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 
Abstract—An attempt has been made in the present 

communication to elucidate the efficacy of robust ANOVA methods 
to analyse horticultural field experimental data in the presence of 
outliers. Results obtained fortify the use of robust ANOVA methods 
as there was substantiate reduction in error mean square, and hence 
the probability of committing Type I error, as compared to the regular 
approach.  
 

Keywords—Outliers, robust ANOVA, horticulture, Cook 
distance, Type I error.  

I. INTRODUCTION 

ESIGN of experiment is the backbone of agricultural 
research experiments conducted by several researchers 

under research system, with a view to compare the efficacy of 
several well defined treatments. The data generated from these 
designed experiments are analyzed under certain assumptions. 
If any of the assumptions is violated, the conclusion drawn 
from the analysis may be erroneous. 

Classical studies [12] revealed that the many of the past 
experiments conducted in different parts of India have non-
normal and heterogeneous of error distribution of error 
variances. Apart from the problem of normality, the dataset 
may contain the outlying observations. A small subset (outlier) 
of the data can have a disproportionate influence on the 
estimated parameter or prediction in concern to users of 
regression analysis. In case of designs of experiment these 
small group (outlier) of data set controls the significance of 
treatments. Thus, the conclusion drawn from data set 
contaminated with outlier may be wrong. The usual way of 
treating these outliers is that removing it from the data set and 
constructing the analysis of variance but, this violates the 
basic principle of design of experiment that is randomization 
hence, concluded results are biased or inconsistent. 

Since, the usual method yields biased and inconsistent 
results in the presence of outlier in the data set and if we 
remove that leads to violation of principle of design of 
experiment. There is need for alternative method which uses 
all observations of data set (including outliers) and provides 
unbiased and consistent results, one such method is robust 
analysis. 
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A. Outlier 

The concept of outlier is well described in the literature on 
theory of regression – an outlier is an extreme observation 
/residuals that are larger in absolute value than others say 3 or 
4 standard deviation from the means. The presence of one or 
more outliers is one of the causes of non-normal error terms.  

In the context of designed data an outlier is defined 
differently. Here an outlier need not be a simple extreme 
value; we consider an observation as an outlier that may be 
responsible for the disruption of the usual pattern of the 
designed data [1]. Outlier is an observation whose value is not 
in the pattern of values produced by the rest of the data. 
Johnson [6] defines an outlier as an observation in a data set 
which appears to be inconsistent with the remainder of that set 
of data. Let us discuss now the effect of such outliers in the 
designed experiments. 

II. EFFECT OF OUTLIERS IN EXPERIMENTAL DESIGNS 

If some of the observations are different in some way from 
the bulk of the data, the overall conclusion drawn from this 
data set may be wrong. A number of statistics are now 
developed to detect outliers in a data set. Bhar and Gupta [2] 
developed statistics for detecting outliers in designed 
experiments. They modified Cook statistic for its application 
to design of experiments, which is a follow up work of [5].  

Once an observation is detected as an outlier, the next 
question may arise, what to do with this outlying observation? 
Should we discard this observation? Deletion of observation 
from the existing set is not always recommended. On the other 
hand, robust method of estimation is advocated to dampen the 
effect of an outlying observation. In case of linear regression 
models, robust regression method is now very popular to 
tackle the problem of non-normal error variance and the 
presence of outliers. This approach is designed to employ a 
fitting criterion that is not as vulnerable as least squares to 
unusual data.  

The most common general method of robust regression is 
M-estimation, introduced by [7]. In this method, the objective 
function to be minimized to get the parameter estimates is 
weighted according to the residual of each observation. A 
good number of objective functions to be minimized are 
proposed. Most of these functions are non-linear in nature and 
therefore, normal equations for solving the parameter 
estimates are also non-linear in parameters. Iteratively 
Reweighted Least Squares (IRLS) [9] methods are employed 
to solve these equations. 

After identifying the outliers in the data set the effect of 
outliers on treatments is studied by deleting the outliers from 
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the data set and once again performing analysis of variance. 
But deletion of any aberrant (outlier) observation is not 
recommended which actually violates the principals of designs 
of experiment and usual information experiment is lost. Hence 
to overcome the violation of randomization principal of 
designs of experiment, we have applied robust estimation to 
the data set such as Huber’s M-estimation and Andrew’s M-
estimation. 

