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Robust Control of a Dynamic Model of an F-16
Aircraft with Improved Damping through Linear

Matrix Inequalities
J. P. P. Andrade, V. A. F. Campos

Abstract—This work presents an application of Linear Matrix
Inequalities (LMI) for the robust control of an F-16 aircraft through
an algorithm ensuring the damping factor to the closed loop system.
The results show that the zero and gain settings are sufficient to ensure
robust performance and stability with respect to various operating
points. The technique used is the pole placement, which aims to put
the system in closed loop poles in a specific region of the complex
plane. Test results using a dynamic model of the F-16 aircraft are
presented and discussed.

Keywords—F-16 Aircraft, linear matrix inequalities, pole
placement, robust control.

I. INTRODUCTION

THE dynamic response characteristics of an aircraft are

highly non-linear. Generally, flight control systems have

been designed using mathematical models of an aircraft,

linearized around several operation points, the controller

parameters are programmed in accordance with the flight

conditions.

To the F-16 aircraft control, several techniques have

been applied. In [1], a linear strategy control and adaptive

control, in which the parameters are calculated by a convex

multiobjective optimization, are performed and applied to

the longitudinal dynamic model of the F-16 aircraft in

order to ensure at the same time the evolution of the error

within a minimum invariant set while the linear gain is

minimized. The longitudinal model of a hypersonic flight

vehicle was also used for evaluation of the implementation of

a robust adaptive controller [2], the methodology of this study

addresses the issue of controller design and stability analysis

in relation to parametric model uncertainties and saturations

entrance to the oriented model control. In [3], the adaptive

control technique L1 is applied in closed loop longitudinal

F-16 aircraft model linearized around an operating point. In

order to guarantee stability and performance of the resulting

gain-scheduled controllers, analytical frameworks of gain

scheduling have been developed including the technique of

linear-parameter-varying (LPV) control [4], [5]. An application

of a conditional integrator based sliding mode control design

for robust regulation of minimum-phase nonlinear systems

to the control of the longitudinal flight dynamics of an

F-16 aircraft is made by [6]. In [7], a reliable robust

tracking controller design method is developed based on the
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mixed linear quadratic (LQ)/H∞ tracking performance index

and multiobjective optimization in terms of linear matrix

inequalities.
Among the techniques presented for control of an F-16

aircraft, the linear matrix inequality became a possible tool

in finding solutions for various optimization problems, control

systems and recently identification systems. One of the great

advantages of this approach is to allow the simultaneous

treatment of various performance and robustness requirements.

This is because of the emergence of interior point algorithms

for the solution of convex optimization problems, which made

it possible to numerically solve the linear matrix inequalities

faster and more efficiently.
This paper presents the application of linear matrix

inequalities for robust control of an F-16 aircraft. Based on

the algorithm presented and developed by [8], there is the

guarantee of the damping factor for the closed-loop system

for various operating points by allocating system poles using a

predefined controller. The flexibility of the controller structure

is an important feature explored in this paper.
The paper is organized as follows: In Section II, we describe

the nonlinear mathematical aircraft model and its linearization.

This section is extracted mostly from [9], with the Simulink

model for simulation purposes based on [10]. In Section

III, the linear matrix inequalities will be presented for pole

placement in a particular region of the complex plane. Section

IV presents the mathematical formulation of the controller

structure for the system of F-16 aircraft considering several

operation points. Results of tests and simulations performed

by applying the robust controller to the longitudinal dynamic

model of the F-16 aircraft are presented in Section V. In the

last section, we present the conclusions of this work.

