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Abstract— The problem of controlling a two link robotic 

manipulator, consisting of a rotating and a prismatic links, is 

addressed. The actuations of both links are assumed to have unknown 

dead zone nonlinearities and friction torques modeled by LuGre 

friction model. Because of the existence of the unknown dead zone 

and friction torque at the actuations, unknown parameters and 

unmeasured states would appear to be part of the overall system 

dynamics that need for estimation. Unmeasured states observer, 

unknown parameters estimators, and robust adaptive control laws 

have been derived such that closed loop global stability is achieved. 

Simulation results have been performed to show the efficacy of the 

suggested approach. 

 

Keywords— Adaptive Robust Control, Dead Zone, Friction 

Torques, Robotic Manipulators.  

I. INTRODUCTION 

EAD zone and friction torque are inevitable in many 

motion control systems . Robotic manipulators are among 

the many motion control systems in which actuations are 

mostly subjected to both dead zone and friction torques. Many 

methodologies were developed to present efficient control 

schemes for robotic manipulators; quadratic optimization 

control of robots was suggested in [1], adaptive control output 

feedback was presented in [2], robust adaptive neural 

controller was suggested in [3], robust adaptive fuzzy 

controller was suggested in [4], and a lot of other efficient 

controllers were suggested to control robotic manipulators. A 

common feature to the approaches above is the lack of 

consideration of actuations dead zone and friction torques.  

The consideration of dead zone in nonlinear control systems 

was firstly pioneered by Tao and Kokotovic when they 

designed a dead zone inverse for the unknown dead zone [5, 

6]. Other researchers suggested more powerful schemes to deal 

with unknown dead zones in different nonlinear control 

systems [7-14]. Till now, no serious scheme suggested to solve 

the possible existence of unknown dead zone in robotic 

manipulators. Moreover, considering a friction torque, 
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modeled by LuGre friction model, in a robotic manipulator 

would result in a MIMO nonlinear system containing the 

coupling of unmeasured states and unknown parameters and 

till now this issue is not addressed in the literature, even 

though the dead zone free SISO nonlinear systems  case was 

addressed in [15].  

Depending on the results obtained in [16], we suggest, in 

this paper, a stable robust adaptive control strategy for a 

robotic manipulator consisting of a rotating and a prismatic 

links. The actuations of both links are subjected to unknown 

dead zone nonlinearities and friction torques modeled by 

LuGre friction model [17]. The suggested strategy involves the 

design of estimators for the unknown parameters, resulted 

from friction torques and unknown dead zone, and observers 

for the unmeasured states, resulted from the friction torques. 

Then stable robust adaptive controller is designed for each 

actuation such that all closed loop signals are bounded.  

The main contributions of this paper are: 

1. Overcoming the control problems resulted from the 

existence of friction torques and unknown dead zone 

nonlinearities at the robot actuations. 

2. Designing robust adaptive controllers, unknown 

parameters estimators, and unmeasured states 

observers for a MIMO nonlinear system (robot in this 

case) that contain the coupling of the unmeasured 

states and unknown parameters, with unknown dead 

zones exist at the system actuations.  

  The rest of the paper is organized as follows. Problem 

statement is explained in section 2 to describe the robotic 

manipulator to be controlled. In section 3, we give the dead 

zone and plant assumptions that would be considered 

throughout the paper. The main theorem of this paper is 

suggested in section 4. Simulation results and concluding 

remarks are given in sections 5 and 6 respectively.  

II. PROBLEM STATEMENT 

Consider the two link manipulator shown in Fig. 1 that 

consists of a rotating link driven by T and a prismatic link 

driven by F. 
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Fig.1 A two link manipulator 

 

Suppose that both actuators T and F suffer from friction 

torques and dead zone nonlinearities. Then the dynamics of the 

robotic manipulator would be [18, 19]: 
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Where q is the angular displacement of the robot arm, r is 

the position of the robot hand, M is the mass of the robot arm, 

m is the mass of the robot hand, T and F are the robot arm and 

hand actuation torques respectively, ff1 and ff2 are the robot 

arm and hand friction torques respectively. Suppose that both 

T and F are subjected to dead zone nonlinearities. Now, if we 

use LuGre friction model for the friction torques and system 

modification used in [15] then the overall system dynamics 

becomes: 
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Fci, Fsi, and ωsi (Form more details on LuGre friction model 

see [17]). Di(vi(t)) and vi(t) are the output and input of the ith 

dead zoned actuation.  

The dead zone model D(v(t)) can be described by the equation 

below: 
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We can also describe the dead zone by the graph shown in 

Fig.2. 

  Where m1, m2, br, and bl are the dead zone constants. The 

objective f the paper is to design robust adaptive control laws 

v1(t) and v2(t), parameter update laws for Θ1,2, and observers 

for Z1,2 such that desirable tracking performance is achieved 

and all closed loop signals are bounded.  
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Fig.2 Dead zone model 

III. DEAD ZONE AND PLANT ASSUMPTIONS 

The dead zone features of the control problem investigated 

throughout this paper are: 

• A1. The dead zone outputs Di(vi(t)) are not available 

for measurement (i=1,2). 