However, not much work on these powerful methods in 
design of experiments is available in the literature. Carroll [3] 
applied this technique to un-replicated factorial experiments 
and Chi [4] to Cross-Over Trials. But no other work seems to 
be available in the literature. In case of block designs recently, 
[11] made necessary modifications, wherever required to 
apply these methods to standard block designs. 

If outlier is present in the data set and we use the usual least 
squares method of analysis the problem that occur generally is 
that all the observations including the outlying observations 
get similar weight and the weight is unity. But if any 
observation is found to be outlier then it must get some lesser 
weight than the clean observations. This concept is utilized in 
the analysis of the design of experiments. For giving 
appropriate weight to different observations we have used the 
available functions of M-estimation that are more frequently 
used in the regression analysis. In block designs, we are 
generally interested in the estimation of some functions of 
sub-set of parameters. This fact was kept in mind while 
applying this method.  

In the present work, an attempt will be made employ the 
foregoing developments so as to study the influence of outliers 
in designed experiments by employing various robust 
estimation procedures for handling multiple outliers in 
designed experiments and subsequently examine the 
efficiency of different procedures based on measures of 
variability, by applying the methods to experimental data on 
brinjal crop. 

III. OBJECTIVE OF THE STUDY 

The present research is conducted to study the significance 
treatments of classical analysis of variance and robust analysis 
of variance in the presence of outliers in a designed 
experiment. 

IV. DATABASE 

The database for this study was obtained from a concluded 
research project on a Vegetable crop (Brinjal, CV A. Navneet) 
experiments at IIHR, Bangalore. Effect of various pollination 
methods (treatments) on yield and its attributing characters for 
Rabi season (year) were considered for this study. 

V. METHODOLOGY 

Data consists of five treatments (pollination methods) and 
four replications in RCBD set up. To study the above 
mentioned objective we have employed classical analysis of 
variance for original data, to identify the outlier in the data we 
have employed the Cook’s distance measure and for the same 

data we applied robust analysis of variance, there after we 
have compared the average error variance of both the 
methods. In case of case robust analysis of variance we used 
Huber’s M-estimation and Andrew’s M-estimation. Detail 
procedure of obtaining the analysis of variance, Cook’s 
distance and robust analysis of variance is discussed here, 

A. Analysis of Variance  

A general two-way analysis of variance [10] was employed 
to the data set considered. Significance of treatmental effects 
in the presence of outliers for the original data sets was 
assessed based on standard F-test [10]. 

The model for general block design is given by 
 

  '' 1 Dy             (1) 
 
where y is n×1 vector of observation, '  is an n×v incidence 
matrix of treatments,  a v×1 vector of treatment effects, 

'D  is a n×b incidence matrix  is b×1 vector vector of 
block effects, I is unit vector of order n×1 and  is a n×1 

vector of errors.  
We now write down 
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where X1= '  and X2 = [1 'D ]  
Similarly,  
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Now following the normal equations for estimating  , the 
normal equations for estimating the parameters in designed 
experiments are given as 
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where W is weight matrix. From (2) and (3) 
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From (7) we have  
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Substituting (8) in (7), we get  
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The above equation is written as  
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Once the C matrix is calculated then the remaining analysis is 
as usual.  

Here simple weighted least squares analysis is done. The 
final configuration of the weights is treated as fixed and given 
a priori, a least squares weighted analysis of variance is done. 
This is a reasonable procedure with small sample sizes. 

B. Cook’s Distance 

Cook statistic [5] is a distance measure, which indicates the 
influence of ith data point on the estimation of parameter 
vector. In measuring influence, it is desirable to consider both 
location of points in x-space and the response variable.  
Cook’s  method of measuring influence using a measure of the 
squared distance between the least-squares estimate based on 
all n points 

  and the estimates obtained by deleting the ith 

point, say 


)( i .  The distance measure, expressed in a general 
form as follows: 

Consider the general linear model  
 

  Xy         (12) 
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nIeD 2)(  , 2 >0      (14)                
 
where y is an n1 vector of observations, X is an np full 
rank matrix of known constants,  is a p 1 vector of 
unknown parameters, and e is an n1 vector of independent 

random variable each with zero mean and variance 
2 >0. 

To determine the degree of influence, the ith data point has 

on the estimate  a natural first would be to compute the least 

squares estimate of   with point deleted. Accordingly, let 
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The statistics provides a measure of distance between   and


 . 

