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Abstract—Electromyography (EMG) is the study of muscles 

function through analysis of electrical activity produced from 
muscles. This electrical activity which is displayed in the form of 
signal is the result of neuromuscular activation associated with 
muscle contraction. The most common techniques of EMG signal 
recording are by using surface and needle/wire electrode where the 
latter is usually used for interest in deep muscle. This paper will 
focus on surface electromyogram (SEMG) signal. During SEMG 
recording, several problems had to been countered such as noise, 
motion artifact and signal instability. Thus, various signal processing 
techniques had been implemented to produce a reliable signal for 
analysis. SEMG signal finds broad application particularly in 
biomedical field. It had been analyzed and studied for various 
interests such as neuromuscular disease, enhancement of muscular 
function and human-computer interface. 

 
Keywords—Evolvable hardware (EHW), Functional Electrical 

Simulation (FES), Hidden Markov Model (HMM), Hjorth Time 
Domain (HTD). 

I. INTRODUCTION 
HIS paper reviews the works on the surface 
electromyography (SEMG) signal processing and its 

analysis for engineering research in diverse areas such as 
rehabilitation, movement analysis, myoelectric control of 
prosthesis, grasp recognition, human machine interaction, 
speech recognition, Parkinson disease and clinical applications 
and diagnosis. The paper begins with the brief description of 
myoelectric signal generation and next the explanation of 
various signal processing techniques applied for SEMG signal. 
The techniques include methods of signal acquisition, noise 
removal and analysis of signals in time and frequency domain. 
In the last, this paper looks at several works and literatures on 
application of SEMG signal in various fields such as control 
of prosthetic device, nerve conduction velocity, motion 
analysis, clinical diagnosis and speech recognition. The paper 
is concluded after compiling several recent works on the usage 
of SEMG signal processing and analysis. The objective of the 
paper is to make the researchers acquainted with different 
techniques available for analysis and interpretation of SEMG 
signal also different techniques can be employed for a 
particular purpose.  
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II. MYOELECTRIC SIGNAL 
Electromyography (EMG) is a technique for evaluating and 

recording the electrical activity called myoelectric signals 
produced by skeletal muscles. Myoelectric signals are formed 
by physiological variations in the state of muscle fiber 
membranes during voluntary, involuntary or stimulated 
contractions. EMG nowadays has become an important 
parameter in biomedical and clinical applications. Thus 
detection, processing, interpretation and analysis of EMG 
signal had become a major research area in biomedical field 
involving wide range of expertise from physician, engineer 
to computer scientist. Study of EMG is said to begin as 
early as 17th century. With the development of modern 
electronic devices and equipments along with new techniques 
in signal processing and mathematical models there is intense 
study of EMG signal from the last two decades. 

The origin of EMG is closely related to the work of nervous 
system. It is a complicated signal, controlled by the nervous 
system and is dependent on the anatomical and physiological 
properties of muscles. Electrochemical transmission between 
nerves starting from the brain produces action potential which 
propagates through nerve fibers and finally stimulates the 
skeletal muscle. This stimulation creates muscle contraction 
which results in movement of human limbs. Action potential 
acts on a single nerve and there is vast number of skeletal 
muscle fibers. Thus, the electrical potential from muscle 
recorded for EMG is actually superposition of action 
potentials acting on skeletal fiber muscles [1]. 

EMG signal is representation of electrical potential in the 
form of time varying signal. By studying EMG, one actually 
looks into the characteristics of body movement due to 
muscle contraction activity. Kinesiological EMG is study of 
the voluntary neuromuscular activation of muscles within 
postural tasks, functional movements, work conditions and 
treatment/training regimes. It is established as an evaluation 
tool for applied research, physiotherapy/ rehabilitation, sports 
training and interactions of the human body to industrial 
products and work conditions. Obtaining EMG signals from 
human includes several processes involving recording, data 
acquisition, signal conditioning and processing. Recording of 
EMG signal is done by means of electrodes. Three types of 
electrodes wire, needle and surface are commonly used where 
the latter being the most widely used being non-invasive [2]. 
EMG signal obtained with different types of electrodes may 
have different characteristics. To specify the type of electrode 
used for recording the EMG signal is generally termed as 
‘Surface EMG’ or ‘Needle EMG’ in almost every literature. 
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This paper reviews most of the literatures employing ‘Surface 
EMG’.  