TABLE I
MASS AND GEOMETRIC PROPERTIES

Parameter Symbol Value
Weight W (kg) 9298.64

Moment of inertia Jy (kg/m2) 75673.62
Wing area S (m2) 27.87

Mean aerodynamic chord c̄ (m) 3.45
Reference CG location xcg 0.35c̄

II. LONGITUDINAL DYNAMIC MODEL OF AN F-16

AIRCRAFT

The flat-earth, body-axis 6-Degrees of Freedom (6-DOF)

nonlinear control-oriented model for the F-16 fighter aircraft
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presented in [9] and [10] has been employed in the

this paper. The nonlinear model is linearized around the

operating points (altitude = 4,57 km; total velocity = 549

km/h), and decoupled to obtain separate longitudinal and

lateral-directional linear models. The properties of F-16

aircraft considered in this work are the same in [10], with

the mass and geometric properties as listed in Table I and

only the longitudinal-directional, low fidelity [10] state-space

model given by (1) is investigated further under the influence

of thrust and elevator control inputs.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(1)

where h, θ, V , α, q, δt and δe are the aircraft’s altitude

(km), pitch angle (degrees), total velocity (km/h), angle of

attack (degrees), pitch rate (rad/s), thrust (kg) and elevator

deflection (degrees) respectively. The matrix A, B, C and D
can be found using the Simulink program based on [10]. The

eigenvalues, the damping ζ, the natural frequency w (rad/s)

and the overshoot (%) of the longitudinal model dynamic (1)

are shown in Table II. As we can see, the longitudinal model

has a pole on the right side of the complex plane, moreover,

has poles -0.00523 ± 0.0634i, which shows that the system

has insufficient damping.

TABLE II
PROPERTIES OF LONGITUDINAL F-16 AIRCRAFT DYNAMIC MODEL IN

OPEN LOOP

Eigenvalues Damping w (rad/s) Overshoot (%)

1.03×10−13 -1.00 1,03×10−13 0
-0.00523 + 0.0634i 0.0822 0.0636 77.2
-0.00523 - 0.0634i 0.0822 0.0636 77.2

-1.00 1.00 1 0
-1.06 + 1.69.i 0.53 1.99 14
-1.06 - 1.69.i 0.53 1.99 14

-20.2 1.00 20.2 0

III. SYSTEM CLOSED LOOP STRUCTURE AND PREDEFINED

CONTROLLERS

The theory presented here is based on [8]. The fundamental

equations that define the physical behavior of any system

linearized about an operating point has the following generic

model:

ẋ = A.x+B.u
y = C.x

(2)

where x is the state vector, y is the output vector (or

measurements vector), and u is the input vector (or control

vector) [8]. The structure of the controller to be used to control

the F-16 aircraft is pre-defined, which is an important feature,

considering the practical application of control systems. This

restricted structure is given by the following transfer function:

Kyk→ul
(s) =

ayk→ul
.s2 + byk→ul

.s+ cyk→ul

s2 + (p1 + p2).s+ p1.p2
(3)

where the notation yk → ul indicates de controller of the

output y of the longitudinal F16 model, with k = 1,...,r, where

r is the number of system outputs, to the input u, with l =

1,...,p, where p is the number of system inputs. The poles

p1 and p2 are pre-determined. In this scheme, we work with

pre-defined poles and we have to obtain the gain and the

zeros, given by the values ayk→ul
, byk→ul

and cyk→ul
of the

controller, constrained to feasible values. Our control method

comprises applying an output feedback for the F-16 system.

The closed-loop system is given in Fig. 1.

K(s) is the matrix of transfer functions of the controllers

and G(s) is the matrix of transfer functions of the longitudinal

F-16 nominal system. The matrix of K(s) controllers given

by (3) can be rewritten in the form of state space as:

ẋc = Ac.xc +Bc.y
u = Cc.xc +Dc.y

(4)

G(s)

K(s)

+

-

Fig. 1 Structure of the closed loop system

To define the matrices of the model above, we can use state

space realizations, like those described in [8]. Then, matrices

Ac and Cc are:

Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 1 . . . 0 0
k j . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . k j

⎤
⎥⎥⎥⎥⎥⎦

(5)

Cc =

⎡
⎢⎣

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

⎤
⎥⎦ (6)

where k = −p1.p2 and j = −(p1+p2). Note that the matrices

Ac and Cc are predefined matrices, since the poles are no

problem variables. Applying the controller (4) to the system

described by (2), we have the following description of the

system in closed loop:[
ẋ
ẋc

]
=

[
A+B.Dc.C B.Cc

Bc.C Ac

]
.