C. Robust Regression 

The classical analysis of variance (ANOVA) technique is 
based on the principle of least squares which assumes that the 
underlying experimental errors are normally distributed. 
However, data often contain outliers due to recording or other 
errors. In other cases, extreme responses occur when control 
variables in the experiments are set to extremes. It is important 
to distinguish these extreme points and determine whether 
they are outliers or important extreme cases. 

D. M-estimator  

M-estimation in the context of regression was first 
introduced by [8] as a result of making the least squares 
approach robust. Although M estimators are not robust with 
respect to leverage points, they are popular in applications 
where leverage points are not an issue.  

If we assume linearity, homoscedasticity, and uncorrelated 
errors, the maximum likelihood estimator of β is simply the 
OLS estimator found by minimizing the sum of squares 
function.  
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Following from M-estimation of location, instead of 

minimizing the sum of squared residuals, a robust regression 
M-estimator minimizes the sum of a less rapidly increasing 
function of the residuals 
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The solution is not scale equivariant, and thus the residuals 

must be standardized by a robust estimate of their scale 


e

which is estimated simultaneously. As in the case of M-
estimates of location, the median absolute deviation (MAD) is 
often used. Taking the derivative of (17) and solving produces 
the score function 
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where  
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with ' . There is now a system of k+1 equations, for 
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which  is replaced by appropriate weights that decrease as 
the size of the residual increases  

 

     
0

'/}/'/]/'[{

/

1

1






















n

i

iiiiiiij

iei

n

i
i

s

xysxysxyx

xew





  (19) 

j=0.1,…..,k 
 

As 

  0'
1

0 


ii

n

i
iij xywx  

j=0.1,…..,k 
 
where 

0
i 0

0

i 00

' /
if y '

                
  if y '  ' /

1                             

i i
i

i

ii i

y x s
x

w
xy x s

 










           
    



 

 
Hence by matrix notation 
 

yXX 00 W'WX'   
 
where 0W  is n × n diagonal matrix of weights then one step 
estimator is – 
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Here  z  is the function of residual,  z  is the derivative 

of  z  and w (z) is the weight function. 
 

TABLE I 
ROBUST CRITERION FUNCTIONS 

Criterion  z  
 z   zw  

Range 

Least 
squares 

½ z2 Z 1.0 z

Huber’s 
function 

½ z2 

22/1 ttz 
 

Z 
 
t sign(z) 

1.0 

zt /
 

tz 
 

tz 
Andrew’s 
function 

a[1-Cos(z/a)] 
 
2a 

Sin(z/a) 
 
0 

Sin(z/a)/(z/a) 
 
0  

az 

az 

VI. RESULTS  

A. Seed Weight per Fruit 

The result for classical analysis of variance for the character 
seed weight per fruit is indicates that the treatments are non-
significant at 5 per cent (p=0.0722) with 5.57 as its error mean 
sum of square (Table II). The Cook’s distance measure 
identified three observations as the outliers and they are fourth 
treatment of first replication and first and fourth treatments of 
third replication as outliers with distance 0.3941, 0.3262 and 
0.6611 respectively (Table III). 

TABLE II 
CLASSICAL ANALYSIS OF VARIANCE FOR THE CHARACTER SEED WEIGHT PER 

FRUIT 

Source DF Sum of 
Square 

Mean 
Square 

F –Value p-value 

Replication 3 2.27 0.76 0.14 0.9368 
Treatment 4 63.17 15.79 2.84 0.0722 
Error 12 66.79 5.57   
Total 19 132.23    

 
TABLE III 

OUTLIERS IDENTIFIED FOR THE CHARACTER SEED WEIGHT PER FRUIT 

Character Replication Treatment Value Cook Distance 

Seed weight 
1 4 0.88 0.3941 

3 1 0.48 0.3262 

3 4 10.65 0.6611 

 
The Huber’s M-estimator for the character seed yield per 

fruit is indicates that the treatments are significant at 5 per cent 
(p=0.0243) (Table IV), 38.64 per cent reduction in error mean 
sum square and  66.34 per cent decrease probability of 
committing type 1 error as compared to classical analysis of 
variance.  
 