Surface electromyography (SEMG) provides a non-invasive 
way of studying muscular function. It is very complex, 
representing a summation of tissue-filtered signals generated 
by a number of concurrently active motor units. The generated 
motor unit action potentials (MUAPs) recorded on the skin 
surface varies in amplitude, duration and frequency content 
[1]. SEMG has been used effectively for functional electrical 
stimulation (FES) or for the controlling of artificial limbs but, 
its use in clinical diagnosis has been very limited or non-
existent [3]. A number of studies have shown that SEMG 
generated by either voluntary or electrically elicited muscle 
activity, contain more significant information than it was 
originally believed [4]. 

 

 
Fig. 1 Gel Electrodes 

 

 
Fig. 2 Raw surface EMG signal 

A. Surface EMG Signal Acquisition and Amplification 
Raw Surface EMG is relatively small in amplitude ranging 

from 0 to 10 mV (peak-to-peak) or 0 to 1.5mV (rms) and 
frequency range lies between 0 to 500 Hz, but the usable 
energy is dominant between 50-150 Hz. When the muscle is 
relaxed, a more or less noise-free EMG baseline can be seen. 
The raw EMG baseline noise depends on many factors, 
especially the quality of the EMG amplifier, the environment 
noise and the quality of the given detection condition. The 
amplitude of EMG signal is too small for further processing. 
The signal is amplified using differential amplifiers and it 
rejects or eliminates artifacts. An instrumentation amplifier is 
used to amplify the signal but a pre-amplifying stage is 
necessary to provide initial amplification which converts 
the signal to a low level of impedance before it is fed to the 
main amplifier [5]. Instrumentation amplifier could be 
constructed using general purpose op-amp such as LM 741 or 
integrated circuit (IC). Instrumentation amplifier IC 
commonly used in literatures are the Burr-Brown INA 102 
[5], Analog Devices AD 620 [6], [7] and Texas Instruments 
INA 128 [8]. The amplification gain varies from 1000 to 
50000 according to the amplifier manufacturer.  

 
 

B. Noise Removal 
An unfiltered unprocessed signal detecting the superposed 

MUAPs is called a raw EMG Signal. A raw EMG signal 
sometimes contains inevitable noise. With the presence of 
noise, the data of muscle contraction characteristic would no 
longer be genuine. Noise in EMG signal may emanate from 
various sources i) inherent noise in electronics equipment ii) 
ambient noise from electromagnetic radiation, iii) motion 
artifact and iv) inherent instability of the signal [9]. Noise 
could also originate from the electrode. The metal-
electrolyte contact of electrode is intrinsically noisy and has 
become an important factor in EMG noise. It is also a limiting 
factor for detection of very small potentials. 

An EMG recording system with wire that connects surface 
electrode with the adjacent amplifying equipment could be 
vulnerable to pick up main hums and other electrical 
interference. Therefore, to solve the noise problem which 
might results from using lengthy wire a pair of surface 
electrode combined with differential amplifier in a single 
module was proposed [10]. The preamplifier circuit built for 
this module has operational characteristics which allow 
surface EMG signals to be recorded with effective suppression 
of extraneous electrical interference. This device is called 
miniature skin-mounted preamplifier had been used in several 
literatures. 

