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Abstract—The control design for unmanned underwater vehicles 

(UUVs) is challenging due to the uncertainties in the complex dynamic 
modeling of the vehicle as well as its unstructured operational 
environment. To cope with these difficulties, a practical robust control 
is therefore desirable. The paper deals with the application of 
coefficient diagram method (CDM) for a robust control design of an 
autonomous underwater vehicle. The CDM is an algebraic approach in 
which the characteristic polynomial and the controller are synthesized 
simultaneously. Particularly, a coefficient diagram (comparable to 
Bode diagram) is used effectively to convey pertinent design 
information and as a measure of trade-off between stability, response 
speed and robustness. In the polynomial ring, Kharitonov polynomials 
are employed to analyze the robustness of the controller due to 
parametric uncertainties. 
 

Keywords—coefficient diagram method, robust control, 
Kharitonov polynomials, unmanned underwater vehicles.  

I. INTRODUCTION 
ARIOUS control techniques have been proposed for UUVs 
both in simulation environment and actual in-water 

experiments in the recent past.  While a number of design 
examples showed successful experiment in which the controller 
parameters are tuned empirically, it is clear that the result is 
limited to the case where couplings between vehicle modes are 
negligible. For a general case, the SISO approach is not 
agreeable with complex UUV vehicles with sophisticated 
control performance criteria. To develop a better controller, a 
model-based multivariable controller synthesis is desired.   

In Ref.[1], a comparison study conducted for the control 
method of UUVs identified three viable control candidates: 
classical controllers, fuzzy logic and sliding mode. It was 
concluded that no one technique appears as the most promising, 
each controller has its advantages (e.g. performance) and 
disadvantages (e.g. complexity) that need to be considered 
carefully with skill and judgment by the designer to produce a 
suitable solution to the desired task.  

The authors of Ref.[2] proposed an adaptive fuzzy logic 
controller for the Variable Buoyancy System (VBS) of an 
Autonomous Underwater Vehicle (AUV). The depth 
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controllers bring the AUV to a desired depth by decreasing 
buoyancy, then descending to the desired depth and then 
restoring neutral buoyancy. In this approach, fuzzy rules are 
used to adaptively determine the critical depth points for ballast 
adjustment based on a key parameter of the AUV dynamic 
model. The use of fuzzy logic for a depth control of UUVs is 
also reported in Ref. [3]. A fuzzy logic controller was designed 
and tested in simulation that issues pump commands to effect 
changes in the UUV depth, while also regulating the pitch angle 
of the vehicle. Meanwhile, authors of Ref.[4] proposed an 
on-line learning control of autonomous underwater vehicles 
using feedforward neural networks. In this scheme, the 
dynamics of the controlled vehicle need not be fully known. 
The controller with the aid of a gain layer learns the dynamics 
and adapts fast to give the correct control action. The use of H� 
for submarine depth control under wave disturbance is 
proposed in Ref. [5]. The design was developed by combining 
the polynomial and state-space approaches to allow the use of 
available commercial software. Overall, based on the 
requirement of dynamics model, the control of UUVs reported 
in the literature can be categorized into three different 
classifications. The first category is when no model is used and 
the control can be designed using classical approach in which 
the gains are tuned empirically or by using fuzzy logic as 
reported in Refs [2-3]. The second category is when only partial 
knowledge of dynamics is required and the rest is learned 
online. The example is this type of approach is given in Ref.[4]. 
Finally, the most general approach is when a dynamics model is 
first developed and the controller is designed based on the 
model such as illustrated in Ref.[5].  

The present work is concerned with a model-based robust 
control synthesis using the novel coefficient diagram method. 
The paper is organized as follows. The UUVs longitudinal 
dynamics are described in Section II, and a numerical example 
is presented for Autonomous Underwater Vehicle (AUV) 
Squid developed at Center for Unmanned System Studies, 
Institut Teknologi Bandung [6]. A brief introduction of the 
CDM, together with a design example, is presented in Section 
III. A robustness analysis using Kharitonov’s method is 
presented Section IV. Some simulation results are included in 
Section V. Finally, the concluding remarks end the paper. 

.  

II. DYNAMIC MODEL OF UUV 
The equations of motion of UUV contain three elements: 

vehicle kinematics, rigid body dynamics and vehicle mechanics. 
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The center of gravity is taken as the origin for body coordinate 
system used for deriving the equations of motion. Interested 
readers can find more complete derivation in Ref.[7]. 

