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Riemann-Liouville Fractional Calculus and
Multiindex Dzrbashjan-Gelfond-Leontiev
Differentiation and Integration with Multiindex
Mittag-Leffler Function
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Abstract—The multiindex Mittag-Leffler (M-L) function and the
multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and
integration play a very pivotal role in the theory and applications of
generalized fractional calculus. The object of this paper is to investi-
gate the relations that exist between the Riemann-Liouville fractional
calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiation
and integration with multiindex Mittag-Leffler function.
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I. INTRODUCTION

HE Mittag-Leffler (M-L) function, titled as “Queen”-
function of fractional calculus (FC) due to mainly its
applications in the solutions of fractional-order differential and
integral equations arising problems of mathematical, physical,
biological and engineering areas.
The Mittag-Leffler (M-L) functions FE, (Mittag-Leffler,
1902-1905) and E, g (Wiman 1905, Agarwal 1953) are de-
fined by the power series

0o k
Ea(z)sz:oW’a>o W
E(Lﬂ(z) = ZZO=O mmz > O,ﬁ > 0.
An important identity of M-L function [4] is

Ewﬂ(z) = ﬁ

which will be required later on.

In the section 2 of the book by Samko, Kilbas and Marichev
[9], the left and right sided operators of Riemann-Liouville
fractional calculus are defined as follows:
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where [o] means the maximal integer not exceeding « and
{a} is the fractional part of « .

II. MULTIINDEX M-L FUNCTION AND MULTIINDEX D-G-L
DIFFERENTIATION AND INTEGRATION

The multiindex (multiple, m-tuple) M-L function is
introduced by Kiryakova [6, 7] and the multiindex D-G-L
differentiation and integration, generated by the multiindex
M-L function are introduced and studied by Kiryakova [8].

Definition IL.1 [6, 7] Let m > 1 be an integer, p1,- -+, pm > 0
and [41,- - -, b, be arbitrary real numbers, then the multiindex
M-L function are deﬁned by means of the power series
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For m = 1, this is the classical M-L function E( () (2)s
andfor; =a>0,p=06>0, 1tlstheMqunct10nEag( )
considered by Wiman 1905 and Agarwal 1953, which is given
in (1).

For m = 2, (7) reduces to the M-L function considered
first by Dzrbashjan [3]. He denoted it by ¢, ,(z; tt1, pt2) and
defined in the following form, see also [8, Appendix]:
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Definition IL.2 [8, 6, 5] Let f(z) be analytic function in a
disk Ar = {|z| < R} and p; > 0,p; € R(i =1,---,m) be
arbitrary parameters, then the correspondences: ~
flz) = Xilgarz® = Df(2) = Dy, unf(2), Lf(2) =
g (s 1 2): defined by
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are called multiindex D-G-L differentiations and integrations,
respectively.

For m = 1, the operators (9) are D-G-L operators of differ-
entiation and integration, studied by Dimovski and Kiryakova
[1, 2], Kiryakova [8]:
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Lemma I1.3 [6, 7] The multiple M-L function (7) satisfy the
following relations (X # 0):

Doy, B (ny(A2) = AB (L) uy(A2) (D)

1
AT Tey)
(12)
One can verify the above lemma easily by applying the
definition (7) and (9).
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III. RELATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL
CALCULUS

In this section we derive certain relations that exist
between the multiindex D-G-L operators of differentiation
and integration connecting with multiindex M-L function
and the left and right sided operators of Riemann-Liouville
fractional integrals and derivatives.

Theorem IIL.1 Let « > 0,p; > 0, i, € R(i =1,---,m),\ #
0, and let 1§, be the left sided operator of Riemann-Liouville

fractional integral (3), then there holds the formula
~ a
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Proof: By virtue of (3) and (11), we have
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Interchanging the order of integration and summation and eval-
uating the inner integral by means of beta function formula,
it gives

)\k-&-lxﬁ
_ +p1—1
Ao sy s
P(p +a+ )Hj:zr(ﬂj + E)
> /\’%ckp;l1

a+p IZ
P F(,ul Lo+ kp—ll) Hm F(H] 4 k jl)
pOtm— a1

k
Aegor

'LZO D((+a—50) + ) T Dk — 50) + 5)

M8

>1H;“2r<u; - ,}]J

D +a—
atp—L—1
= ! o [E(pii)7(/”1+a7ﬁa/"27%a /"mfi)(Ax‘)l)
1 )
L(p + o — pT) IT7%2 Tpy — i)
Corollary IIL.2 Let « > 0,p; > 0, u; € R(i = ,m), \ #
0 and p% = «, there holds the formula
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For m =1, p% =« and p; = p, (13) reduces to
Corollary III.3 For o > 0,p > O,u € R and X # 0,

there holds the formula

1
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(15)
Theorem IIL4 Let o« > 0,p; > 0, u; € R(e =1, ,m), X #

