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Restarted Generalized Second-Order Krylov
Subspace Methods for Solving Quadratic

Eigenvalue Problems
Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei and Qinghua Wu

Abstract—This article is devoted to the numerical solution of
large-scale quadratic eigenvalue problems. Such problems arise in
a wide variety of applications, such as the dynamic analysis of
structural mechanical systems, acoustic systems, fluid mechanics,
and signal processing. We first introduce a generalized second-order
Krylov subspace based on a pair of square matrices and two initial
vectors and present a generalized second-order Arnoldi process for
constructing an orthonormal basis of the generalized second-order
Krylov subspace. Then, by using the projection technique and the
refined projection technique, we propose a restarted generalized
second-order Arnoldi method and a restarted refined generalized
second-order Arnoldi method for computing some eigenpairs of large-
scale quadratic eigenvalue problems. Some theoretical results are also
presented. Some numerical examples are presented to illustrate the
effectiveness of the proposed methods.

Keywords—Quadratic eigenvalue problem, Generalized second-
order Krylov subspace, Generalized second-order Arnoldi process,
Projection technique, Refined technique, Restarting.

I. INTRODUCTION

IN this paper, we consider the quadratic eigenvalue problem
(QEP) of the form

(λ2M + λD +K)x = 0, (1)

where λ ∈ C, x ∈ C
N\{0}, and M,D,K ∈ C

N×N . The
scalar λ and the nonzero vector x are called the eigenvalue
and the associated eigenvector of (1), respectively. It is well
known that the QEP has 2n eigenvalues and 2n eigenvectors.

The QEP arises in a wide variety of applications, such as
the dynamic analysis of structural mechanical systems [6],
acoustic systems [4], the elastic deformation of anisotropic
materials [35], fluid mechanics [14], microelectronic mechan-
ical systems [5], the vibration in the structural analysis for
fast trains [15], total least squares problems [22], [23], and
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signal processing [8]. For a comprehensive survey of appli-
cations, spectral theory, perturbation analysis and numerical
approaches for the QEP, the interesting reader is referred to
[38] and the references therein.

A standard approach for solving the QEP (1) is to use
the linearization in which the QEP is transformed to an
equivalent 2N×2N linear eigenvalue problem. By introducing
a new vector y = λx, the QEP (1) can be linearized into a
generalized eigenvalue problem of the form(

λ

[
M 0
0 I

]
−

[
−D −K
I 0

]) [
y

x

]
= 0, (2)

or an equivalent standard eigenvalue problem of the form[
−M−1D −M−1K

I 0

] [
y

x

]
= λ

[
y

x

]
, (3)

where we assume throughout the paper that M is nonsingu-
lar. If

(
λ, [yT , xT ]T

)
is an eigenpair of (2), then x is an

eigenvector of (1) associated with the eigenvalue λ. After
linearization, the standard Krylov subspace projection methods
such as the Arnoldi algorithm [2], [11] can be applied for
solving (3). However, the linearization doubles the size of
the problem, i.e., the dimension of the space that the Krylov
subspace projection methods work on is twice of the original
one. It could significantly increases the computational cost
and memory requirements for large-scale problems. So it is
not preferable to work on the linearized problem directly. The
second serious drawback of working on the linearized problem
directly is that even if a backward stable method is used for the
linear eigenvalue problem, the stability is not guaranteed for
the QEP. This is because the set of admissible perturbations
for (2) is larger than for (1), which maybe makes the condition
number increase, see, for example, [37].

For recent years, finding a suitable numerical method for
solving the QEPs with special structure is an area of active
research and has attracted considerable attention. In [13],
the QEP with M,D,K real symmetric and M,K positive
definite was studied. A numerical algorithm was proposed for
computing a few of the smallest positive eigenvalues and their
associated eigenvectors. The algorithm utilizes the symmetry
and positivity of the coefficient matrices, and converges under
some mild conditions. Guo [12] considered the gyroscopic
QEP, where M = MT , D = −DT , and K = KT with
M being positive definite. A solvent approach was proposed
for finding all eigenvalues of the gyroscopic QEP. It has
been shown that the method converges quadratically when the
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QEP has no eigenvalues on the imaginary axis, and converges
linearly when the QEP has purely imaginary eigenvalues with
even partial multiplicities. This approach requires O(N3)
flops and O(N2) memory, and therefore is only practicable
for problems of relatively small size. To overcome the slow
convergence in the presence of purely imaginary eigenvalues,
Qian and Lin [28] presented a new method, which has the
quadratic convergence rate for any gyroscopic QEP. In their
method, purely imaginary eigenvalues are firstly shifted to
eigenvalues with nonzero real parts, while other eigenpairs
are kept unchanged, to generate a new gyroscopic QEP.
Then, the solvent approach in [12] is applied to the new
gyroscopic QEP. In [19], a structure-preserving algorithm was
proposed for solving the palindromic QEP, where K = MT