A. Kinematics of UUV 
Two coordinate systems are used in describing the motion of 
UUV: Earth inertial system (fixed frame) and body coordinate 
(moving frame). The relation between Euler angular rates and 
angular velocities with respect to body frame is given by 
 

� ������	 

� �  ��� �� ���� ���� ��� ��  ���� ���� ��� ���

�������              (1) 

or 

�������� � � 
� ��� � ��� � � � � ��� �� � � � ��� �� ��� � �!� � � � � �!� �� �
���	       (2) 

  

B. Dynamics of UUV as a Rigid Body 
The description of forces equation for a vehicle moving in 
inertial frame of reference is given by Euler-Newton equation:  " � ##$ %&'(            (3) 
Assuming the vehicle mass is constant and the forces are 
evaluated with respect to body frame which moves with respect 
to the inertial frame of reference, the expression can be 
rewritten as   
 

" � &)%#'*��#$ (+,- . �� . '*�� . #�#$ / 01 . � / %� / 01(2(4) 

the forces equation can be decomposed into three scalar 
components:  3 � &45� . 6�  7�  891:; � &47� . 5�  6�  8<1:= � &46� . 7�  5�  8>1:                      (5) 

where 891 � 48991%�? . �?( . <1%��  �� �( . >1%�� . �� (:8<1 � 4<1%�? . �?( . >1%��  �� �( . 91%�� . ��(:8>1 � 4>1%�? . �?( . 91%��  �� �( . <1%�� . ��(:   

 By the same token, the moments equation read  @A � � B %<? . >?(C D&  � B 9<C D&  > B 9>C D&���@E � �B 9<C D& . � B %>? . 9?(C D&  � B <>C D&��@F � �B 9>C D&  � B <>C D& . � B %9? . <?(C D&� (6)

All tables and figures you insert in your document are only to 
help you gauge the size of your paper, for the convenience of 
the referees, and to make it easy for you to distribute preprints.  

C. Dynamics Modeling of UUV
At this stage, to express the external forces and moments that 

works on a UUV. In general, they can be written in terms of the 
following contributions:  " � "1GH . "I##J#�KILL . "LL . "MNOM . "POQ$     (7)

 

R � R1GH .RI##J#�KILL . RLL .RMNOM .RPOQ       (8)
 

Gravity and Buoyancy Forces and Moments  
The first components of forces and moments come from 

gravity and buoyancy representing hydrostatic forces. 
Expressed in the body frame, the hydrostatic forces and 
moments can be written as: "SGT ��U%&  VC(% ��� ��W . ���� ��� ��X . ���� ��� � Y( q(9)R1GH � UZ[%&<1  VC<H( ���� ��� �  %&>1 VC>H( ���� ��� �\W �[%&>1  VC>H( ��� � . %&91 VC9H( ���� ��� �\X  [%&91  VC9H( ���� ��� � .%&<1  VC<H( ��� �\Y]  (10) 

Added Mass Forces and Moments  
The second components are from added mass which is the 

hydrodynamic force due to the acceleration of the vehicle. For a 
general body, the added mass is given in terms of tensor with 
elements of Aij representing the magnitude of the added mass in 
the –i direction due to acceleration in the –j direction. The 
values of i,j from 1 to 3 represents the masses associated with 
surge, sway and heave motions while those from 4 to 6 the 
moment of inertias associated with roll, pitch and yaw motions. 
In terms of the equivalent derivative coefficients: 

Added Mass =����� _̂_
__̀
3a� � �� bc� �� � =d�

� � �� � ec�� fd� �� � �� � gh�� ��bN� �
iM� � �� fh� �� � eN� jk

kk
kl
     (11) 

Steady-state Forces and Moments  
The steady-state forces and moments are the result of viscous 

fluid effect and are usually calculated based on 
semi-empirical/empirical formula or model testing. 
Multivariate Taylor series expansion around equilibrium point 
is used to describe the forces and moments. In this approach, it 
is assumed that the force and moment are function of velocity 
only: 3L%mn . 5op 7p 6p �p �p �( � 3n . q5 rra . 7 rrc . 6 rrd .
� rrM . � rrh . � rrNs 3n . t?u q5 rra . 7 rrc . 6 rrd . � rrM .
� rrh . � rrNs? 3n . v              (12)                    

where 3n � 3L%mnp �p�p�p�p�(���� 
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and 

q5 rra . 7 rrc . 6 rrd .vs? � �5? rwraw . 7? rwrcw .6? rwrdw . v                      (13) 
 