Motion artifact is another source of noise. It could be 
caused by electrode movement on skin surface and electrode 
cable. Noise produced by motion artifact is in the range of 0 
to 20 Hz and can be filtered out by using high pass filter 
[11]. Regardless of motion artifact noises, SEMG signal in 0 
to 20 Hz range do provide significant information on firing 
rates of active motor units [12]. However, in most works, 
information contained in signal of this range is not of interest. 
There are cases where artifact noise is unavoidable due to 
natural and intentional causes. For example works on 
removing motion artifact from surface EMG recordings in 
Whole Body Vibration [13]. Vibration training is used in sport 
medicine to enhance athletic performance. Surface EMG 
recording is one on subject undergoing vibration training for 
muscle activity evaluation. The vibration would produce 
motion artifact and creates noise. They used adaptive filtering 
to abolish such noise. Accelerometers are placed onto platform 
or directly on muscles providing error signal shape to be 
cancelled from the raw SEMG signal. The results obtained 
shows effective cancellations of the vibration frequency. 

In general, surface electrode is used to pick up any 
biosignal. Obviously, interference from other biosignal is very 
likely during surface EMG recording. Electrocardiography 
(ECG) is the most common source of interference and often 
known as ECG artifact. A number of literatures had studied 
location of surface EMG recording that affected by ECG 
artifact. Among the muscle location that is vulnerable to ECG 
interference are trunk muscles [14], [15] back muscles [16], 
[17] and chest. Various methods had been studied for ECG 
artifact removal from SEMG signal. High-pass filtering using 
Butterworth filter is probably the most simple and 
straightforward idea. Value of cut-off frequency must be 
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chosen in the way that it would not affect the real SEMG 
signal. The optimal value of cut-off frequency as proposed in 
some literatures would be around 30 Hz [18]-[19]. However, 
high-pass filtering is not the only way. Adaptive ECG spike 
clipping in addition to digital high-pass filter had been also 
used [20]. In this work, SEMG signal is collected from 
pectorialis major muscles of adult male subjects. For digital 
high-pass filter, cutoff frequency varied between 10 to 100 Hz 
and the order varied from 1 to 6. Adaptive ECG spike clipping 
on the other hand is a threshold-based suppression method. 
Signal amplitude that exceeds the threshold value will be 
clamped to the threshold. Both methods are effective in 
removing ECG artifact. But when combined, the SNR 
performance improved by 14% over the two methods 
individually. 

Adaptive filter is another method that had been used for 
ECG artifact removal [17], [21], [22]. Raw SEMG signal 
containing ECG artifact is subtracted with a reference signal 
which is correlated with the ECG signal [17]. The result is a 
denoised signal which is the estimate of the SEMG signal of 
interest. Adaptive filtering provides an efficient tool for ECG 
rejection with advantage of ability to rejects all components 
correlated to QRS complex [17]. 

Another source of noise in SEMG signal is the power lines 
with frequency of 50 or 60 Hz. Digital notch filter, spectrum 
interpolation [23] and adaptive filtering [24] can be used for 
noise removal. Notch filter could be designed with notch 
centered at power lines frequency and 1Hz width. However, 
desired signal will be distorted since power lines frequency 
might contain components of the desired SEMG signal [23]. 
Hence some literature does not recommend the use of notch 
filter [12]. In spectrum interpolation method, given an SEMG 
signal, true power spectrum of certain frequency in that signal 
can be estimated by interpolation of the curve at that 
frequency. Thus method is like a notch filter with limited 
attenuation instead of infinite null [23]. In [21] adaptive 
filtering is developed aimed to remove both power lines and 
ECG artifact interference. 

There are numerous other literatures regarding noise and 
artifact removal from SEMG signal using methods that have 
been discussed above. Some recent literatures on this area are 
removing electromagnetic noise from single electrode SEMG 
signal [25] and the use of digital Butterworth filter to subtract 
noise from low magnitude SEMG using simulated EMG 
signal [26]. Some literatures have used neural network for 
EMG noise removal [27], [28]. 