[
x
xc

]
(7)

Following standard procedure for the design of dynamic

controllers using linear matrix inequalities, the problem (7) is
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rewritten as a static feedback problem output:

Am =

[
A B.Cc

0 Ac

]
, Bm =

[
B 0
0 I

]

Cm =
[
C 0

] (8)

Consequently, the static controller output is:

Kc =

[
Dc

Bc

]
(9)

With this redesign, the control problem is equivalent to the

following structure:

ẋm = Am.xm +Bm.um

y = Cm.xm
(10)

where xm =
[
x xc

]T
and the control law um = Kc.y =

Kc.Cm.xm. Using the state space description and the matrices

of the controller Ac e Cc we can evaluate the matrices Am,

Bm e Cm. Therefore, the resulting control problem can be

stated as: Calculate the static gain feedback output, so that the

poles of the closed loop system (10) are located in a particular

region of the complex plane.

IV. POLE PLACEMENT THROUGH LINEAR MATRIX

INEQUALITIES

Linear matrix inequalities are mathematical tools that have

various applications in control theory, especially in the robust

control area. For purposes of pole placement it is important to

define regions in a linear matrix inequality.

A. Regions of a Linear Matrix Inequality

A region of a linear matrix inequality is any subset of the

complex plane that can be defined as [11]:

D = {z ∈ C/L+ z.R+ z̄.RT < 0} (11)

where L and R are square real matrices with LT = L and z̄
is the complex conjugate of z. Two important features of the

regions of a linear matrix inequality are:

• A real matrix is D-stable, that is, has all of its eigenvalues

in the linear matrix inequality region D if and only if a

real symmetric matrix Q exists such that:

L⊗Q+R⊗ (AQ) +RT ⊗ (QAT ) < 0
Q > 0

(12)

where ⊗ denotes the Kronecker product.

• Intersection regions of linear matrix inequalities are also

regions of a linear matrix inequality

Two regions of a linear matrix inequality interest in control

applications for pole placement are as:

• Conical sector with vertex at the origin and interior angle

2θ:

L = 0 and R =

[
sin θ cos θ

− cos θ sin θ

]
; (13)

• Half-plane �(z) < α:

L = 2α and R = 1; (14)

Im

Re

α

θ

Fig. 2 Complex region plan for pole placement closed loop

The region of the formed complex plane (13) and (14)

can be seen in Fig. 2. In this work, the goal is to allocate

the system poles of F-16 aircraft in closed loop at the

intersection between the sectors of the expressions (13) and

(14), ensuring a minimum damping coefficient ζ = cos θ, and a

transient response with minimum decay rate equal to α for the

closed-loop system. Thereby allocating the poles closed loop

in this region guarantee adequate performance. To do this, we

use the linear matrix inequality.

B. Control through Output Feedback

Applying the control law um = Kc.y (with Kc given by (9)

to the system (10), we can change the position of the system

poles in closed loop, because:

ẋm = (Am +Bm.Kc.Cm).xm = Acl.xm (15)

In order to put the closed loop poles in the region described

above, we use the results presented in (12). However, the term

(Acl.Q) is not linear, since it involves terms of two variables

(Kc e Q):

Acl.Q = Am.Q+Bm.Kc.Cm.Q (16)

To resolve this issue and transform (16) in a linear matrix

inequality problem, it makes a transformation of variables

[12]:

Kc.Cm.Q = N.Cm (17)

Substituting (17) into (16) we obtain:

Acl.Q = Am.Q+Bm.N.Cm (18)

Note that (18) is a linear equation. Once solved the problem

in the transformed variables, the controller gain matrix is

retrieved using the following reverse transformation:

M.Cm = Cm.Q (19)

From the matrix M , the gain matrix Kc is calculated using

the following expression:

Kc = N.M−1 (20)

Substituting (18) into (12), we find a set of matrix

inequalities that allocate the system poles (10) in the desired
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region of the complex plan (these inequalities are found in

[8]).