Propulsion Forces and Moments  

The AUV Squid has propeller-based thrusters. For this type of 
propulsion, the thrust is function of velocity mx and the number 
of blade n.  yz � z{Qw|} � ~ q� � ��Q|s            

    (14) 

Where yz  is thrust coefficient, J = advance ratio, V  = fluid 
density, and D = propeller diameter. The thrust coefficient can 
be expressed in terms of cubic of advance ration.  yz � �n . �t� . �?�? . ����               (15) 
Coefficient of the advance ratio is function of number of blades, 
pitch-diameter ratio and blade area. The thrust can then be 
calculated as: � � V q�?���n . ����tmx . �?�?mx? . |��Q mx�s

       (16) 
and 3M �� �%�  ��( �� ���%��(3- �� �%�  ��( �� ���%��(�M � 3M>M����������������������������      (17)  

where mx � 5  56 
 
Control Forces and Moments  
The control of AUV Squid is provided by differential thrust 
from three different thrusters. The use of thruster for the control 
in the longitudinal mode is described in Table I. For 
longitudinal mode maneuver, thruster 2 and 3 can be used 
simultaneously for the same differential thrust. Note that for 
pitch-up or pitch-down maneuver, all three thrusters can also be 
used simultaneously. 

TABLE I 

THRUSTER CONTROL IN LONGITUDINAL MODE 

Thruster Maneuver Control Input 

�t pitch up reduction of thrust, ��t 

pitch down increase of thrust, .��t 

�?p �� pitch up increase of thrust, .��?p� 

pitch down reduction of thrust, ��?p� 

Following the description of control for AUV Squid as given in 
Table 1, each thrust can be expressed as: �� � �n� . ���         

         (18)
 In this case, the propulsion force can be given as: 3M � �3M� ��%�  ��( [�n� . ���\���������������3M � �3M� ��%�  ��( �n� . �%�  ��( ���                (19) 

 

The control force and moment can therefore be written as: 3P � �%�  ��( ���������������������������������������������P � �%�  ��( ����>M����������~ ���� � �p�p�       (20) 

or 3P � %�  �(��t . %�  �(��? . %�  �(�����������������������P � %�  �(��t>Mt . %�  �(��?>M? . %�  �(���>M�  (21) 

Equations of Motion in Longitudinal Mode  
Using the expression for the forces and moments contribution 
from gravity, buoyancy, added-mass, propulsion and control, 
the equations of motion of the AUV Squid can be formulated. 
For longitudinal case the expression of forces and moments 
working on AUV Squid is summarized in Table II.  
The control term contains three differential thrusters: ��tp ��?���D����. 

TABLE II 

LINEAR MODEL FOR LONGITUDINAL DYNAMICS

Linearization Results 

Inertial 

3 � &5�t . &>1��t�����������������������������������= � &6� t  &91�� t  &mO�t���������������� � �,,��t . &>15�t  &916� t . &91mO�t  

Hydrostatics 

31GH � 3��t � 3� � U%&  VC(=1GH � � ������������������������������������1GH � �t ��� � U%&>1  VC>H(  

Added Mass 

3x � 3a� 5� t ������������������������������������=x � =d� 6� t . =h� ��t . 3a� mn�t����������������x � �d� 6� t . �h� ��t  %=d�  3a� (mn6t  =h�mn�t  

Steady
States 

3L � �n=L � �t6t . �?�t�L � !t6t . !?�t
Propulsions 

3M � �np ��D �n . 3M � �nn5t . �nt5t? . v � �nn5t�M � �nn q>Mt . >M? . >M�s 5t�������������
Controls 

3P � %�  �(��t . %�  �(��? . %�  �(����P � %�  �(>Mt��t . %�  �(>M?��? . %�  �(>M����
Kinematics �� � �

 

III. COEFFICIENT DIAGRAM METHOD 

A. Working Principle 
The mathematical model of the CDM design is described in 

general as a block diagram shown in Figure 1. In this figure,  
is the reference input signal,  is the control signal,  is the 
disturbance and  is the noise generated by the measuring 
device at the output; N(s) and D(s) are the numerator and 
denominator polynomial of the plant transfer function, 
respectively. A(s), F(s) and B(s) are the polynomials associated 
with the CDM controller which are the denominator 
polynomial matrix of the controller, the reference and the 

r
u d
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feedback numerator polynomial matrix of the controller 
respectively. For MIMO case, the variables and components 
are in the form of vectors and matrices with the appropriate 
dimension.   