TABLE IV 
ANOVA FOR HUBER’S M-ESTIMATOR FOR THE CHARACTER SEED WEIGHT 

PER FRUIT 

Source DF Sum of Square Mean Square F -Value p-value 

Replication 3 0.37 0.12 0.0361 0.9903 

Treatment 4 56.79 14.19 4.1581 0.0243 

Error 12 40.97 3.41   

Total 19 98.14    

Average error variance =1.75 
 
The Andrew’s M-estimator for the character seed yield per 

fruit is indicates that the treatments significant at 5 per cent 
(p=0.0101) (Table V), 56.55 per cent reduction in error mean 
sum of square and 86.01 per cent decrease probability of 
committing type 1 error as compared to classical analysis of 
variance.  

 
TABLE V 

ANOVA FOR ANDREW’S M-ESTIMATOR FOR THE CHARACTER SEED WEIGHT 

PER FRUIT 

Source DF Sum of Square Mean Square F –Value p-value 

Replication 3 7.36 2.45 1.0148 0.4201 

Treatment 4 52.24 13.06 5.4005 0.0101 

Error 12 29.02 2.42   

Total 19 88.62    

Average error variance=1.40 

B. Seed Yield per Hour of Crossing 

The classical analysis of variance for the character seed 
yield per hour of crossing is indicates that the treatments are 
non significant at 5 per cent (p=0.2898) with 4068.46 as its 
mean error sum of square (Table VI). The Cook’s distance 
measure indicates that the four observations as outliers and 
they are first and fourth treatments of first and third replication 
with distance measure 0.2629, 0.34, 0.2385 and 0.6137 
respectively (Table VII). 
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TABLE VI 
CLASSICAL ANALYSIS OF VARIANCE FOR THE CHARACTER SEED YIELD PER 

HOUR OF CROSSING 

Source DF Sum of Square Mean Square F –Value p-value 

Replication 3 5898.46 1966.15 0.48 0.7001 
Treatment 4 22916.31 5729.08 1.41 0.2898 
Error 12 48821.55 4068.46   
Total 19 77636.32    

 
TABLE VII 

OUTLIERS IDENTIFIED FOR THE CHARACTER SEED YIELD PER HOUR OF 

CROSSING 

Character Replication Treatment Value Cook Distance 

Seed yield per 
hour crossing 

1 1 160.74 0.2629 

1 4 26.4 0.3400 

3 1 14.69 0.2385 

3 4 285.6 0.6137 

 
The Huber’s M-estimator for the character seed yield per 

hour of crossing is indicates that the treatments are significant 
at p= 0.056 with 64.84 per cent reduction in error mean sum of 
square and decrease in probability of committing type 1 error 
from 0.2898 to 0.056 as compared to that of classical analysis 
of variance (Table VIII). 
 

TABLE VIII 
ANOVA FOR HUBER’S M-ESTIMATOR FOR THE CHARACTER SEED YIELD PER 

HOUR OF CROSSING 

Source DF Sum of Square Mean Square F –Value p-value 

Replication 3 601.17 200.39 0.1401 0.934 

Treatment 4 17878.58 4469.6 3.1254 0.056 

Error 12 17161.02 1430.1   

Total 19 35640.77    

Average error variance=847.16 

 
The Andrew’s M-estimation for the character seed yield per 

hour of crossing is indicates that the treatments are significant 
at p=0.0612 with 66.66 per cent decrease in error mean sum of 
square and decrease in probability of committing type 1 error 
from 0.2898 to 0.0612 as compared to that classical analysis 
of variance (Table IX). 

 
TABLE IX 

ANOVA FOR ANDREW’S M-ESTIMATOR FOR THE CHARACTER SEED YIELD 

PER HOUR OF CROSSING 

Source DF Sum of Square Mean Square F- Value P-value 

Replication 3 1393.63 464.54 0.3424 0.7951 

Treatment 4 16403.75 4100.94 3.0234 0.0612 

Error 12 16276.64 1356.38   

Total 19 34074.03    

Average error variance =811.13 

VII. CONCLUSION  

Robust analysis of variance is the technique which uses all 
the observations by attaching appropriate weights to the 
outlying observation. The efficiency of two different robust 
M-estimation procedure is obtained by comparing the average 
error variance, in case of above two examples Andrew’s M-
estimation is efficient as compared to that of Huber’s M-
estimation. The advantages of these methods are demonstrated 

in a horticultural crop experiment. . 
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