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Robust H∞ Filter Design for Uncertain Fuzzy Descriptor Systems:
LMI-Based Design

Wudhichai Assawinchaichote∗ and Sing Kiong Nguang

Abstract— This paper examines the problem of designing
a robust H∞ filter for a class of uncertain fuzzy descriptor
systems described by a Takagi-Sugeno (TS) fuzzy model. Based
on a linear matrix inequality (LMI) approach, LMI-based
sufficient conditions for the uncertain nonlinear descriptor
systems to have an H∞ performance are derived. To alleviate
the ill-conditioning resulting from the interaction of slow and
fast dynamic modes, solutions to the problem are given in
terms of linear matrix inequalities which are independent of
the singular perturbation ε, when ε is sufficiently small. The
proposed approach does not involve the separation of states
into slow and fast ones and it can be applied not only to stan-
dard, but also to nonstandard uncertain nonlinear descriptor
systems. A numerical example is provided to illustrate the
design developed in this paper.

Index Terms—H∞ control; Takagi-Sugeno (TS) fuzzy
model; Linear Matrix Inequalities (LMIs); Descriptor systems

I. INTRODUCTION

The problem of control design for descriptor systems sys-
tem has been intensively studied by a number of researchers
for the past three decades; see [1]-[6]. This is due not only to
theoretical interest but also to the relevance of this topic in
control engineering applications. Descriptor systems or so
called singularly perturbed systems are dynamical systems
with multiple time-scales. Descriptor systems often occur
naturally due to the presence of small “parasitic” parameter,
typically small time constants, masses, etc.

The main purpose of the singular perturbation approach
to analysis and design is the alleviation of high dimension-
ality and ill-conditioning resulting from the interaction of
slow and fast dynamics modes. The separation of states into
slow and fast ones is a nontrivial modelling task demanding
insight and ingenuity on the part of the analyst. In state
space, such systems are commonly modelled using the
mathematical framework of singular perturbations, with a
small parameter, say ε, determining the degree of separation
between the “slow” and “fast” modes of the system.

In the last few years, many researchers have studied the
H∞ filter design for a general class of linear descriptor sys-
tems. In [3], the authors have investigated the decomposition
solution of H∞ filter gain for singularly perturbed systems.
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The reduced-order H∞ optimal filtering for system with
slow and fast modes has been considered in [4]. Although
many researchers have studied linear descriptor systems for
many years, the H∞ filtering design for nonlinear descriptor
systems remains as an open research area. This is because,
in general, nonlinear singularly perturbed systems can not
be easily separated into slow and fast subsystems.

Fuzzy system theory enables us to utilize qualitative,
linguistic information about a highly complex nonlinear
system to construct a mathematical model for it. Recent
studies show that a fuzzy linear model can be used to
approximate global behaviors of a highly complex nonlinear
system; see for example, [7]-[19]. In this fuzzy linear
model, local dynamics in different state space regions are
represented by local linear systems. The overall model of
the system is obtained by “blending” these linear models
through nonlinear fuzzy membership functions. Unlike con-
ventional modelling where a single model is used to de-
scribe the global behaviour of a system, the fuzzy modelling
is essentially a multi-model approach in which simple sub-
models (linear models) are combined to describe the global
behaviour of the system.

What we intend to do in this paper is to design a
robust H∞ filter for a class of nonlinear descriptor systems
with nonlinear on both fast and slow variables. First, we
approximate this class of nonlinear descriptor systems by
a Takagi-Sugeno fuzzy model. Then based on an LMI
approach, we develop an H∞ filter such that the L2-gain
from an exogenous input to an estimate error is less or
equal to a prescribed value. To alleviate the ill-conditioning
resulting from the interaction of slow and fast dynamic
modes, solutions to the problem are given in terms of linear
matrix inequalities which are independent of the singular
perturbation ε, when ε is sufficiently small. The proposed
approach does not involve the separation of states into slow
and fast ones and it can be applied not only to standard,
but also to nonstandard nonlinear descriptor systems.