• A2. The dead zone slopes in positive and negative 

regions are the same, i.e. mri=mli=mi (i=1,2). 

• A3. The dead zone parameters bri, bli, and mi are 

unknown but their signs are known, i.e. bri>0, bli<0, 

mi>0 (i=1,2). 

• A4. The dead zone parameters bri, bli, and mi are 

bounded, i.e. there exist known constants bri min, bri 

max, bli min, bli max, mimin, mimax such that bri∈[ bri min, bri 

max], bli ∈[ bli min, bli max], and mi∈[ mimin, mimax] 

(i=1,2). 

Remark. Assumption (A1) is common in many practical 

systems such as servomotors and servovalves. If Di(vi(t)) are 

available for measurement then the dead zone problem of this 

paper becomes trivial and easy to be solved. Assumption (A2) 

is generally adopted in the literature [8, 10] and reasonable for 

dead zones that are found in many practical systems. Similarly 

for assumptions (A3) and (A4) they are physically satisfied in 

many real plants.  

As a result assumptions (A1) through (A4) are reasonable for 

dead zones that are found in many practical systems. 

We can rewrite the dead zone model given by (3) to be 

composed of a linear part and a bounded function of vi(t): 

 

))(()())(( tvdtvmtvD iiiiii +=                  (4) 

 

mi is the general slope of the dead zone, and di(vi(t)) can be 

modeled as: 
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 From assumptions (A2) and (A4), one can easily conclude 

that di(vi(t)) is bounded, and satisfies: 

ii tvd ρ≤))((  

Where iρ is the upper bound and can be chosen as: 

 

{ }iniriii bmbm limmaxmaxmax ,max −=ρ           (5) 

 

For the robotic manipulator and frictions, the following 

assumption should be satisfied. 

• A5. The sign of each parameter, θij, i=1, 2, 3, j=1, 2, 

in the parameter vectors Θj, j=1,2 is known, and θij is 

bounded. 

 

IV. THE CONTROLLER AND OBSERVER DESIGN 

Based on the dead zone model, properties, and system 

dynamics described in (2), we shall present the main theorem 

of this paper. However, to simplify the derivation we need to 

define the following parameters: 

i

i
m

1
=φ       (i=1, 2) 

and  

iii Θ=Ψ .φ     (i=1, 2) 

From assumptions, (A3), (A4), and (A5) one can easily see 

that both φ  and Ψ are bounded and their signs are known. 

For the desired states trajectory, the following assumption 

should be achieved: 

(A6) The desired trajectories qd ],[ dd qq &= and rd= ],[ rr & are 

continuous, bounded and available for measurement.  

To achieve the stated control objective, filtered tracking errors 

are defined as: 
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From the equations above and by defining [ ]i

T

vi λ,0=Λ  we can 

rewrite equation (6) as: 
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Note: It has been shown that the filtered error described by (6) 

has the following properties: (i) the equation si(t)=0 defines a 

time-varying hyperplane in R
2
, on which the tracking error 

vectors )(
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and (iii) if 0)0(~ ≠q , 0)0(~ ≠r and ii ts ε≤)( , then 

)(~ tq and )(~ tr will converge to Ωε1 and Ωε2 respectively 

within a time-constant (2-1)/λi [20, 21].  

It is important to mention that rather than deriving the adaptive 

laws depending on the filtered error si(t), a tuning error sεi, is 

introduced as follows: 
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Theorem: For the robot described by (2) with unknown dead 

zones, modeled by (4), exist at the robot inputs, the following 

control laws (11), parameters estimation algorithm (12) and 

(13), and observers (14) 
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Using the control laws (11.a) and (11.b) in (7) and (8) 

respectively, then we can rewrite the filtered errors by: 
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Where 
IΨ

Λ are diagonal matrices that the ith diagonal 

                (9) = −                          

         (11.b) − ( )Ψ −         

         (12.a) Ψ = −Γ [s f (q)+ s Z G (q)]         

         (11.a) 

         (12.b) Ψ = −Γ [s f (r)+ s Z G (r)]         

         (13.b) φ = η                              

         (13.a) φ = η                              

         (14.b) Z = a (r )+ B (r)Z + s P sgn(Ψ )G (r)     

         (14.a) Z = a (q)+ B (q)Z + s P sgn(Ψ )G (q)  
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QZI are positive definite matrices.      

∑
=

Ψ 





Λ−−≤∴

2

1

2 ~~

2

1

I

IZIIIIdI ZZskV Qε
&

( )∑
=

Ψ 





Λ−−≤∴

2

1

Im

2 ~
.