L⊗Q+R⊗ (Am.Q+Bm.N.Cm)+
RT ⊗ (Q)Tm + CT

m.NT .BT
m < 0

Q > 0
(21)

Solving (21) to the resulting sector of the intersection of the

two sectors defined by (13) and (14) of the complex plane,

it is ensured that the closed loop poles of the aircraft F-16

belong to a desired region of the complex plane. Substituting

the values of L and R in the specified regions, the following

is obtained:

• For the conical sector with angle 2θ:[
f.Acl.Q+ f.Q.AT

cl g.Acl.Q− g.Q.AT
cl

* f.Acl.Q+ f.Q.AT
cl

]
< 0

(22)
where ∗ denotes symmetrical term, and:

Acl.Q = Am.Q+Bm.N.Cm

Q.AT
cl = Q.AT

m + CT
m.NT .BT

m

f = sin θ
g = cos θ

(23)

• Half-plane Re(z) < -α:

2.α.Q+Am.Q+Bm.N.Cm+Q.AT
m+CT

m.NT .BT
m < 0
(24)

C. The Robust Procedure

It was described in the previous section a procedure for

pole assignment of the F-16 aircraft system, in a specific

region of the complex plane. The system of the aircraft is

described by a set of nonlinear equations are linearized around

some operating points. However, these operating points only

represent the system behavior in a specific condition, and

changes in operating points often occur. Thus, it is necessary

to ensure that the F-16 will present good performance of the

system in case of changes in operating points. To overcome

this problem, we will make use of polytopic models.

To set a polytopic model, consider that only the matrix A
of the system varies due to changes in operating points of the

F-16 aircraft. Therefore, a polytope Ω is set [13]:

Ω = {A/A ∈ Rn×n, A =

m∑
i=1

λi.Ai, λi ≥ 0,

m∑
i=1

λi = 1}
(25)

where n is the dimension of the matrices Ai and m the number

of operating points. The matrices Ai are called polytope

vertices.

To ensure that the poles of any closed loop system

associated with the matrix A ∈ Ω are in the region of the

complex plane defined by (13) and (14), it is necessary to

resolve m linear matrix inequalities with the same variables

Q and N , in other words [8]:[
f.Acl,i.Q+ f.Q.AT

cl,i g.Acl,i.Q− g.Q.AT
cl,i

* f.Acl,i.Q+ f.Q.AT
cl,i

]
< 0

(26)

for i=1,2,...,m, with:

Am,i =

[
Ai B.Cc

0 Ac

]
(27)

Acl,i.Q = Am,i.Q+Bm.N.Cm (28)

Ai, with i = 1,2, ..., m, are the matrices in state space that

define the mathematical model of the F-16 aircraft, and each of

these matrices represent a model not linear linearized around

a specific operating point. Solving the system of linear matrix

inequalities, it ensures that the system poles in closed loop are

in the region defined by the intersection of the conical sector

with semi-plan for all m operating points considered.

V. RESULTS AND DISCUSSION

The method presented in previous section was applied to the

dynamic longitudinal-directional model of F-16 aircraft to the

system considering three operation points, the only parameter

that changed was the total velocity V to obtain the new

linearized system around these points operation, the altitude

navigation was kept constant at 4,57 km/h. The velocities

considered are shown in Table III.

TABLE III
OPERATION POINTS

Operation Point Velocity
1 549 km/h (Nominal)
2 658 km/h
3 768 km/h

For each point of operation, new matrices were obtained

for the system in the state space, through simulations using

the program based on [10], however, as described in robust

method, consider only the variations in matrix A of the system,

the matrices B, C and D were considered to be the nominal

system (operation point 1).

According to equation fixed controller (3), the poles of the

controller were chosen p1 = -5000 and p2 = -5000, with a

value of α = 0 and the following performance index (minimum

damping coefficient of eigenvalues of the closed loop system):

ζ = cos θ = 0.9 (29)

These two zeros were left free, as well as its static gain.