III. SEMG SIGNAL ANALYSIS 

A. Amplitude Estimation 
SEMG signal can be analyzed by its amplitude estimation. 

EMG signal exhibits nonlinearity. Its amplitude at any instant 
in time is stochastic and unpredictable and it fluctuates very 
rapidly between positive and negative values. In digital signal 
processing, the fluctuations could be removed by obtaining the 
average of the random values which is analogous to smoothing 
operation in analog processing. Since the signal fluctuates 

between positive and negative it produces meaningless 
results. Therefore rectification of the EMG signal is necessary 
before averaging. F ull-wave rectification is preferred to 
half- wave so that all energy of the signal is taken into account 
[29]. 

Study of amplitude estimation of EMG signal had become 
an important parameter for feature extraction. As early as 
1952, the first continuous EMG amplitude estimator is 
mentioned in the literature [30]. It is a classical hardware 
approach where signal is full-wave rectified before it is low 
pass filtered using resistor-capacitor. Nowadays signal 
analysis is computed digitally on a processor or using some 
software. Many techniques are available these days which 
had proven to be more efficient than the traditional approach. 

To analyze the amplitude of EMG signal, parameters that 
are frequently used are root mean square (RMS) and mean 
absolute value (MAV). RMS is square root of average power 
of a signal for a given period of time. MAV on the other hand 
is area under the signal. As the name implies, MAV only takes 
the absolute value of the amplitude. Thus, the EMG signal is 
rectified before MAV is computed. RMS is usually preferred 
than MAV as it involves a measure of the power. Also, the 
assumption that probability density of surface EMG is 
Gaussian had made RMS to be the maximum likelihood 
estimator of EMG amplitude [31]. When EMG signal is 
modeled as Laplacian, MAV is comparable to RMS [32]-[33]. 

Graupe and Cline [34] introduced temporal whitening 
followed by 245 ms window of moving average root mean 
square (MARMS) had been implemented in some literatures 
to obtain the amplitude estimate [35]-[36]. Comparing the 
result with the traditional amplitude estimator described in 
[30], MARMS with temporal whitening filter shows major 
improvement in SNR performance. While previous studies 
deal with stationary EMG signal using fixed window length 
for smoothing, now researchers give stress to work on 
dynamic EMG where exerted force or muscle length changes 
during contraction and frequency content of the signal 
continuously changes with time. To estimate the amplitude 
of dynamic EMG, adaptive smoothing window length had 
been proposed [37]. In this work, simulation and experimental 
results conclude that the advantage of adaptive processor is 
found to be situation dependent. Meaning that in only certain 
cases, adaptive window length might have advantage over 
fixed- length. 

B. Time Analysis 
1. Turns per second (t/s): Number of slope reversals per 

second separated from the previous and the following turn 
by an amplitude difference greater than 20 µV. 

2. Zero crossings per second (zc/s): Defined as the number 
of sign reversals exceeding a threshold of 20 µV per 
second. 

C. Frequency Analysis 
SEMG signal being non stationary can also be evaluated by 

means of analyzing the frequency spectrum. After obtaining 
the frequency spectrum, the signal is  assessed by the 
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measurements of parameters like power spectral density 
(PSD) and its two variables mean and median frequency.  
1. Power Spectral Density: Amount of power per unit of 

frequency as a function of the frequency. The power 
spectral density is the Fourier transform of the 
autocorrelation sequence. It is the square of the Fourier 
Transform of EMG signal divided by the signal length. 
PSD shows how power of signal in time series is 
distributed with frequency. 

2. Mean Frequency: It is an average power. It is the 
frequency dividing the area under the power spectral (PS) 
curve in two equal parts. It is also known as centroid 
frequency. 

 
Mean frequency = ∑ ݂݆݅ܲ/ெ

௝ୀଵ ∑ ݆ܲԢெ
௝ୀଵ  

 
3. Median Frequency: It is the frequency at which the EMG 

power spectrum is divided into two regions with equal 
power or amplitudes. It is the half of the total power. 

 
Median frequency =∑ ݆ܲ ൌ 1/2∑ ݆ܲெ

௝ୀଵ
ெ
௝ୀெ஽  
 

 
Fig. 3 Power spectral density and Median frequency 

 
There is no clear definition of mean and median frequency 

except to define it by mathematical equation. T he SEMG is 
analyzed statistically and the result of frequency analysis is 
often used, involving samples of data from a number of 
subjects [38]. Frequency analysis is also used in the study of 
muscle fatigue [39]. 