 
Fig. 1 CDM mathematical diagram 

 
The plant equation is given by: < � �%�(9�����������< � �%L(|%L( %5 . D(        (22) 

 
which after some algebraic manipulation, can be completely 
written as: 

 < � �%L(�%L(�%L( � . x%L(�%L(�%L( D  �%L(H%L(�%L( �         (23) 
where �%�(  is the closed-loop system polynomial matrix 
expressed by: 

 �%�( � �%�(�%�( . �%�(�%�( � � ����Q��n              (24) 
The characteristic polynomial �%�(�is given by: 

 �%�( � ��� �%�(                        (25)                
To write the input-output relation of the system, the expression 
for the state and the controllers are needed. The controller 
equation can be written as: 

 �%�(5 �  %�(�  �%�(%� . <(                                     (26)              
Whereas the state equation can be obtained by eliminating u 
and y from the controller and output equations as follows: 

 �%�(9 �  %�(� . �%�(D  �%�(�                       (27)                  
 
Combining the output, state and controller equations, Eqs. 
(19),(22) and (23), the matrix input-output equation can finally 
be expressed as: 

¡9<>¢ �
t�%L( 


��%�(�%�(� �D£�%�(4 %�(� . �%�(D  �%�(�:  
��D�                   

     (28) 

B. CDM design parameters
 
The design parameters in CDM are the stability indices ¤�¥�, 

the stability limit indices ¤�o¥�  and the equivalent time 

constant,� . The stability index and the stability limit index 
determine the system stability and the transient behavior of the 
time domain response. In addition, they determine the 
robustness of the system to parameter variations. The 
equivalent time constant, which is closely related to the 
bandwidth, determines the rapidity of the time response. Those 
parameters are defined as follows: 
 

¤� � ��? %��¦t��Gt(§ p������ � �p�¨ p �  �
� � �� �n© ���������������������������������������������������¤�o � � ¤�¦t© . � ¤�Gt© p����¤n � ¤Q���������������

             (29)            

where ��¥�  are coefficients of the characteristic polynomial. �%�( The equivalent time constant of the i-th order �� is defined 

in the same way as �ª �� � ��¦t ��«                                                                 (30)                   

By using the above equations, the relation between ��¥� can be 

written as:  �� ��Gt© � ��¦t ��© ��Gt ��© � � ¤�©                    (31)                    

Also, by simple manipulation, �� can be written as:  �� � ��Gt ¨ ����n��������� � �n�� ¤�Gt¤�G?? ¨¤?�G?¤t�Gt§ �p���� ¬ �                      (32)            

The characteristic polynomial can then be expressed as: 

�%�( � �n ®� ¯° t±²³´´�Gtµ�t ¶Q��? %��(�· . �� . �¸               (33)     

The sufficient condition for stability is given as: �� ¹ �ª�� ºI²³»I²¼» ��¦? . I²¼»I²³» ��G?½¤� ¹ �ª��¤�op ¾�� �p�¨ p �  �����                 (34)                   

And the sufficient condition for instability is:  ��¦t�� ¿ ��¦?��Gt�������������������������������������¤�¦t¤� ¿ ���~ ��� &!�� � �p¨ p �  �                         (35)       

 

C. Design Example: Pitch Control of UUV  
From the mathematical modeling in Section II, the 

state-space model for the longitudinal mode can be calculated 
for different speed and operation depth. The state space 
associated with speed mn � �ªÀ�&Á�� and � � À��&�is taken 
as a design example [8]. The state space equation can be written 
as: 9� � �9 . �5        (36) 
where 9 � Â5p �p 6p �Ã� is the state variable vector and 5 �Â��tp ��?p ���Ã  is the control input variable vector. For the 
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above design point, the system matrix A and control matrix B 
are given by:  

� � _̂__̀
�ªÄ��� ��� ��� ����ª�Å�À�ª���Å �ªÀÄ�� ����ª���� ����ª��ÄÄ�����ª�ÀÆ�� �����ªÇ�Å� �ªÇÀ�� �ª���Ç���� ��� ��� ����� jk

kk
l

 (37) 

� � _̂__̀
�ª���ÄÄÅ��À �ª���ÄÄÅ��À �ª���ÄÄÅ��ÀÈªÅ�Å�ÀÉ  �Ä �ªÅ�Æ�ÈÉ  �Ä �ªÅ�Æ�ÈÉ  �Ä�ª����Æ�ÈÄ� ÀªÅ�Ç�É  �À ÀªÅ�Ç�É  �À� � � jk

kk
l
 (38) 

The controller is designed for the UUV to follow a pitch angle 
reference �ref as depicted in Figure 3.    