This paper is organized as follows. In Section II, system
descriptions and definitions are presented. In Section III,
based on an LMI approach, we develop a technique for
designing a robust H∞ filter for the system described in
section II. The validity of this approach is demonstrated
by an example from a literature in Section IV. Finally in
Section V, conclusions are given.

II. SYSTEM DESCRIPTIONS

In this section, we generalize the TS fuzzy system to
represent a TS fuzzy descriptor system with parametric
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uncertainties. As in [19], we examine a TS fuzzy descriptor
system with parametric uncertainties as follows:

Eεẋ(t) =
∑r

i=1 μi(ν(t))
[
[Ai + ΔAi]x(t)

+[B1i + ΔB1i ]w(t) + [B2i + ΔB2i ]u(t)
]
, x(0) = 0

z(t) =
∑r

i=1 μi(ν(t))
[
[C1i

+ ΔC1i
]x(t)

+[D12i + ΔD12i ]u(t)
]

y(t) =
∑r

i=1 μi(ν(t))
[
[C2i + ΔC2i ]x(t)

+[D21i + ΔD21i ]w(t)
]

(1)

where Eε =
[

I 0
0 εI

]
, ε > 0 is the singular perturbation

parameter, ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable
vector that may depend on states in many cases, μi(ν(t))
denotes the normalized time-varying fuzzy weighting func-
tions for each rule (i.e., μi(ν(t)) ≥ 0 and

∑r
i=1 μi(ν(t)) =

1), ϑ is the number of fuzzy sets, x(t) ∈ �n is the state
vector, u(t) ∈ �m is the input, w(t) ∈ �p is the disturbance
which belongs to L2[0,∞), y(t) ∈ �� is the measurement
and z(t) ∈ �s is the controlled output, the matrices
Ai, B1i

, B2i
, C1i

, C2i
, D12i

and D21i
are of appropriate

dimensions, and the matrices ΔAi, ΔB1i , ΔB2i , ΔC1i ,
ΔC2i , ΔD12i and ΔD21i represent the uncertainties in the
system and satisfy the following assumption.

Assumption 1:

ΔAi = F (x(t), t)H1i , ΔB1i = F (x(t), t)H2i ,

ΔB2i = F (x(t), t)H3i , ΔC1i = F (x(t), t)H4i ,

ΔC2i = F (x(t), t)H5i , ΔD12i = F (x(t), t)H6i

and ΔD21i = F (x(t), t)H7i

where Hji , j = 1, 2, · · · , 7 are known matrix functions
which characterize the structure of the uncertainties. Fur-
thermore, the following inequality holds:

‖F (x(t), t)‖ ≤ ρ (2)

for any known positive constant ρ.

Next, let us recall the following definition.

Definition 1: Suppose γ is a given positive number. A
system (1) is said to have an L2-gain less than or equal to
γ if ∫ Tf

0

(
z(t) − ẑ(t)

)T (
z(t) − ẑ(t)

)
dt

≤ γ2

[∫ Tf

0

wT (t)w(t)dt

]
(3)

with x(0) = 0, where (z(t) − ẑ(t)) is the estimated error
output, for all Tf ≥ 0 and w(t) ∈ L2[0, Tf ].

III. ROBUST H∞ FUZZY FILTER DESIGN

Without loss of generality, in this section, we assume
that u(t) = 0. Let us recall the system (1) with u(t) = 0
as follows:

Eεẋ(t) =
∑r

i=1 μi

[
[Ai + ΔAi]x(t)

+[B1i + ΔB1i ]w(t)
]
, x(0) = 0

z(t) =
∑r

i=1 μi

[
[C1i + ΔC1i ]x(t)

]
y(t) =

∑r
i=1 μi

[
[C2i + ΔC2i ]x(t)

+[D21i + ΔD21i ]w(t)
]
.

