
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2800

Abstract—This paper presents the development of a software

application for Off-line robot task programming and simulation. Such

application is designed to assist in robot task planning and to direct

manipulator motion on sensor based programmed motion. The

concept of the designed programming application is to use the power

of the knowledge base for task accumulation. In support of the

programming means, an interactive graphical simulation for

manipulator kinematics was also developed and integrated into the

application as the complimentary factor to the robot programming

media. The simulation provides the designer with useful,

inexpensive, off-line tools for retain and testing robotics work cells

and automated assembly lines for various industrial applications.

Keywords—Robot programming, task-level programming, robot

languages, robot simulation, robotics software.

I. INTRODUCTION

OBOTIC systems are ever more difficult to design,

program, and to operate, due to their growing complexity.

Also, the current state of art of powerful robot programming

has reflected the requirement for a highly complicated

multidiscipline system.

A great deal of such system requirement is based on

decision-making, and knowledge accumulation [1], [2].

However, enhancing the system supporting software with

appropriate tools is considered as a primary factor in

developing a highly efficient and easy to operate robot system

[3], [4].

In recent years, a great deal of simulation work has been

developed for robotics [5]. A complementary factor to the

robot programming media is the graphic simulation.

Presentation of shape and trajectories assists in program

verification and hence minimizing the real robot mistakes.

Also, interactive simulations incorporating robot kinematics

can provide a useful method for designing and evaluating

robotics work cells both for existing and future industrial

applications [6]-[8]. Such graphical simulations permit safe

and inexpensive methods for determining robot motion paths

without requiring the use of any actual robotics hardware.

The aim of this work is to provide an interactive software

tool for robot programming and simulation. The Robot

programming language presented in this paper supports the

Manuscript received September 30, 2005.

M. Samaka is with the department of Computer Science and Engineering,

College of Engineering, University of Qatar, P. O. Box 2713, Doha-Qatar

(phone:+974 5471371; fax: +974 485 2961; e-mail: Samaka.m@qu.edu.qa).

development of interactive commands that are compiled for

runtime applications. The technique implemented is based on

incremental compilation. An interactive 3D graphical

simulation, for a general-purpose multi-link robot

manipulator, was also developed and integrated into the robot

programming environment. The simulation program includes

several algorithms such as: direct and inverse kinematics

analysis for multi-link mechanisms, motion trajectory

determination, workspace estimation, and collision avoidance.

II. SYSTEM DESCRIPTION

The structure of the robot software system, as shown in Fig.

1, consists of seven modules. Based on the system design

strategy, a modular approach in software development was

adopted in order to enhance system efficiency and flexibility.

In the following paragraph, each module is described briefly.

Also, the system inter-module relations and interactions is

illustrated in Fig. 2.

Fig. 1 Modules of the Robot Software System

The tutorial module is a GUI interface. It provides users

with useful commands, and other information that are needed

for operating the system efficiently. The system requirements

can be satisfied when using the menu-based command

processor module. Menu options could be standardized for

most robot types and applications. Besides, the command

processor program is facilitated with built-in editing, and

debugging facilities. They were designed especially to

simplify the development process in all stages.

The robot characteristics module is a GUI interface that

Robot Task-Level Programming Language and

Simulation

M. Samaka

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2801

allows the user to enter robot parameters, and robot geometric

data into the robot parameter, and geometric files respectively.

This information is needed for a robot kinematics operation

for moving the manipulator through the appropriate trajectory

of the intended points. The basic steps required to enter a

desired multi-link manipulator using this module include:

Assignment of Denavit-Hartenberg coordinates to each

link [9].

Measurement and entry of necessary robot parameters.

Determination of the geometric module for each link of

robot using graphic elements such as lines, polygons,

revolute, circle, etc.

Interactive entry and storage of the robot type, robot link

parameters, and geometric data into appropriate files.

The program environment module is a GUI interface that

allows the user to enter information that specifies the robot

task to be performed; the information includes objects in the

work cell, their initial and destination positions, orientations,

etc. Also, this module allows the user to determine the desired

speed level of the robot motion in real time.

The task knowledge base module accumulates a number of

different robot tasks, which are usually created, and built

earlier by a user.

The control program generator module is a program that

allows the user to build a set of commands. When these

commands are executed they direct the tasks that are selected

from the task knowledge base module, and therefore

controlling the robot manipulator through the defined

trajectory. The feedback signals generated from robot

controller during the run-time are fed back to the program (see

Fig. 2). These signals that reflect the sensors states affect the

execution of the running program.