D. Time-Frequency Analysis 
Time-frequency analysis is the most suitable technique for 

analyzing non-stationary signals like SEMG. As noted by Jean 
Ville in 1947, there are two basic approaches to time-
frequency analysis. The first approach is to cut the signal into 
slices in time, and then to analyze separately each of these 
slices to examine their frequency content. The other approach 
is to first filter out different frequency bands, and then cut 
these bands into slices in time and analyze their energy 
content. The first one is used for transforms like short time 
Fourier transform and the Wigner-Ville transform, while the 
second one is used for the wavelet transform.  

The time-frequency approach on SEMG signal had been 
studied and applied by researchers with implementation of 
various techniques like Cohen Class Transform, Short Time 
Fourier Transform (STFT) [40], [41], Wigner-Ville 
Distribution (WVD) [42]-[44], Choi-Williams Distribution 
[45] and Wavelet Transform [46]. 

Fourier Transform is the most popular method used for 
frequency analysis of time domain signals. It is suitable for 
stationary signals where frequency components do not vary 
with time. But, for non stationary signals there a r e  various 
components of frequency at different instants of time. SEMG 
signal is a non-stationary type signal.  

The wavelet transform is used to decompose a signal into its 
constituent parts (wavelet functions) and then analyzing it in 
different frequency domains with each components resolution 
matched to its scale. Thus a correlation between the time and 
frequency domains of a non-stationary signal is established.  

Comparison between different methods of time-frequency 
approach on SEMG signal had been studied and reported in 
several literatures. WT was compared with STFT and WVD 
and it was found that WT had good resolution and high 
performance for myoelectric signals [46]. Cohen class 
transformation was particularly suitable for analyzing surface 
myoelectric signals [47]. WT can be used to analyze signals at 
different multiresolution levels. The relationships between 
wavelet coefficients and time frequency plane was also 
analysed [48]. Wavelet function is both dilated and translated 
in the time and cross-correlated with the time domain SEMG 
signal [49]. STFT, Running Windowed Exponential 
Distribution (RWED), Pseudo Wigner-Ville distribution 
(PWVD) and Continuous Wavelet transform (CWT) were 
compared and it was found that first three methods were poor 
in achieving good time and frequency resolution but CWT 
was very reliable in analysis of bioelectrical signals in 
general and showed better statistical performance than other 
three methods [50]. 

IV. APPLICATIONS OF SEMG 

A. Estimation of Muscle Fiber Conduction Velocity 
Action potential propagates through nerve fiber with 

velocity known as nerve conduction velocity (NCV). In case 
of muscle, it is called muscle fiber conduction velocity 
(MFCV) and is dependent on diameter and type of the fiber 
itself. SEMG is useful in estimating the value of MFCV. 
Average delay between SEMG signals recorded from two or 
multi channel is used to estimate MFCV. Location of 
electrodes for recording is in the way that the propagation 
moves along the fiber between the electrodes. Various 
literatures have reported studies on MFCV using SEMG. 
Studies had been done either for medical diagnosis or to study 
the characteristics of MFCV. Techniques for MFCV 
estimation had been a subject of interest with a number of 
approaches had been proposed such as the use of two-
dimensional SEMG recording [51], regression analysis 
between spatial and temporal frequencies of multiple dips 
introduced in the EMG power spectrum [52] using normalized 
peak-averaging technique [53] and minimization of the mean 
square error between time-filtered versions of two surface 
EMG signals [54]. 
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B. Prosthetic Device  
Prosthetic devices are often used to replace the missing 

parts of human body. Various type of input to the device for 
mean of control had been used by the researchers. 
Bioelectrical signals such as evoked potential (EP), nerve 
conduction velocity (NCV), EEG, EMG, EOG fit well as an 
input for prosthetic device control.  