0, and let 1§, be the left sided operator of Riemann-Liouville
fractional integral (3), then there holds the formula
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Proof: By virtue of (3) and (12), we have
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Now splitting the integral into two integrals and changing the
order of integration and summation in the first integral and
then evaluating the two integrals with the help of beta function
formula, we obtain
A —

Akrpl
T

aJr;Ll 1 Z
X F=0 P ((pat+a)+30) [ [, Dlus+25)

-
L(u1 +a) [T72, T(ny)

_ 1, .« —
= xaotm I{Eﬁ)(

1
) u1+a,M27"'»#m)()\xpl )

sl
D(p1 + ) [T72, T(ky)
This completes the proof of the theorem II1.4
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For m = 1,1%1 = (3 and u3 = p , the above theorem

reduces to

Corollary IIL5 For « > 0,p > 0,p € R and N\ # 0,
there holds the formula

(Ig+ [t#_leuEﬁ,u ()‘tﬁ)] ) (m)
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On using the identity (2) on the right hand side of (17), it
reduces to the result
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(13)

Theorem IIL6 Let o > 0,p; > 0, u; € R(e =1, ,m), \ #
0, and let I® be the right sided operator of Riemann-Liouville
fractional integral (4), then there holds the formula
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Proof: By virtue of (4) and (11), we have
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If we interchange the order of integration and summation and
substitute ¢ = I to evaluate the inner integral, we obtain
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Corollary IIL7 Let o > 0,p; > 0, u; € R(i =
0 and p% = «, there holds the formula
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For m =1, p% =aand g = p , (19) reduces to
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Corollary III.8 For a > 0,p > O,u € R and X # 0,
there holds the formula
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Theorem IILY Let o > 0,p; > 0, pu; € R(E=1,---,m),\ #
0, and let I* be the right sided operator of Riemann-Liouville
fractional integral (4), then there holds the formula
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Now splitting the integral into two integrals and interchanging
the order of integration and summation in the first integral and
substitute ¢ = - to evaluate the integrals, we obtain
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For m =1, pi u , (22) reduces to
Corollary IIL10 For o« > 0,p > O, € R and X # 0,
there holds the formula
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Making use of the identity (2), (23) reduces to the result

(12 [ Ly B u(AP)]) (&) = 2P B s pau(ha ™)

24

We now proceed to derive certain other theorems of

DE(/%)’(M)()\Z) and LE( L)1) (Az) associated with the

fractional derivative operators Dg, and D? defined by (5)
and (6), respectively.

Theorem IIL11 Let o« > 0,p; > O,u; € RE =
1,---,m),A # 0, and let D§_ be the left sided operator of
Riemann-Liouville fractional derivative (5), then there holds
the formula
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Proof: By virtue of (5) and (11), we have
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Corollary III.12 For a > 0,p > O, € R and X # 0,
there holds the formula
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Theorem IIL13 Let o« > 0,p;, > O, € RGE =
1,---,m),A # 0, and let D§, be the left sided operator of
Riemann-Liouville fractional derivative (5), then there holds
the formula
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The proof of the above theorem can be developed by the
similar lines to that of the theorem III.11

For m =1, pi = and py = p, (27) reduces to
Corollary III.14 For a > 0,p > O, € R and X # 0,
there holds the formula
(D§ [t/lfle,uEﬁ-,u()‘tﬂ)]) (z)

#} (28)
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On using the identity (2), (28) reduces to the result
(D3+ [tuile«,uEﬁ,u(/\tﬁ)]) (z)

= 2" Eg i a(A2?) (29)

Theorem IIL15 Let o« > 0,p; > O,u; € RE =
1,---,m),pu1 — [a] > 1,A # 0, and let D be the right
sided operator of Riemann-Liouville fractional derivative (6),
then there holds the formula
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Proof- By virtue of (6) and (11), we have
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If we setm =1, pi =0, pu1 = p, (30) reduces to
Corollary IIL16 If o > 0,p > O,p € Ropp —[a] > 1
and \ # 0, then there holds the formula

(Df [taiqu,uEﬂ,u()‘fﬁ)D (2)
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Theorem IIL17 Let o« > 0,p; > O,pu; € RE =
1,--,m),p1 — [@] > 1,\ # 0, and let D* be the right
sided operator of Riemann-Liouville fractional derivative (6),
then there holds the formula
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The above theorem can be proved by the similar lines to that
of the theorem IIL.15

(32)

m = pi = 0,1 = i, (32) reduces to

Corollary IIL18 If @ > 0,p > O,u € Rop— [of > 1

and \ # 0, there holds the formula
(D2 [t Ly uEp u(M7)]) ()
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On using the identity (2), (33) reduces to the result

(Dg [ta_#Lp,uEﬁw(/\t_ﬂ)]) (z) = x_u_ﬁEﬁ,ﬁﬂka()‘x_ﬂ)
(34)

IV. CoONCLUSION

It is expected that some of the results derived in this survey
may find applications in the solution of certain fractional
order differential and integral equations arising problems of
physical sciences and engineering areas, where the D-G-L
differentiation and integration as well as multiindex M-L
functions leading a pivotal role.
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