(4)

We are now aiming to design a full order dynamic H∞
fuzzy filter of the form

Eε
˙̂x(t) =

∑r
i=1

∑r
j=1 μ̂iμ̂j

[
Âij(ε)x̂(t) + B̂iy(t)

]
ẑ(t) =

∑r
i=1 μ̂iĈix̂(t)

(5)
where x̂(t) ∈ �n is the filter’s state vector, ẑ ∈ �s is
the estimate of z(t), Âij(ε), B̂i and Ĉi are parameters
of the filter which are to be determined, and μ̂i denotes
the normalized time-varying fuzzy weighting functions for
each rule (i.e., μ̂i ≥ 0 and

∑r
i=1 μ̂i = 1), such that the

inequality (3) holds. Clearly, in real control problems, all
of the premise variables are not necessarily measurable. In
this section, we then consider the designing of the robust
H∞ fuzzy filter into two cases as follows.

A. Case I–ν(t) is available for feedback

The premise variable of the fuzzy model ν(t) is available
for feedback which implies that μi is available for feedback.
Thus, we can select our filter that depends on μi as follows:

Eε
˙̂x(t) =

∑r
i=1

∑r
j=1 μiμj

[
Âij(ε)x̂(t) + B̂iy(t)

]
ẑ(t) =

∑r
i=1 μiĈix̂(t).

(6)
Before presenting our next results, the following lemma is
recalled.

Lemma 1: Consider the system (4). Given a prescribed
H∞ performance γ > 0 and a positive constant δ, if there
exist matrices Xε = XT

ε , Yε = Y T
ε , Bi(ε) and Ci(ε),

i = 1, 2, · · · , r, satisfying the following ε-dependent linear
matrix inequalities:[

Xε I
I Yε

]
> 0 (7)

Xε > 0 (8)

Yε > 0 (9)

Ψ11ii(ε) < 0, i = 1, 2, · · · , r (10)

Ψ22ii(ε) < 0, i = 1, 2, · · · , r (11)

Ψ11ij (ε) + Ψ11ji(ε) < 0, i < j ≤ r (12)

Ψ22ij (ε) + Ψ22ji(ε) < 0, i < j ≤ r (13)
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where

Ψ11ij (ε)=

⎛
⎜⎝

(
E−1

ε AiYε + YεA
T
i E−1

ε

+γ−2E−1
ε B̃1i

B̃T
1j

E−1
ε

)
(∗)T

[
YεC̃

T
1i

+ E−1
ε CT

i (ε)D̃T
12

]T −I

⎞
⎟⎠

Ψ22ij (ε)=

⎛
⎜⎜⎝

⎛
⎝ AT

i E−1
ε Xε + XεE

−1
ε Ai

+Bi(ε)C2j + CT
2i
BT

j (ε)
+C̃T

1i
C̃1j

⎞
⎠ (∗)T

[
XεE

−1
ε B̃1i

+ Bi(ε)D̃21j

]T −γ2I

⎞
⎟⎟⎠

with
B̃1i =

[
δI I 0 B1i

0
]
,

C̃1i =
[

γρ
δ HT

1i

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12 =
[

0 0 0 −√
2λI

]T
,

D̃21i =
[

0 0 δI D21i I
]

and λ =

⎛
⎝1 + ρ2

r∑
i=1

r∑
j=1

[
‖HT

2i
H2j‖ + ‖HT

7i
H7j‖

]⎞⎠
1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (6) with

Âij(ε) = Eε

[
Y −1

ε − Xε

]−1Mij(ε)Y −1
ε

B̂i = Eε

[
Y −1

ε − Xε

]−1Bi(ε)
Ĉi = Ci(ε)E−1

ε Y −1
ε

(14)

where

Mij(ε) = −AT
i E−1

ε − XεE
−1
ε AiYε

−[
Y −1

ε − Xε

]
E−1

ε B̂iC2j Yε − C̃T
1i

[
C̃1j Yε + D̃12ĈjYε

]
−γ−2

{
XεE

−1
ε B̃1i +

[
Y −1

ε − Xε

]
E−1

ε B̂iD̃21i

}
B̃T

1j
E−1

ε .