Myoelectric control uses the EMG generated by muscular 
contractions as an input to controllers for powered prostheses 
for many years. For the purpose of prosthetic control surface 
electrodes are equally beneficial as intramuscular electrodes 
[55]. Numerous literatures had been reported regarding studies 
in this area. EMG controlled prosthetic device is developed by 
analysing signal for discrimination, classification, pattern 
recognition or feature extraction [56]-[58]. By employing 
pattern recognition lots of control information can be extracted 
from SEMG signal. In terms of SEMG feature extraction 
method, various techniques have been reported in literatures. 
In general there are two categories of feature extraction 
techniques one in time domain and another one in time-
frequency domain. Often researchers choose to implement 
multiple techniques and then to select the most suitable one. In 
one literature, for feature extraction wavelet packet transform 
was used and for dimensionality reduction and nonlinear 
mapping of the features, linear, nonlinear feature projection 
method was proposed comprising of PCA and SOFM [59]. In 
another literature, various feature sets consisting of Slope Sign 
Changes (SSC), Number of Zero Crossings (ZC), Waveform 
Length (WL), Hjorth Time Domain (HTD) Parameters, 
Sample Skewness (SS), and Auto Regressive (AR) Model 
from the EMG signals were extracted. These features were 
then reduced in dimensionality with the Linear Discriminant 
Analysis (LDA) feature projection [60]. It is proved that 
feature projection methods can consolidate such information 
more effectively than feature selection based methods in EMG 
classification problems [61].  

For developing prosthetic device for amputees, SEMG data 
is to be acquired from the respective subjects to analyze the 
SEMG signal characteristic. Data can be taken from muscles 
located at residual part of the limb where the prosthetic device 
is attached to [7]. Remnant of the muscles in residual limb is 
likely linked with muscles of the lost limb. The type of 
prosthetic device ensures the location of surface electrode on 
muscles for SEMG acquisition. For instance, for prosthetic 
hand, extensor carpi ulnaris and flexor carpi ulnaris located on 
the forearm are the recommended spot for electrode placement 
[62], [63]. For studying the characteristics of different types of 
movement, requires a much complex design and more 
electrodes might be needed to obtain more information. 
Prosthetic hand complete with fingers is an example of such a 
design. Decoding of individuated finger movements had used 
up to 32 electrodes attached on different area of forearm [64]. 
DSP-based controller for prosthetic hand had been used for 
pattern recognition. Here eight parameters were computed for 
SEMG feature extraction which were integral of EMG, 
waveform length, variance, zero crossings, slope sign changes, 
Willison amplitude, cepstrum analysis and autoregressive 

model. The parameters were grouped into four groups and 
combined with each other in the classification stage to choose 
the highest classification rate before the selected feature is 
implemented in the PC based discriminative system [65]. 
Different techniques have been implemented by researchers in 
their literatures depending on the task to be performed. For 
example, in a work on developing fingers movement of 
prosthetic hand, time-domain features performed better in 
real-time decoding of hand and wrist movements [64], [66], 
[67]. Another work on prosthetic hand used both time and 
time-frequency domain for feature extraction and 
implemented the result on a neuro-fuzzy system for pattern 
recognition [68]. 

In contrast to conventional hardware, an Evolvable 
Hardware (EHW) chip had been designed as a controller for 
myoelectric prosthetic hand which adapts to changes in task 
requirements or changes in the environment, through its ability 
to reconfigure its own hardware structure dynamically and 
autonomously. The chip consisted of Genetic Algorithm (GA) 
hardware, reconfigurable hardware logic, a chromosome 
memory, a training data memory and a 16-bit CPU core (NEC 
V30) [69]. Another two-step incremental EHW is based on 
designing controllers for prosthetic hand providing six 
different motions in three different degrees of freedom: Open 
and Close hand, Extension and Flexion of wrist, Pronation and 
Supination of wrist [70]. 