 
 

Fig. 2 Pitch control structure  
 
Using the standard CDM procedures, the characteristic 
polynomial and four input-output relations from ��t�input are 
derived as the following: �%�( � �Ê . �ªÄ�ÈÄ�� . �ªÈ�ÆÇ�� . �ª�ÅÇ��? . �ª�À�À�Ëz»a � �ª���Æ�� . �ª���Æ�? . �ª����� . �ª�����Ëz»h � ��G�%�ª�Æ�Å��  �ª��À��?  �ª��À��(�Ëz»d � ��G�%�ª�ÈÅ���  �ª�Ç�Ä�?  �ª�Æ�À�  �ª����(�Ëz»� � ��G�%�ª�Æ�Å�?  �ª��À��  �ª��À�(

  (39) 

 
Similar relations and the corresponding diagram can be 

drawn for ��?�-output and ����-output. They are not shown due 
to space limitation. Various PID controllers were compared and 
evaluated. One of the designs using u and � feedback is shown 
as in Figure 2 with Ì� � �. Using the above diagram, it can be 
observed that the PID controller is chosen such that: 

 ���t � Ìn�N  4%Ìn . Ìt�(� . %Ì? . Ì��(5:  (40) 
The new characteristic polynomial �%�( then becomes: 
 �%�( � ��%�( . %Ìn . Ìt�(�Ëz»� . %Ì? . Ì��(�Ëz»a
�%�( � �Ê . ���� . ���� . �?�? . �t� . �n   (41) 

The synthesis leads to the following Diophantine equations to 
be solved for the control gain Ìnp Ìtp Ì?���D�Ì�: 
 

�ªÈ . �ª���ÄÄÌ?  �ª����ÆÌt . �ª���ÆÌ� � ���ª�����Ì�  �ª����Ìt . �ª�Å�  �ª����Ìn . �ª���ÆÌ? � �?�ª�À  �ª����ÇÌt . �ª����Ì�  �ª����Ìn . �ª����Ì? � �t�ª����Ì?  �ª�����ÀÌn � �n
 (42) 

 
The values for the coefficients of the characteristic polynomial 
in the right hand side are: �n � �ª�Ä!  Ç�t � ����ª���Ç�? � �ª��Å�� � �ª��Ç   (43) 

The result is the following set of control gains: 
 Ìn � �ªÄÀÌt � ���ÇÄ�Ì? � �ª�ÅÌ� � �Ä�   (44) 

 
Overall design process can be summarized as the following 

algorithm.  
1. The � ’s values (e.g. ones given by Manabe) are 

chosen.  

1 2 2 1... 2, 2.5n n n� � � � �� �� � � � �
From the selected � ’s  values, we can determine the 
value of the coefficient for desired CL-polynomials:  
a0, a1, …an from the following relation.  

 

2. From the above relation, instead of expressing � ’s  in 
terms of a’s, we can express a’s in terms of � ’s  as 
follows: 
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3. In using the above relation, the key step is the 
selection of the equivalent time constant �. The 
determination of the time constant is guided by the 
design target parameter, settling time �s.  
The parameters is related as follows : 
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(2.5 3)s� �� �
4. The determination of the settling time itself should 

naturally be guided by the knowledge about the basic 
dynamic properties of the vehicle. For UUV, for 
instance, there will be a minimum for the desired 
settling time. The limit is a function of different 
vehicle parameters (mass, moment of inertia, 
geometry, engine power, propulsion time response, 
etc.) all of which determine the dynamic characteristic 
of the vehicle.  