Proof: Due to limited pages, the proof has been omitted.

Remark 1: The LMIs given in Lemma 1 may become ill-
conditioned when ε is sufficiently small, which is always
the case for the descriptor systems. In general, these ill-
conditioned LMIs are very difficult to solve. Thus, to al-
leviate these ill-conditioned LMIs, we have the following
ε-independent well-posed LMI-based sufficient conditions
for the uncertain fuzzy descriptor systems to obtain the
prescribed H∞ performance.

Theorem 1: Consider the system (4). Given a prescribed
H∞ performance γ > 0 and a positive constant δ, if there
exist matrices X0, Y0, B0i and C0i , i = 1, 2, · · · , r, satisfy-
ing the following ε-independent linear matrix inequalities:[

X0E + DX0 I
I Y0E + DY0

]
>0 (15)

EXT
0 = X0E, XT

0 D = DX0, X0E + DX0 >0 (16)

EY T
0 = Y0E, Y T

0 D = DY0, Y0E + DY0 >0 (17)

Ψ11ii < 0, i = 1, 2, · · · , r (18)

Ψ22ii < 0, i = 1, 2, · · · , r (19)

Ψ11ij
+ Ψ11ji

< 0, i < j ≤ r (20)

Ψ22ij + Ψ22ji < 0, i < j ≤ r (21)

where E =
(

I 0
0 0

)
, D =

(
0 0
0 I

)
,

Ψ11ij =

(
AiY

T
0 + Y0A

T
i + γ−2B̃1i

B̃T
1j

(∗)T[
Y0C̃

T
1i

+ CT
0i

D̃T
12

]T −I

)

Ψ22ij
=

⎛
⎜⎝

(
AT

i XT
0 + X0Ai + B0iC2j

+CT
2i
BT

0j
+ C̃T

1i
C̃1j

)
(∗)T

[
X0B̃1i + B0i

D̃21j

]T −γ2I

⎞
⎟⎠

with
B̃1i =

[
δI I 0 B1i 0

]
,

C̃1i =
[

γρ
δ HT

1i

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12 =
[

0 0 0 −√
2λI

]T
,

D̃21i =
[

0 0 δI D21i
I

]

and λ =

⎛
⎝1 + ρ2

r∑
i=1

r∑
j=1

[
‖HT

2i
H2j

‖ + ‖HT
7i

H7j
‖
]⎞⎠

1
2

,

then there exists a sufficiently small ε̂ > 0 such that for ε ∈
(0, ε̂], the prescribed H∞ performance γ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (6) with

Âij(ε) =
[
Y −1

ε − Xε

]−1M0ij (ε)Y
−1
ε

B̂i =
[
Y −1

0 − X0

]−1B0i

Ĉi = C0iY
−1
0

(22)

where

M0ij (ε) = −AT
i − XεAiYε −

[
Y −1

ε − Xε

]
B̂iC2j Yε

−C̃T
1i

[
C̃1j Yε + D̃12ĈjYε

]
−γ−2

{
XεB̃1i +

[
Y −1

ε − Xε

]
B̂iD̃21i

}
B̃T

1j

Xε =
{

X0 + εX̃
}

Eε and Y −1
ε =

{
Y −1

0 + εNε

}
Eε

with X̃ = D
(
XT

0 − X0

)
and Nε = D

(
(Y −1

0 )T − Y −1
0

)
.

Proof: The proof has been omitted for brevity.