and D = DT . Moreover, a generalized T-skew-Hamiltonian
implicitly restarted shift-and-invert Arnoldi algorithm was also
developed for finding the eigenvalues of the large and sparse
palindromic QEP in a specified region. Another class of QEPs
arising from some practical applications was studied in [18].
A novel method was designed by combining a structure-
preserving method and a quadratic Jacobi-Davidson method.

A number of numerical methods, which are applied to large-
scale QEPs directly, have been proposed for computing a few
eigenvalues and the corresponding eigenvectors for general
QEPs in the literature. In these methods, they do not transform
the QEP to an equivalent linear form; instead, they project
the QEP onto a properly chosen low-dimensional subspace
to reduce to a QEP with lower order. The reduced QEP
is then solved by standard dense matrix techniques such as
the QR method for linear eigenvalue problems or the QZ
method for generalized linear eigenvalue problems [2], [9].
The remarkable feature in practice is that these methods are
applied directly to solve the original problem, and so the
essential structures of M , D, K as well as the spectral
properties are preserved promisingly. In [36], a quadratic
Jacobi-Davidson type method was designed and applied for the
solution of quadratic eigenvalue problems arising from acous-
tic problems. However, the method targets at one eigenvalue
at one time with only local convergence. A direct Krylov-
type subspace method with a generalized Arnoldi process was
briefly described in [29]. A reformulated Arnoldi algorithm for
non-classically damped eigenvalue problems was presented in
[30]. Meerbergen [26] proposed a quadratic residual iterative
method with a locking and restarting scheme. Li and Ye [24]
presented a Krylov subspace method based on an Anoldi-type
process for the QEP arising in the quadratically constrained
least squares problem. In [17], an approximation method
based on perturbation subspaces for block eigenvector matrices
was proposed. These perturbation subspaces are contained in
certain generalized Krylov subspaces. Ye [40] presented a
shift-and-invert Arnoldi algorithm and discussed its inexact
shift-and-invert variant. Bai and Su [3] proposed a second-
order Arnoldi (SOAR for short) method by using projection
technique for finding some eigenvalues and eigenvectors of the
large-scale QEP. In [27], a quadratic Arnoldi algorithm was
presented. In fact, it is an Arnoldi method applied to linear
eigenvalue problem (3). However, by exploiting the structure
of the Krylov vectors, the memory requirements are reduced

by about a half. In contrast to the quadratic Jacobi-Davidson
type method, subspace iterative methods approximate a group
of eigenvalues simultaneously and have global convergence.
We note that while these methods use a similar projection
process, they differ in the subspaces that are constructed and
used for projection.

The SOAR algorithm presented in [3] is stable, but both
the computational cost and the storage increase as the method
proceeds. To overcome this drawback of the the SOAR al-
gorithm, in this paper, we propose restarted SOAR meth-
ods for computing some eigenvalues and their corresponding
eigenvectors of the QEP (1). That is, for given projection
subspaces, if the SOAR method do not compute the desired
eigenpairs with prescribed accuracy, then one chooses new
better starting vectors, constructs new better subspaces, and
compute approximate eigenpairs until they converge. The
restarted SOAR methods in this paper are also developed
under the framework of projection directly based on (1). The
projection subspaces are the generalized second-order Krylov
subspaces. These two restarted methods are applied to solve
the large-scale quadratic eigenvalue problem directly. Hence
they preserve essential structures and properties of the large-
scale quadratic eigenvalue problem.

Throughout this paper, the following notation is used. I
denotes the identity matrix, ej denotes the j-th column of the
identity matrix I , and 0 denotes the zero vector or zero matrix.
The actual dimension of I and 0 will always be apparent from
the context. The superscripts T and ∗ denote the transpose and
the conjugate transpose of a vector or a matrix, respectively.
We denote 1-norm and 2-norm by ‖·‖1 and ‖·‖2, respectively,
for a vector or a matrix. The notation span{V } denotes the
space spanned by the column vectors of the matrix V and
span{v1, v2, · · · , vn} denotes the space spanned by the vector
sequence v1, v2, · · · , vn. Finally, Matlab [25] notation is used
whenever possible.