 

 
Fig. 4 The digital gate based architecture of the prosthetic hand 

controller 

C. Clinical Diagnosis 
SEMG has been used effectively for functional electrical 

stimulation (FES) or for the controlling of artificial limbs, but 
its use in clinical diagnosis has been very limited or non-
existent. SEMG should not be used as a diagnostic tool due to 
the phenomenon of crosstalk, signal attenuation and filtering 
[3]. Several review reports regarding the reliability of SEMG 
technique for diagnostic purpose are available. SEMG 
generated by either voluntary or electrically elicited muscle 
activity, contain more significant information than it was 
originally believed had been proved in number of studies [4]. 
One of the problems with SEMG when used as diagnostic tool 
is the difficulties in extracting features of single motor units 
which is necessary for diagnosis of neuromuscular disorders 
[71]. Since electrode placement is important for obtaining the 
SEMG signal with maximum information from the muscle, 
improved methods for achieving appropriate electrode 
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placement will enhance outcomes based on the signal. A 
multiple surface electrode had been designed with capabilities 
to detect electrical activity of muscle up to single motor units 
[72], [73]. Several recording technique that used such type of 
electrode had been introduced. High density-surface EMG 
(HD-SEMG) uses multiple closely spaced electrode overlying 
restricted area of skin but had not been widely used as 
diagnostic tools in clinical neurophysiology practices [74]. In 
one of the literature, HD-SEMG technique had been tested for 
clinical application on detecting post-poliomyelitis syndrome 
by comparing the SEMG between healthy subjects and those 
with the syndrome. The result of raw signal analysis had 
shown significant differences between the groups [75]. Based 
on outcome of this literature, the authors had urged that more 
studies should be initiated to explore the diagnostic value of 
SEMG. In another literature, a high-spatial-resolution surface 
EMG (HSR-EMG) is mentioned which used multiple-
electrode array combined with spatial filter procedure [76]. A 
number of recent studies that make use of multiple surface 
electrodes for clinical application had been reported in 
literatures. For example, investigation of motor unit 
characteristics of biceps brachii done on post-stroke patients 
[77], investigation on SEMG signal in carpal tunnel syndrome 
to observe alteration on the signal [78] and analysis of 
interspike interval in neuromyotonia syndrome [79]. 

D. Biomechanics and Motion Analysis 
SEMG is well suited into studies of motion, gait analysis or 

body movements. A monopolar or bipolar electrode is 
sufficient for this purpose. The challenge is perhaps to deal 
with anomaly in signals due to noises or motion artifact. It can 
be used in almost all type of works concerning muscle 
movement, not only the limbs but also face [80], [81] and on 
both human and animals [82]. Pattern classification can be 
used for walking motions [83]. In sports science, movement 
and motion are always been a subject of study. Data from 
SEMG is used to obtain statistical analysis result for various 
purposes which includes study in possibilities of injury [84], 
effect of different skills of sports on neuromuscular activity 
[85], effect of detraining [86], examination on rapid muscle 
force characteristics after high level match play [87], 
quantification of muscle activation pattern of certain activities 
involving movement [88], for different walking speed of 
normal healthy individuals. The potential use of this analysis 
is in controlling the prosthetic device like artificial knee or 
hand. A human may deviates from his normal gait because of 
neurological, anatomical and environmental reasons and to 
correct an individual’s gait, an accurate and quantitative 
assessment of deviation is required. There are many 
techniques which have developed over the years. A contact 
based method was developed in which sensors like electro-
goniometer and accelerometer were attached to individual’s 
limb and their movement was recorded. But the sensor hinders 
the normal movement and the information available is limited. 
Later, non-contact or imaging based methods were developed 
using a camera system [89]. Magnitude and intensity of the 
EMG signal was qualitatively related to the force produced by 

a muscle under given condition. Guidelines for designing 
envelope filters and specifying the number of strides needed to 
produce valid EMG profiles [90] just to name a few. 