The simulation was performed using the software Matlab c©
version R2013b with his toolbox for calculation of linear

matrix inequalities. For this case the simulation lasted 3.48

s using an Intel Core i5 computer 2.20 GHz, 4GB of RAM,

64-bit. The parameters obtained for the robust controller are

shown in Table IV. The controller parameters are referenced

to (3).

To evaluate system performance in closed loop, we were

plotted all the eigenvalues of the matrices A in closed loop

for the three operation points, together with the eigenvalues of

the original systems, as can be seen in Fig. 3. In this figure,

with two expands, we just show the regions of interest. The

black line is an approach to the conic section defined by the

angle θ.
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Eigenvalues of F−16 aircraft in open loop (blue) and closed loop with the robust controller (red)
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Fig. 3 Eigenvalues of F-16 aircraft in open loop (blue) and closed loop with the robust controller (red)
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TABLE IV
CONTROLLER PARAMETERS FOUND FOR THE LONGITUDINAL F-16

CONTROL SYSTEM

y u ayk→ul byk→ul cyk→ul

h
δt -0.1277 -1277 3.191×1006

δe 0.0003772 4.191 8437

θ
δt -1.596 -15960 - 3.99×1007

δe 0.04666 484.2 1.06×1006

V
δt -2.402 -24020 - 6.005×1007

δe 0.0002307 2.011 6039

α
δt 1.581 15810 3.953×1007

δe -0.232 - 2321 - 5.857×1006
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and closed loop with the robust controller (green).
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Fig. 4 Response to initial conditions of the longitudinal open-loop system
(blue) and closed loop with the robust controller (green)

On the basis of information obtained by the simulation of

the three operating points, the worst obtained damping factor

was ζ = 0.914, with an overshoot of 0.086 % and a time of

accommodation signal of 3.04 s, as well as all the eigenvalues

were contained within the LMI region of the complex plane

specified by the intersection between the region of linear

inequality matrix formed by the cone sector defined by θ
angle and the half-plane defined by α. For this longitudinal

system of F-16 aircraft, other α values were tested, but for

a small increase in its value, the linear matrix inequality

became infeasible. Another fact to be noted is that in this

case performance specification, the performance obtained by

application of the robust controller with this system is that the

results obtained were better as the velocity of the F-16 aircraft

is increased.

To check system behavior in closed loop with the

robust controller, we apply the initial condition x0 =
[ 1 1 1 1 1 1 1 ]T , to the operation nominal point,

which showed the worst result among the three operating

points, and compared with the open-loop system. Then, we

obtain the graph shown in Fig. 4. As can be seen in this image,

the system oscillation and settling time improved significantly

compared to the system without the robust controller.

VI. CONCLUSION

In this paper, we present a methodology for pole placement

of a linearized system around various operating points in

a particular region of the complex plane, defined by the

intersection of two regions of a linear matrix inequalities. The

controller used here has a fixed structure, in which initially

define the poles and control through linear matrix inequalities,

obtain their gain values and their zeros.

It was applied to pole placement through the linear matrix

inequalities longitudinal system F-16 aircraft. For specified

performance conditions, there was an improvement in all the

properties considered in this work to the closed loop system.

For this case, all the eigenvalues of the system were allocated

within the complex plane specified region, the value chosen for

the damping coefficient was higher than that obtained for the

open-loop system, yet the damping obtained for all operating

points were higher than specified.

As can be seen in the responses to the initial conditions

for the system, there is an evident improvement in the

response rate and damping output. In addition, the applied

controller is robust, which gives it advantages over any other

controller, as it considers various system operating points to

be controlled. One of the main advantages of the formulation

presented in this work is that it generates controllers with a

pre-specified structure, which can be applied to control the

F-16 aircraft. This makes it easy to practical implementation

to test the controllers obtained on stabilization and increased

performance.

As a proposal for future work, we suggest testing with

various performance specification values, varying for example

the value of the angle θ of the linear matrix inequality region

and checking the system behavior for all these values.
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