The remainder of the paper is organized as follows. In
Section 2, we first introduce the generalized second-order
Krylov subspace. Then, the generalized second-order Arnoldi
process for constructing an orthonormal basis of the subspace
is described and some implementation issues are addressed.
In Section 3, we present a restarted generalized second-order
Arnoldi method and a restarted refined generalized second-
order Arnoldi method for solving the large-scale QEP (1). In
Section 4, some numerical examples are presented to illustrate
the advantage of the proposed methods. Some concluding
remarks are given in last section.

II. THE GENERALIZED SECOND-ORDER KRYLOV

SUBSPACE AND THE GENERALIZED SECOND-ORDER

ARNOLDI PROCESS

In [3], Bai and Su gave the following definition.
Definition 2.1: Let A and B be square matrices of order

N , and u1 ∈ C
N be a nonzero vector. Then the sequence

r0, r1, r2, · · · , rn−1,
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where

r0 = u1,

r1 = Au1,

rj = Arj−1 +Brj−2 for j ≥ 2,

is called a second-order Krylov sequence based on A, B and
u1. The space

Gn(A,B;u1) = span{r0, r1, r2, · · · , rn−1},

is called an n-th second-order Krylov subspace.
To generate an orthonormal basis of the second-order

Krylov subspace Gn(A,B;u1), Bai and Su proposed a second-
order Arnoldi process, see [3] for details.

We extend their idea to obtain a generalized second-order
Krylov subspace, which is defined as follows.

Definition 2.2: Let A and B be square matrices of order
N , and u1 �= 0 and u2 be two N -dimensional vectors. Then
the sequence

r0, r1, r2, · · · , rn−1, (4)

where

r0 = u1,

r1 = Au1 +Bu2,

rj = Arj−1 +Brj−2 for j ≥ 2,

is called a generalized second-order Krylov sequence based
on A, B and u1, u2. The space

Gn(A,B;u1, u2) = span{r0, r1, r2, · · · , rn−1},

is called an n-th generalized second-order Krylov subspace.
We note that the generalized second-order Krylov subspace

Gn(A,B;u1, u2) generalizes the standard second-order Krylov
subspace Gn(A,B;u1) in the way when u2 is a zero vector,
the generalized second-order Krylov subspace is the standard
second-order Krylov subspace, namely,

Gn(A,B;u1, 0) = Gn(A,B;u1).

By introducing the vector u2, we can apply the restarted
strategy with the starting vector v = [uT

1 , u
T
2 ]T , as used in

the following section.
Let

F =

[
A B

I 0

]
.

The Krylov subspace associated with the matrix F and the
vector v is

Kn(F ; v) = span{v, Fv, F 2v, · · · , Fn−1v}. (5)

It is easy to verify that the generalized second-order Krylov
vector sequence {rj} and the standard Krylov vector sequence
{F jv} are related as the following form[

rj
rj−1

]
= F jv for j ≥ 1. (6)

Now, we propose an algorithm to establish an orthonormal
basis q1, q2, · · · , qn of the generalized second-order Krylov
subspace Gn(A,B;u1, u2). We call it a GSOAR (Generalized
Second-Order ARnoldi) process. The algorithm is described
as follows.

Algorithm 2.1: GSOAR process
1. q1 = u1/‖u1‖2;
2. p1 = u2/‖u2‖2;
3. for j = 1, 2, · · · , n
4. r = Aqj +Bpj ;
5. s = qj ;
6. for i = 1, 2, · · · , j
7. hi,j = q∗i r;
8. r := r − qihi,j ;
9. s := s− pihi,j ;

10. end for
11. hj+1,j = ‖r‖2;
12. if hj+1,j = 0, then stop
13. qj+1 = r/hj+1,j ;
14. pj+1 = s/hj+1,j .
15. end for

About Algorithm 2.1, a few remarks are in order:
• The GSOAR process is the same as the SOAR process in

[3] except that at Step 2 in the SOAR process, the vector
p1 is always set to a zero vector.

• Algorithm 2.1 is known as an implementation of or-
thogonalize the generalized second-order Krylov sub-
space Gn(A,B;u1, u2) in the modified Gram-Schmidt
orthogonalization form. It is well known that in the
presence of finite precision arithmetic, a loss of orthogo-
nality can occur when the orthogonalization algorithm
progresses, see [9], [11], [31]. A remedy is the so-
called reorthogonalization where the current vectors have
to be orthogonalized against previously created vectors.
One can choose between a selective reorthogonalization
or a full reorthogonalization. For another proven stable
method for generating an orthonormal basis, we refer to
[7].