~

2

1

I

I

T

IZIIinIdI ZZskV Qλε
&  (19) 

From (19), it is clear that ∈2,1εs L2I L ∞ , and 

∈Θ 2,12,12,1

~
,

~
,

~
φZ  L ∞  . Since ,, 2,12,1 ΘZ  and 2,1φ are 

bounded and ∈Θ 2,12,12,1

~
,

~
,

~
φZ  L ∞ , then ,ˆ,ˆ

2,12,1 ΘZ and 

2,1φ̂  are also bounded. Then using (18), we can easily 

conclude that ∈2,1s&  L ∞  which implies that ∈2,1εs&  L ∞ . We 

have ∈2,1εs L2I L ∞  and ∈2,1εs&  L ∞ , then 

02,1 →εs as ∞→t according to Barbalat's lemma. This 

would make 
( )tq~

and 
)(~ tr

 converging 

to 1εΩ and 2εΩ respectively. If  2,1ZQ  is chosen to be 

positive definite matrix, then from (19) we can easily conclude 

that ∈2,1

~
Z L2I L ∞ . Since ∈2,1

~
Z  L ∞ , then from (18), we 

can see that ∈2,1

~
Z
&

 L ∞ . Again invoking to Barbalat's Lemma, 

then we have 0
~

2,1 →Z as ∞→t .   

                                                                                              

V. SIMULATION RESULTS 

Simulation results were implemented for a two link robotic 

manipulator with the following links and friction torques 

parameters: 

 

Parameter Value Parameter Value 

m 

ML
2
 

σ1 

Fs1 

Fc1 

1 

3 

340 

11 

1.557 

ωs1 

σ2 

Fs2 

Fc2 

ωs2 

0.14 

350 

15 

1.8 

0.1 

 

 

For the dead zones bounds, we considered the bounds given 

in the table below: 

 

Parameter Value Parameter Value 

br1min 

br1max 

bl1min 

bl1max 

m1min 

m1max 

0.1 

0.6 

-0.7 

-0.1 

0.85 

1.25 

br2min 

br2max 

bl2min 

bl2max 

m2min 

m2max  

0.2 

0.75 

-0.3 

0.1 

0.7 

1.7 

 

 

As a result of Table 2, we can choose 
∗
1k

and 
∗
2k

 to be 2.5 

and 3.2 respectively. Other controller constants were chosen as 

shown in the table below: 

 

Table II  The Unknown Dead Zones Bounds  

Table I  The Robot Links and Friction Torques Parameters 

                (18.a) 

                (18.b) Z = B (r )Z + s P sgn(Ψ )G (r)     

Z = B (q)Z + s P sgn(Ψ )G (q)        
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Parameter Value Parameter Value 

kd1 

λ1 

10 

3 

kd2 

λ2  

10 

2 

 

In our simulation, we obtained the best results for ε1 and ε2 

to be 0.001. For the desired positions of link 1 and 2, the 

following desired trajectories are to be tracked using the 

suggested controllers and observers: 

 

( ) ( )ttxd π4.0sin1 =     desired position of link1. 

( ) ( )ttxd π4.0sin5.03 =  desired position of link2. 

 

Using the suggested control actions, unknown parameters 

update laws, and observers we obtained the simulation results 

shown in figures 3, 4, and 5.  

It is clear that excellent position and velocity tracking 

performance for both link 1 and 2 is obtained. Moreover, the 

simulation confirms that all closed loop signals are bounded. It 

is important to point out that the tuning errors Sε1,2 will 

disappear when the filtered errors S1,2 is less than ε which is 

equivalent to creating an adaptation dead band. Moreover the 

term 






∗

i

ii
s

s
satsk

ε

ε , i=1,2, of equation (11) reflect the 

component for compensating the bounded function d(v(t)) that 

give the robust property to the suggested control laws.    

VI. CONCLUSION 

The challenge of controlling a two link robotic manipulator 

with unknown dead zone and friction torques exist at the robot 

actuations was addressed. The existence of both friction 

torques and unknown dead zones made the system to contain 

unknown parameters that was estimated through the suggested 

parameters update laws. Unmeasured states were resulted from 

the friction torque and suitable observers were designed. It was 

proven that using the suggested robust adaptive control, 

parameters update laws, and observers all closed loop signals 

are bounded.  
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Fig. 3. A. Link1 position tracking performance. B. Link1 velocity tracking performance. C. Link1 position tracking error. D. Link1 velocity 

tracking error. E. Link2 position tracking performance. F. Link2 velocity tracking performance. G. Link2 position tracking error. H. 

Link3 velocity tracking error. 

 

   

Fig. 4. A. Estimation of Z1. C. Estimation of Z2. E. Estimation of Z3. B. Estimation of Z4. D. Estimation of Z5. F. Estimation of Z6. G. 

Estimation of Φ1. H. Estimation of Φ2.
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

688

 

 

 

Fig. 5. A. Estimation of Ψ1. C. Estimation of Ψ2. E. Estimation of Ψ3. B. Estimation of Ψ4. D. Estimation of Ψ5. F. Estimation of Ψ6. G. Link1 

control action. H. Link2 control action.
 

 