5. Once the initial � is determined, the coefficient of 
desired CL polynomial can be calculated.  

6. A control structure can then be chosen. A good start 
will be a simple PID control.  Using the CDM 
diagram, e.g. we can observe  that our problem boils 
down to choosing the PID controller such that: ���t � Ìn�N  4%Ìn . Ìt�(� . %Ì? . Ì��(5:�
������������

 
7. From the above relation, the CL characteristic 

polynomial can be expressed and compared to the 
target CL characteristic polynomial, e.g.: �%�( � ��%�( . %Ìn . Ìt�(�Ëz»� . %Ì? . Ì��(�Ëz»a
�%�( � �Ê . ���� . ���� . �?�? . �t� . �n  

 
8. Comparison of the coefficients of the target CL and 

the designed CL characteristic polynomial yields 
Diophantine equation that can be solved for control 
gains. 

9. The control parameters  k0,k1, …kn then  are used for 
the simulation of the controlled system due to 
specified input (step, impulse or doublet). We can 
observe the time response properties (time settling, 
overshoot, etc) and judge whether we have achieved 
the desired control performance or we need to adjust 
the initial value of equivalent time constant. Inherently, 
there is a trade-off between the achievement for 
desired settling time and level of overshoot. In this 
case, the above steps can be simply repeated 
accordingly. 
�

IV. ROBUSTNESS ANALYSIS 
Robustness analysis is done to evaluate the performance of 

the controller due to modeling uncertainties. Since the control 
synthesis has been carried out in the polynomial ring, it is 
instructive to address the robustness issue in same domain. 
When uncertainties exist in one or a number of model 
parameters, it gives rise to a closed-loop polynomial in which 
the coefficients are given in terms of intervals. A robust 
stability problem is defined as the determination of stability of a 
given set of polynomials associated with closed loop 
polynomial whose coefficients are uncertain. It is clear that we 
cannot check all polynomials because the set is generally 
infinite. Therefore a viable way to check only a finite number of 
polynomials to determine the stability of an infinite set is 

desirable. The Kharitonov approach shows that for a set of 
‘interval’ polynomials, the robust stability problem can be 
solved by checking only four polynomials. The procedure can 
be summarized as follows [9]: 

Given a set of polynomials: Í%�p �( � �O . �t� . �?�? . v. �QGt�QGt . �Q�Q 
where ÎÏ Ð 4ÎÏGp ÎÏ¦:p � � �p�p ¨ p �  �p �  are coefficients 
whose values are uncertain. We would like to know if all the 
polynomials in the set are stable, that is, if the set is robustly 
stable. In other words, let 

0 4[ ,..., ]p p p�  
be the vector of uncertain coefficients, and 

 
be the set of possible values of p. Define a set of admissible 
polynomials: 

( , ) { ( , ) : }s p s p p P	
 � �
To check if for all ( , ) ( , )s p s p	 �
 , ( , )s p	 is stable, the 
following four Kharitonov polynomials are checked: 
 

The Kharitonov theorem states that the stability of the above 
four polynomials is necessary and sufficient for the stability of 
all polynomials in the infinite set of Ñ%�p Î(. 

V. SIMULATION RESULTS 
To investigate the robustness of the proposed CDM 

controller, a number of pertinent stability derivatives are 
assumed to be uncertain. For our case study, there exists 30% 
uncertainties in the value of xu and mq. The performance of 
pitch control synthesized in Section III in coping with these 
uncertainties is illustrated in Figs. 3-6.  

 

 
 

Fig. 3 Pitch angle tracking performance in the presence of 
uncertainties 
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Fig. 4 Pitch rate response in the presence of uncertainties 

 
 

 
Fig. 5 Vertical velocity response in the presence of uncertainties 

 

 Fig. 6 Forward velocity in the presence of uncertainties 
 
The corresponding closed-loop polynomials due to the 

uncertainties are illustrated in Fig. 7. It is evident that even 
though the control seems to be able to cope with the parameter 

uncertainties, Fig. 6 indicates that forward velocity response 
due to 30% decrease in the value of xu and mq is not desirable. 
We want to check quantitatively the robustness level based on 
Kharitonov perspective.  