Let H̃n denote the (n + 1) × n upper Hessenberg ma-
trix whose nonzero entries hi,j , i = 1, 2, · · · , n + 1 and
j = 1, 2, · · · , n are defined by Algorithm 2.1. Let Hn be
the n× n matrix obtained from H̃n by deleting the last row.
Define Qn = [q1, q2, · · · , qn] and Pn = [p1, p2, · · · , pn]. The
GSOAR process can be written in matrix form

AQn +BPn = QnHn + qn+1e
T
nhn+1,n, (7)

Qn = PnHn + pn+1e
T
nhn+1,n. (8)

We can also rewrite (7) and (8) in the more compact form[
A B

I 0

] [
Qn

Pn

]
=

[
Qn+1

Pn+1

]
H̃n. (9)

This relation assembles the similarity between the GSOAR
process and the well-known Arnoldi process [1].

It is not difficult to verify the following theorem, which
shows that the vector sequence {q1, q2, · · · , qn} is an orthonor-
mal basis of the generalized second-order Krylov subspace
Gn(A,B;u1, u2)..

Theorem 2.3: If hj+1,j �= 0 for j ≥ 1 in Algorithm 2.1,
then the vector sequence {q1, q2, · · · , qj} forms an orthonor-
mal basis of the generalized second-order Krylov subspace
Gj(A,B;u1, u2), i.e.,

span{q1, q2, · · · , qj} = Gj(A,B;u1, u2) for j ≥ 1,
(10)
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and qT
i qk = 0 if i �= k and qT

i qi = 1 for i, k = 1, 2, · · · , j.
In the rest of this section, we derive a new version of the

GSOAR process by using the relations presented above.
Partition Pn+1 as Pn+1 = [p1, P̂ ]. It follows from (8) that

Qn = Pn+1H̃n = p1 · H̃n(1, :) + P̂ · H̃n(2 : n+ 1, :),

which shows that

pn+1 = P̂ en = (Qn − p1 · H̃n(1, :))(H̃n(2 : n+ 1, :))−1.

So we can compute the vector pj+1 from Qj and H(1 : j +
1, 1 : j) and avoid the explicit references and updates of the
p-vectors at lines 9 and 14 of Algorithm 2.1. It makes the
memory requirements reduced by about a half.

In summary, we obtain a new algorithm, which only needs
about a half of the memory space and floating point operations
of Algorithm 2.1. The new algorithm is outlined as follows.

Algorithm 2.2: GSOAR process with memory saving
1. q1 = u1/‖u1‖2;
2. f = u2;
3. for j = 1, 2, · · · , n
4. r = Aqj +Bf ;
5. for i = 1, 2, · · · , j
6. hi,j = q∗i r;
7. r := r − qihi,j ;
8. end for
9. hj+1,j = ‖r‖2;

10. if hj+1,j = 0, then terminate;
11. qj+1 = r/hj+1,j ;

12. f =
(
Qj − u2H(1, 1 : j)

)
H(2 : j + 1, 1 : j)−1ej .

13. end for

III. THE RESTARTED GENERALIZED SECOND-ORDER

ARNOLDI METHOD AND THE RESTARTED REFINED

GENERALIZED SECOND-ORDER ARNOLDI METHOD

Let A = −M−1D and B = −M−1K . To obtain an approx-
imate eigenpair (θ, z), where θ ∈ C and z ∈ Gn(A,B;u1, u2),
we impose the Galerkin condition

(θ2M + θD +K)z ⊥ Gn(A,B;u1, u2),

i.e.,

v∗(θ2M + θD +K)z = 0 for all v ∈ Gn(A,B;u1, u2).
(11)

Let the columns of the N ×n matrix Qn form an orthonor-
mal basis of Gn(A,B;u1, u2). It follows from (11) that

(θ2Mn + θDn +Kn)g = 0, (12)

where g is an n-dimensional vector and

Mn = Q∗
nMQn, Dn = Q∗

nDQn, Kn = Q∗
nKQn. (13)

The eigenvalues of the reduced QEP (12) are called Ritz
values of the original QEP (1) with respect to the generalized
second-order Krylov subspace Gn(A,B;u1, u2). If g is an
eigenvector of the reduced QEP (12), then z = Qng is called
a Ritz vector of the QEP (1).