B. Case II–ν(t) is unavailable for feedback

Now, the premise variable of the fuzzy model ν(t) is
unavailable for feedback which implies μi is unavailable for
feedback. Hence, we cannot select our filter which depends
on μi. Thus, we select our filter as follows:

Eε
˙̂x(t) =

∑r
i=1

∑r
j=1 μ̂iμ̂j

[
Âij(ε)x̂(t) + B̂iy(t)

]
ẑ(t) =

∑r
i=1 μ̂iĈix̂(t)

(23)
where μ̂i depends on the premise variable of the filter
which is different from μi.
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By applying the same technique used in Case I, we have
the following theorem.

Theorem 2: Consider the system (4). Given a prescribed
H∞ performance γ > 0 and a positive constant δ, if there
exist matrices X0, Y0, B0i and C0i , i = 1, 2, · · · , r, satisfy-
ing the following ε-independent linear matrix inequalities:[

X0E + DX0 I
I Y0E + DY0

]
>0 (24)

EXT
0 = X0E, XT

0 D = DX0, X0E + DX0 >0 (25)

EY T
0 = Y0E, Y T

0 D = DY0, Y0E + DY0 >0 (26)

Ψ11ii < 0, i = 1, 2, · · · , r (27)

Ψ22ii < 0, i = 1, 2, · · · , r (28)

Ψ11ij + Ψ11ji < 0, i < j ≤ r (29)

Ψ22ij + Ψ22ji < 0, i < j ≤ r (30)

where E =
(

I 0
0 0

)
, D =

(
0 0
0 I

)
,

Ψ11ij =

(
AiY

T
0 + Y0A

T
i + γ−2 ˜̄B1i

˜̄BT
1j

(∗)T[
Y0

˜̄CT
1i

+ CT
0i

˜̄DT
12

]T −I

)

Ψ22ij =

⎛
⎜⎝

(
AT

i XT
0 + X0Ai + B0iC2j

+CT
2i
BT

0j
+ ˜̄CT

1i

˜̄C1j

)
(∗)T

[
X0

˜̄B1i + B0i

˜̄D21j

]T −γ2I

⎞
⎟⎠

with
˜̄B1i =

[
δI I 0 B1i 0

]
,

˜̄C1i =
[

γρ̄
δ H̄T

1i

γρ̄
δ H̄T

5i

√
2λ̄ρ̄H̄T

4i

√
2λ̄CT

1i

]T
,

˜̄D12 =
[

0 0 0 −√
2λ̄I

]T
,

˜̄D21i =
[

0 0 δI D21i I
]

and λ̄ =

⎛
⎝1 + ρ̄2

r∑
i=1

r∑
j=1

[
‖H̄T

2i
H̄2j‖ + ‖H̄T

7i
H̄7j‖

]⎞⎠
1
2

,

then there exists a sufficiently small ε̂ > 0 such that for ε ∈
(0, ε̂], the prescribed H∞ performance γ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (23) with

Âij(ε) =
[
Y −1

ε − Xε

]−1M0ij (ε)Y
−1
ε

B̂i =
[
Y −1

0 − X0

]−1B0i

Ĉi = C0iY
−1
0

(31)

where

M0ij
(ε) = −AT

i − XεAiYε −
[
Y −1

ε − Xε

]
B̂iC2j

Yε

− ˜̄CT
1i

[ ˜̄C1j Yε + ˜̄D12ĈjYε

]
−γ−2

{
Xε

˜̄B1i
+

[
Y −1

ε − Xε

]
B̂i

˜̄D21i

}
˜̄BT
1j

Xε =
{

X0 + εX̃
}

Eε and Y −1
ε =

{
Y −1

0 + εNε

}
Eε

with X̃ = D
(
XT

0 − X0

)
and Nε = D

(
(Y −1

0 )T − Y −1
0

)
.

Proof: It can be shown by employing the same technique
used in the proof for Theorem 1.

IV. EXAMPLE

Consider the tunnel diode circuit shown in Figure 1 where
the tunnel diode is characterized by

iD(t) = 0.01vD(t) + 0.05v3
D(t).