The nominal closed-loop polynomial based on the synthesis 
in Section III can be written as: Í%�( � �ª���È . �ª����� . �ª��Å��? . �ªÆ�ÇÇ��. �ª�ÈÄÅ�� . �Ê 

Whereas the corresponding closed-loop polynomial for -30% 
and +30% uncertainties in the value of of xu and mq is 
respectively given by: 

 � ÍÒ%�( � �ª���Ä . �ª��ÇÅ� . �ª�����? . �ªÇÄ�À��. �ªÈÄÆÇ�� . �Ê Í¦%�( � �ª���� . �ª�ÇÆ�� . �ª���Æ�? . �ªÅÅÄ���. �ªÀ�ÄÀ�� . �Ê 
The vector of uncertain coefficients is given by:  

0 4[ ,..., ]p p p�  
where the set of possible values of p is given as  

 
To check if for all ( , ) ( , )s p s p	 �
 , ( , )s p	 is stable, the 
following four Kharitonov polynomials are checked: 
 

which correspond to checking the stability of: 

 
The eigen value of the above polynomial are given as 

follows:  

 
From the above results it is evident that the proposed control 

is not robustly stable for the 30% uncertainties in the value of
xu and mq. The result is agreeable with the time response 
depicted in Fig. 6. Further analysis using Kharitonov can show 
that the proposed synthesized CDM control can cope with up to 
-10% uncertainties in the value of xu and mq. (Note that only 
lower boundary matters since positive uncertainties essentially 
provide more damping to the system). To achieve a controller 
which can cope with up to -30% uncertainties, the controller 
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need to be redesigned. In this case, different set of values of  
� ’s can be chosen. The procedure of design can follow the 
algorithm given in Section III. 

VI. CONCLUDING REMARKS 
The paper deals with the application of coefficient diagram 

method (CDM) for a robust control design of an autonomous 
underwater vehicle. The CDM is an algebraic approach in 
which the characteristic polynomial and the controller are 
synthesized simultaneously. Particularly, a coefficient diagram 
is used to convey pertinent design information and as a measure 
of trade-off between stability, response speed and robustness. 
The effectiveness of the approach is shown by the design of 
pitch controller of an AUV. The robustness of the synthesized 
control due to parametric uncertainties is evaluated by using 
Kharitonov method. It is demonstrated that Kharitonov 
polynomial can be effectively used for quantifying the 
robustness level of the controller.  

. 

ACKNOWLEDGMENT 
The author would like to acknowledge an insightful 

discussion regarding Kharitonov polynomials with Dr. Endra 
Joelianto at the Department of Engineering Physics, Institut 
Teknologi Bandung, Indonesia. 

REFERENCES   
[1] R. K. Lea, R. Allen and S. L.Merry, “A comparative study of control 

techniques for an underwater flight vehicle,” International Journal of 
Systems Science, volume 30, number 9, 1999, pp. 947- 964 

[2] M.Xu, and S.M. Smith, “Adaptive fuzzy logic depth controller for 
variable buoyancy system of autonomous underwater vehicles,” in 
Proceedings of the 3rd IEEE Conference on Fuzzy Systems, 1994, pp. 
1191- 1196.  

[3] P.A. DiBitetto, “Fuzzy logic for depth control of unmanned undersea 
vehicles,” IEEE Journal of Oceanic Engineering, 20, 1995, pp. 242-248  

[4] K.P. Venugopal, R. Sudhakar, and A.S. Pandya, “On-line learning control 
of autonomous underwater vehicles using feedforward neural networks,” 
IEEE Journal of Oceanic Engineering, 17, 1992, pp. 308-319 

[5] E. Liceaga-Castro, and G. van der Molen, “Submarine H  depth control 
under wave disturbances,” IEEE Journal of Oceanic Engineering, 3, 1995, 
pp. 338-346. 

[6] Muljowidodo, S.D. Jenie, A. Budiyono and S. Adinugroho,“Design, 
development and testing of underwater vehicles: ITB experience, ”   paper 
presented at The International Conference on Underwater System 
Technology: Theory and Application (USYS’06), Penang, Malaysia, 
2006 

[7] A. Budiyono, A. Sugama, Muljowidodo, and Sapto Adi Nugroho, 
“Dynamics analysis of AUV Sotong,” paper presented at the 2nd 
International Conference on Underwater System Technology: Theory and 
Applications 2008 (USYS’08),Bali, Indonesia, 2008 

[8] A. Budiyono, Muljowidodo and A. Sugama, “Coefficient Diagram 
Method for the Control of an Unmanned Underwater Vehicle,” Indian J 
Mar Sci., 38(3):316-323, Sept. 2009 

[9] F. Lin, Robust Control Design : An Optimal Control Approach. West 
Sussex: John Wiley & Sons, 2007, ch. 7 