In summary, we have a method for solving the QEP (1),
which is similar to the SOAR method proposed in [3].

Algorithm 3.1: The GSOAR method for solving the QEP

1. Choose two starting vectors u1 and u2.
2. Run GSOAR process (Algorithm 2.1) with A = −M−1D

and B = −M−1K to generate an N × n orthogonal
matrix Qn whose columns span an orthonormal basis of
Gn(A,B;u1, u2).

3. Compute Mn, Dn and Kn as defined in (13).
4. Solve the reduced QEP (12) for (θ, g) and obtain the Ritz

pairs (θ, z), where z = Qng/‖Qng‖2.
5. Test the accuracy of Ritz pairs (θ, z) as approximate

eigenvalues and eigenvectors of the QEP (1) by the relative
norms of residual vectors:

‖(θ2M + θD +K)z‖2

|θ|2‖M‖1 + |θ|‖D‖1 + ‖K‖1
. (14)

About Algorithm 3.1, a few remarks are in order:

• At Step 2, The product of M−1 with some vector
should be implemented by solving the linear systems of
equations with the coefficient matrix M . To do it, the
LU factorization [11] of M is employed for medium-size
matrices, and the Cholesky factorization of M should be
used for M symmetric definite. For large-scale matrices,
a preconditioning iterative method could be employed to
solve systems with M , where the preconditioner could
be generated once for all. Iterative methods that are
used nowadays are Krylov subspace methods such as
GMRES [33], QMR [10], and BICGSTAB [39]. For a
comprehensive introduction of iterative methods for linear
systems of equations, the interesting reader is referred to
[34]. Note that when the inexact iterative solvers are used
for the linear systems of equations with the coefficient
matrix M , the subspace span{q1, q2, · · · , qn} generated
by Algorithm 2.1 is no longer the generalized second-
order Krylov subspace Gn(A,B;u1, u2).

• At Step 4, to solve the small QEP (12), we transform it to
a generalized eigenvalue problem in the form of (2), and
then use a dense matrix method, such as the QZ algorithm
[9], [11], to find all eigenvalues and eigenvectors (θ, g)
of the small QEP.

A difficulty with the GSOAR method is that it becomes
increasingly expensive as the number n increases. To rem-
edy this difficulty, we can use the algorithm iteratively, i.e.,
we can restart the algorithm every n steps, where n is
some fixed integer parameter. After obtaining k desired Ritz
pairs (θi, zi), i = 1, 2, · · · , k for QEP (1), we can view(
θi, [θiz

T
i , z

T
i ]T

)
as the approximate eigenpairs of the linear

eigenvalue problem (3) since the QEP (1) is equivalent to
the linear eigenvalue problem (3). For the linear eigenvalue
problem, Saad [32] suggested that the new starting vector in
restarted methods should be set to a weighted combination of
the desired approximate vectors, and the desired approximate
vectors are weighted by the corresponding relative residual
norms. In the restarted GSOAR, we generated the new starting
vector by this technique.

This restarted version of GSOAR denoted by GSOAR(n) is
described as follows.

Algorithm 3.2: GSOAR(n): Restarted GSOAR method
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1. Choose n, the maximum size of the subspace, and k, the
desired number of approximate eigenpairs. Choose two
starting vectors u1 and u2.

2. Run GSOAR process (Algorithm 2.1) with A = −M−1D

and B = −M−1K to generate an N × n orthogonal
matrix Qn whose columns span an orthonormal basis of
Gn(A,B;u1, u2).

3. Compute Mn, Dn and Kn as defined in (13).
4. Solve the reduced QEP (12) for (θi, gi) and obtain the

Ritz pairs (θi, zi), where zi = Qngi/‖Qngi‖2 with i =
1, 2, · · · , k.

5. Test the accuracy of Ritz pairs (θi, zi) as approximate
eigenvalues and eigenvectors of the QEP (1) by the relative
norms of residual vectors:

αi :=
‖(θ2iM + θiD +K)zi‖2

|θi|2‖M‖1 + |θi|‖D‖1 + ‖K‖1
. (15)

If it is satisfied then stop, otherwise compute new starting
vectors u1 and u2 by[

u1

u2

]
=

k∑
i=1

αi

[
θizi

zi

]

and go to 2.