Assuming that the inductance, L, is the parasitic parameter

vv
c

C

i

R

i icL

+

−

L
D

D

Fig. 1. Tunnel diode circuit.

and letting x1(t) = vC(t) and x2(t) = iL(t) as the state
variables, we have

Cẋ1(t) = −0.01x1(t) − 0.05x3
1(t) + x2(t)

Lẋ2(t) = −x1(t) − Rx2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

] (32)

where w(t) is the disturbance noise input, y(t) is the
measurement output, z(t) is the state to be estimated and J
is the sensor matrix. Note that the variables x1(t) and x2(t)
are treated as the deviation variables (variables deviate from
the desired trajectories). The parameters of the circuit are
C = 100 mF , R = 10 ± 10% Ω and L = ε H . With these
parameters (32) can be rewritten as

ẋ1(t) = −0.1x1(t) + 0.5x3
1(t) + 10x2(t)

εẋ2(t) = −x1(t) − (10 + ΔR)x2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

]
.

(33)
For the sake of simplicity, we will use as few rules as
possible. Assuming that |x1(t)| ≤ 3, the nonlinear network
system (33) can be approximated by the following TS fuzzy
model:
Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

Eεẋ(t) = [A1 + ΔA1]x(t) + B11w(t), x(0) = 0,

z(t) = C11x(t),
y(t) = C21x(t) + D211w(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

Eεẋ(t) = [A2 + ΔA2]x(t) + B12w(t), x(0) = 0,

z(t) = C12x(t),
y(t) = C22x(t) + D212w(t)
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where x(t) = [xT
1 (t) xT

2 (t)]T , w(t) = [wT
1 (t) wT

2 (t)]T ,

A1 =
[ −0.1 10

−1 −1

]
, A2 =

[ −4.6 10
−1 −1

]
,

B11 = B12 =
[

0 0
0 0.1

]
,

C1 =
[

1 0
0 1

]
, C21 = C22 = J, D21 =

[
0.1 0

]
,

ΔA1 = F (x(t), t)H11 , ΔA2 = F (x(t), t)H12

and Eε =
[

1 0
0 ε

]
.

Now, by assuming that ‖F (x(t), t)‖ ≤ ρ = 1 and since the
values of R are uncertain but bounded within 10% of their
nominal values given in (32), we have

H11 = H12 =
[

0 0
0 1

]
.

Note that the plot of the membership function Rules 1
and 2 is the same as in Figure 2. By employing the results
given in Lemma 1 and the Matlab LMI solver, it is easy to
realize that ε < 0.006 for the fuzzy filter design in Case
I and ε < 0.008 for the fuzzy filter design in Case II, the
LMIs become ill-conditioned and the Matlab LMI solver
yields the error message, “Rank Deficient”.

1

0

1

2 

M  (x  )

M  (x  )

x 

1

1

1
 −3  3

Fig. 2. Membership functions for the two fuzzy set.

Case I-ν(t) are available for feedback
In this case, x1(t) = ν(t) is assumed to be available

for feedback; for instance, J = [1 0]. This implies that
μi is available for feedback. Using the LMI optimization
algorithm and Theorem 1 with ε = 100 μH, γ = 0.6 and
δ = 1, we obtain the following results:

Â11(ε) =

[ −0.0674 −0.3532
−30.7181 −4.3834

]
,

Â12(ε) =

[ −0.0674 −0.3532
−30.7181 −4.3834

]
,

Â21(ε) =

[ −0.0928 −0.3138
−34.7355 −3.8964

]
,

Â22(ε) =

[ −0.0928 −0.3138
−34.7355 −3.8964

]
,

B̂1 =

[
1.5835
3.2008

]
, B̂2 =

[
1.2567
3.8766

]
,

Ĉ1 =
[ −1.7640 −0.8190

]
,

Ĉ2 =
[

4.5977 −0.8190
]
.