The robot’s response to the control program that is

constructed within the system can be simulated using the

graphic simulator module, which displays 3D animation for

the robot motions.

III. SOFTWARE DEVELOPMENT FOR ROBOT CONTROL

Within the robot programming environment developed in

this study, the robot-operating program can be constructed

interactively via two phases. At each phase different levels of

commands are being used. The first phase is involved in

defining and coding tasks relevant to the intended robot

functions. The language used to invoke the process of the task

creation is Prolog. During this phase the tasks that are created

are then accumulated together in the knowledge base module.

The second phase is concerned with creating of a high-level

control robot program. A program of this type usually

includes a number of call statements for the tasks that are

selected from the knowledge base module to direct a specific

robot motion.

Fig. 2 Control Program Creation And Execution

In the robot programming application of this project,

creating of a control program for a certain robot type to carry

out a specified function may be achieved interactively. This

process starts by first, defining a set of robot characteristics,

that should be fed into the robot characteristic module. A user

will then be able to utilize the system efficiently and

interactively by selecting an appropriate sequence of tasks

from the knowledge base using the menu driven facility,

presented in Fig. 3.

Fig. 3 Menus to create new task

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2802

The control program generator will then start by asking the

user at each defining task for the related reference points. In

that case, the user will respond by either referring to the name

of a file created previously, inside the program environment

module, or defining a new set of reference locations by

feeding them directly. Finally, each task would be checked,

and the user would be notified whether the task is being

accepted or not as illustrated in Fig. 4.

Fig. 4 Creating the control program screen

Since the creation process of a control program is the

responsibility of the control program generator module, an

important point has to be noted here, is that a robot operator

should not necessarily has the knowledge of creating a

program using a high level language. All what he/she

supposed to know is the appropriate sequence of tasks stored

in tasks knowledge-base module, that are associated to his/her

robot activity. Also he/she should know the name of files that

are held in the program environment module, which contains

the required reference location values corresponding to the

tasks.

During the robot task creation phase, which is needed for

either creating or updating a task, a specially designed flexible

screen editor and an incremental compiler programs are being

provided. The incremental compiler provides a user with an

immediate response, reporting whether the current compiled

command line, is syntactically correct or not. Obviously, using

the facilities of such software development tools would speed

up the process of writing and editing programs, and increase

the system reliability. An example of program to perform

palletizing is shown in Fig. 5.

IV. ROBOT SIMULATION

The aim of developing the software tools for robot

simulation in this research study is to assist the user to

evaluate the robot performance, and the time sequence of the

events by observing the animation on screen. The robot

simulator module receives the geometrical and physical

characteristics for the robot arm and for other objects in the

work cell, from the program environment and robot

characteristics modules. However, the feedback sensing

signals used to affect the program may also be simulated using

the keyboard.

The robot kinematics simulation system designed in this

research study consists of several components that are

described briefly in the following:

Fig. 5 Example of program to perform palletizing

A. Kinematics Analysis

This component is used to develop the direct and inverse

kinematics equations for the desired robot. The direct

kinematics problem involves the determination of the position

and orientation of the end effectors of a robot manipulator

with respect to a reference coordinates system, and the given

manipulator joint angle variables. After the Denavit-

Hartenberg coordinate system has been established for each

link of the robot, a 4x4 homogeneous matrix, which includes

translation, rotation and scaling, has to be setup for robot

geometric computation.

The inverse kinematics problems involve finding a set of

point variables and obtaining the position and orientation of

the end effectors of the robot arm at the desired position with

respect to a reference coordinates system.

The screen of Fig. 6 shows the input data for the Animation

PUMA robot and the corresponding link parameter table after

being processed by this component. The simulated robot

affected by this set of parameters is shown in Fig. 7.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2803

Fig. 6 Input data of the Animation PUMA and the links parameters

after being processed

Fig. 7 The simulated robot affected by the input set of parameters

B. Trajectory Planning

This component calculates the robot trajectory according to

the given positions and orientation of the desired points, and

the type and speed of a robot motion.

The software routines of this component are developed to

perform the following:

Simulating the point-to-point motion of robot. In this

type of motion, the robot can be trained manually

moving the arm to define the position, orientation

and end effectors control for picking, or placing

operations. For implementing the point-to-point

motion control, the digitize mode method was used in

which the user enters the desired position and

orientation of the end effectors to determine the

kinematics solution for that point.

Simulating the straight-line motion of a robot for

moving the robot end effectors. This routine invokes

the following steps:

(a) The motion file is opened and the user enters the

positions and orientations of the two desired

points.