E. Speech Recognition 
Speech recognition has become a widely researched field 

covering tasks such as autonomous transcription on a home 
computer to advanced military and security applications. One 
proposed function is the control of secondary tasks in military 
fighter jets. Due to the complexity of their instrument panels 
and controls, pilots are forced to place a large portion of their 
focus downwards. It is desirable to implement a speech 
recognition system that would alleviate some of this 
dependence and enable more concentration to be shifted 
towards “heads-up” flying. However in order for speech 
recognition to be a usable tool in such a critical function, 
accuracy rates must be exceptional [91]. The idea is to 
research alternative control technologies to aid pilots in the 
operation of high performance aircraft and to develop speech 
prosthesis that function using the myoelectric signal as input. 
The cockpit of an aircraft is an environment of high audio 
noise but the myoelectric signals are unaffected [92]. The idea 
in developing an EMG based automatic speech recognition 
(ASR) system is based on assumption that articulatory facial 
muscles might contain some kind of speech information. 
Movement of lips or jaw during speech production is 
obviously synchronized with contraction and relaxation of 
certain facial muscles. Thus, SEMG signal acquired from 
these facial muscles, if it contain unique characteristic 
according to the corresponding speech signal, could provide 
an alternative ASR system which is advantageous when 
applied in a noisy environment. The result showed that SEMG 
based speech recognition was a promising way towards an 
ASR system [93]. 

Several literatures had initiated study in this particular area. 
Artificial neural network was used for classification of speech 
based on SEMG signal. This study involved three facial 
muscles: mentalis, depressoranguli oris and massetter [94]. 
Multi-stream Hidden Markov Model (HMM) for EMG-based 
speech recognition was implemented where no voice 
generation involve, only movement of mouth. Another recent 
work had also used the Hidden Markov Model to model the 
SEMG signal for certain Korean words [95], [96]. Work has 
been also done on unvoiced digital Chinese recognition based 
on facial myoelectric signal. Genetic arithmetic and support 
vector machine classifier had been used [97].  

V. DISCUSSION 

SEMG signal proved to be a useful tool for various 
applications in clinical diagnosis, sport science for 
performance improvement and injury detection, muscle 
fatigue, gait analysis and human-computer interface for 
prosthetic device and speech recognition. Although there is 
some argument on effectiveness for use in diagnostic purpose, 
recent developments on surface electrode design had brought 
to a promising future of SEMG for clinical application. Other 
than this, there are a lot of other applications in which SEMG 
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could be implemented. For example, in control of robotic arm 
for industrial purpose, to characterize hand gesture recognition 
which might be useful in sign language [98], design of wheel 
chair based on SEMG signal [99] or to develop an emotion 
recognition system [100].  

However, in order to employ SEMG, one still had to 
consider the effectiveness of the SEMG recording equipments. 
The number of electrodes sometimes could be crucial. To 
obtain details of different movement such as in prosthetic 
fingers, sufficient number of electrodes has to be attached on 
the forearm. Record from each location of muscles that 
involve in movement of fingers is important to provide 
different type of features. Another crucial aspect is the 
knowledge of analysis technique of SEMG signal to obtain its 
features. While utilizing SEMG as a tool, its features and 
characteristic is the key to information which then linked with 
the outcome of the study. Sometimes, features provided by 
SEMG obtained from numerous subjects are gathered to 
obtain some hypothesis according to the interest of the study. 
Applications like biomechanics and motion study make use of 
statistical analysis. Analysis methods of SEMG are classified 
into amplitude, time domain, frequency domain and time-
frequency domain. It is up to the researcher to select the most 
reliable, but often more than one method is implemented to 
provide variety in results. 

VI. CONCLUSION 
Study on SEMG is very broad, ranging from the design of 

electrodes, recording techniques, analysis methods and 
applications. Because of its non-invasive nature, it can be 
utilized for clinical diagnosis making it much more 
comfortable for subjects. But still there is a lot to improve in 
the design of recording equipments especially design of 
electrodes so that SEMG could be fully reliable for clinical 
purpose. However, for certain applications like human 
computer interface, muscle fatigue, gait analysis basic 
requirement of recording equipment is sufficient. 
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