Hence, the resulting fuzzy filter is

Eε
˙̂x(t) =

2∑
i=1

2∑
j=1

μiμjÂij(ε)x̂(t) +
2∑

i=1

μiB̂iy(t)

ẑ(t) =
2∑

i=1

μiĈix̂(t)

where

μ1 = M1(x1(t)) and μ2 = M2(x1(t)).

Case II: ν(t) are unavailable for feedback
In this case, x1(t) = ν(t) is assumed to be unavailable

for feedback; for instance, J = [0 1]. This implies that
μi is unavailable for feedback. Using the LMI optimization
algorithm and Theorem 2 with ε = 100 μH, γ = 0.6 and
δ = 1, we obtain the following results:

Â11(ε) =

[ −2.3050 −0.4186
−32.3990 −4.4443

]
,

Â12(ε) =

[ −2.3050 −0.4186
−32.3990 −4.4443

]
,

Â21(ε) =

[ −2.3549 −0.3748
−32.4539 −3.9044

]
,

Â22(ε) =

[ −2.3549 −0.3748
−32.4539 −3.9044

]
,

B̂1 =

[ −0.3053
3.9938

]
, B̂2 =

[ −0.3734
5.1443

]
,

Ĉ1 =
[

4.3913 −0.1406
]
,

Ĉ2 =
[

1.9832 −0.1406
]
.

The resulting fuzzy filter is

Eε
˙̂x(t) =

2∑
i=1

2∑
j=1

μ̂iμ̂jÂij(ε)x̂(t) +
2∑

i=1

μ̂iB̂iy(t)

ẑ(t) =
2∑

i=1

μ̂iĈix̂(t)

where

μ̂1 = M1(x̂1(t)) and μ̂2 = M2(x̂1(t)).

Remark 2: The ratios of the filter error energy to the
disturbance input noise energy are depicted in Figure 3
when ε = 100 μH. The disturbance input signal, w(t),
which was used during the simulation is the rectangular
signal (magnitude 0.9 and frequency 0.5 Hz). Figures 4(a)
- 4(b), respectively, show the responses of x1(t) and x2(t)
in Cases I and II. Table I shows the performance index γ
with different values of ε in Cases I and II. After 50 seconds,
the ratio of the filter error energy to the disturbance input
noise energy tends to a constant value which is about 0.02
in Case I and 0.08 in Case II. Thus, in Case I where γ =√

0.02 = 0.141 and in Case II where γ =
√

0.08 = 0.283,
both are less than the prescribed value 0.6. From Table 9.1,
the maximum value of ε that guarantees the L2-gain of the
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mapping from the exogenous input noise to the filter error
energy being less than 0.6 is 0.30 H, i.e., ε ∈ (0, 0.30] H
in Case I, and 0.25 H, i.e., ε ∈ (0, 0.25] H in Case II.

V. CONCLUSION

The problem of designing a robust H∞ fuzzy ε-
independent filter for a TS fuzzy descriptor system with
parametric uncertainties has been considered. Sufficient
conditions for the existence of the robust H∞ fuzzy filter
have been derived in terms of a family of ε-independent
LMIs. A numerical simulation example has been also pre-
sented to illustrate the theory development.
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Fig. 3. The ratio of the filter error energy to the disturbance noise energy:( ∫ Tf
0 (z(t)−ẑ(t))T (z(t)−ẑ(t))dt∫ Tf

0 wT (t)w(t)dt

)
.

TABLE I

THE PERFORMANCE INDEX γ OF THE SYSTEM WITH DIFFERENT

VALUES OF ε.

The performance index γ
ε Output-feedback in Case I Output-feedback in Case II

0.0001 0.141 0.283
0.1 0.316 0.509
0.25 0.479 0.596
0.26 0.500 > 0.6
0.30 0.591 > 0.6
0.31 > 0.6 > 0.6
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