, γ, for different values of ε.

V. CONCLUSION

This paper has investigated the problem of designing a

robust H∞ state-feedback controller for a class of uncertainty

Markovian jump nonlinear two-time scale systems that guar-

antees the L2-gain from an exogenous input to a regulated

output to be less or equal to a prescribed value. First, we

approximate this class of uncertain Markovian jump nonlinear

two-time scale systems by a class of uncertain Takagi-Sugeno

fuzzy models with Markovian jumps. Then, based on an LMI

approach, LMI-based sufficient conditions for the uncertain

Markovian jump nonlinear two-time scale systems to have an

H∞ performance are derived. The proposed approach does not

involve the separation of states into slow and fast ones and it

can be applied not only to standard, but also to nonstandard

nonlinear two-time scale systems. An illustrative example is

used to illustrate the effectiveness of the proposed design

techniques.

TABLE II
THE PERFORMANCE INDEX γ FOR DIFFERENT VALUES OF ε.

The performance index γ

ε State-feedback control design

0.005 0.0970

0.10 0.4796

0.30 0.8660

0.40 0.9945

0.41 > 1
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Fig. 3. The result of the changing between modes during the simulation
with the initial mode at mode 1.
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