(b) The program uses pools Cartesian path control

algorithms to find the drive transform matrices

[9].

(c) The inverse kinematics solution routines are then

executed and their solution stored in the motion

file.

Determining of a collision free path for robot motion

is an important task that must be determined so that

the robot arm can move from one reachable initial

position to another reachable final destination

position.

Finally, this component is also responsible to

calculate and display the real time duration that

would be spent during the robot task.

C. Workspace

The workspace component of a robot manipulator provides

information about the three dimensional volumes that can be

reached by the robot end effectors. This component can be

used to compute the work envelope for a particular robot. It

permits the designer to implement optimum layouts for

robotics work cells by allowing comparative evaluation of

different robots and associated machinery for specific

industrial applications. Also, this component is able to check

if a robot trajectory would exceed the determined workspace.

If so, an interactive scheme of message would be introduced

as shown in Fig. 8, as the component discovers an out of

range angle value.

Fig. 8 An out of range angle value

D. Graphics Generation and Processing

By using this module, the values for the window, view

ports, view normal vector, and the desired types of projections

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2804

will be set. The subroutines to create the graphical primitives

such as arcs, circles, revolute, etc., will then be called to

display the simulated robot on the desired graphical device. In

this regard, a toolbox was built that contains all of these

subroutines. Each of them may be called by issuing a special

command.

V. CONCLUSION

The paper discusses the process of developing an off-line

robot task programming and simulation environment. This

environment may be considered as an ideal media for robot

task accumulation and manipulation activities.

The modularity in system design allows for integrating the

task programming media with the robot simulation module

that was also developed in this project. The capabilities of

this robot simulation system have been discussed and

illustrated in this paper using a six-degree of freedom revolute

robot. An industrial designer can use this simulation to

analyze and evaluate the robot manipulator performance for a

particular application, to check for positioning of the

orientation, as well as to determine collision free paths for

robot motion. The modularity and interactive nature of this

simulation permit the addition of other similar robots into this

simulation as well as its extension to include other types of

robots. Future work in this area can involve the extension of

this simulation to include robot dynamics, incorporation of

various algorithms for optimizing robot path control, and

multi-sensory feedback to make this robot simulation more

realistic.

The incremental compilation approach implemented in this

project reduces the compilation process into a modular

activity that results in reducing the compilation time greatly.

Also, the use of screen editor and simulator play an important

role in assisting the programmer to visualize the program

integration. Further enhancement to the automation of fast

compilation processes may be achieved by the use of

multilevel incremental compilation.

REFERENCES

[1] R. Willgoss, and J. Iqbal, “Neurofuzzy Learning of Mobile Robot

Behaviors”, Proceeding of the12th Australian Joint Conference on

Artificial Intelligence, AI '99, Sydney, Australia, December 6-10, 1999,

pp. 278-290.

[2] S. Lopes, and J. Connell, “Sentience in Robots: Applications and

Challenges”, IEEE Intelligent Systems, Computer Society, 5(16), 2001,

pp. 66-84.

[3] T. Längle, T. Lüth, E. Stopp, and G. Herzog, “Natural Language Access

to Intelligent Robots: Explaining Automatic Error Recovery”, In: A. M.

Ramsay (ed.), Artificial Intelligence: Methodology, Systems,

Applications, Amsterdam, IOS Press, 1996, pp. 259-267.

[4] W. Suwannik, and P. Chongstitvatana, “Improving the robustness of

evolved robot arm control programs with multiple configurations”,

Proceeding of the 2nd Asian Symposium on Industrial Automation and

Robotics, Bangkok, Thailand, May 17-18, 2001, pp. 87-90.

[5] H. Cheng, and K. Gupta, “A Study of Robot Inverse Kinematics Based

upon the Solution of Differential Equations”, Journal of Robotic

Systems, 8(2), 1991, pp. 159-175.

[6] J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, E.

Schneider, J. Strikos, and S. Thurn, “The Mobile Robot RHINO”, AI

Magazine, 1(16), 1995, pp. 31-38.

[7] EASY-ROB “3D Robot Simulation”, CARAT robotic innovation,

Germany. Available: http://www.easy-rob.de/product.html.

[8] ROBOT3D- “Robot Offline Programming & Simulation”, Portugal,

Available: http://clientes.netvisao.pt/fnavegan/example2.htm.

[9] J. Denavit, and R. Hartenberg, “A kinematics notation for lower pair

mechanisms based on matrices”, ASME Journal of Applied Mechanics,

June, 1955, Volume 22, pp. 215-221.