For the linear eigenvalue problem, it has been revealed that
the standard projection methods may converge very slowly and
even may fail to converge. In order to correct this problem,
Jia [20], [21] proposed the refined technique. In the rest of
this section, we extend his idea to obtain the restarted refined
generalized second-order Arnoldi method for solving the QEP
(1).

After obtaining k desired Ritz values θi, i = 1, 2, · · · , k for
QEP (1), we now seek k unit length vectors ẑi = Qnĝi, which
are called refined vectors [16] and satisfy

‖(θ2iM + θiD +K)ẑi‖2

= min
z∈Gn(A,B;u1,u2),‖z‖2=1

‖(θ2iM + θiD +K)z‖2

= min
g∈Cn,‖g‖2=1

‖(θ2iM + θiD +K)Qng‖2

= min
g∈Cn,‖g‖2=1

‖(θ2iMQn + θiDQn +KQn)g‖2.

It is easy to see that ĝi is nothing but the right singular
vector associated with the smallest singular value of the N×n
matrix

Ti := θ2iMQn + θiDQn +KQn. (16)

This approximate eigenpair (θi, ẑi), called the refined Ritz
pair, is better than the Ritz pair (θi, zi) due to its minimal
property. Thus, we can propose the restarted refined ver-
sion of GSOAR for solving the QEP, which is denoted by
RGSOAR(n) and described as follows.

Algorithm 3.3: RGSOAR(n): Restarted refined GSOAR
method
1. Choose n, the maximum size of the subspace, and k, the

desired number of approximate eigenpairs. Choose two
starting vectors u1 and u2.

2. Run GSOAR process (Algorithm 2.1) with A = −M−1D

and B = −M−1K to generate an N × n orthogonal

matrix Qn whose columns span an orthonormal basis of
Gn(A,B;u1, u2).

3. Compute Mn, Dn and Kn as defined in (13).
4. Solve the reduced QEP (12) and obtain the desired Ritz

values θi, i = 1, 2, · · · , k. Compute the right singular
vector ĝi associated with the smallest singular value of the
matrix Ti defined by (16), i = 1, 2, · · · , k and obtain k
desired approximate eigenpairs (θi, ẑi = Qnĝi).

5. Test the accuracy of refined Ritz pairs (θi, ẑi) as approxi-
mate eigenvalues and eigenvectors of the QEP (1) by the
relative norms of residual vectors:

αi :=
‖(θ2iM + θiD +K)ẑi‖2

|θi|2‖M‖1 + |θi|‖D‖1 + ‖K‖1
.

If it is satisfied then terminate, otherwise compute new
starting vectors u1 and u2 by[

u1

u2

]
=

k∑
i=1

αi

[
θiẑi

ẑi

]

and go to 2.

At Step 4 in Algorithm 3.3, to generate Ti, i = 1, 2, · · · , k,
we need to compute MQn, DQn and KQn only one time.
However, we note that MQn, DQn and KQn have been
already obtained when Mn, Dn and Kn are computed at Step
3. Thus, we should save MQn, DQn and KQn at Step 3 in
order to save the expense. In order to obtain the right singular
vector ĝi associated with the smallest singular value of the
matrix Ti, we can compute the eigenvector associated with
the smallest eigenvalue of T T

i Ti.
We call the iterations between restarts a “cycle”. For op-

eration requirements we list in Table I the major work, at
each cycle, used for RGSOAR(n) and the restarted Quadratic
Residual Iteration (QRI(n) for short) methods[26].

About Table I, a few remarks are in order:

• In the QRI(n) method, we need to solve a linear system
of order N by the GMRES method [33]. We set the
dimension of the projection subspace used by GMRES
method equals m.

• The matrix-vector product operations for RGSOAR(n)
method means that the product of the matrix A =
−M−1D and B = −M−1K with some vectors while
the matrix-vector product operations for QRI(n) means
that the product of the matrix M , D and K with some
vectors. In practice, the matrix M is often sparse, and
we suppose that the LU factorization process for M

computes a sparse lower triangular matrix L and a sparse
upper triangular matrix U . Hence the flops of matrix-
vector product operations for matrix A and B is almost
the same as that for the matrix M , D and K .

• From Table I, we can see that at each cycle, the costs for
QRI(n) method is much more than that for RGSOAR(n)
method, but from the numerical tests, we will illustrate
that the cycle number of QRI(n) is much less than that of
RGSOAR(n). Hence the total costs for the two methods
is comparable.

Let us review the basic restart Arnoldi method for solving
the QEP (1) based on linearization (3). We will compare the



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

949

TABLE I
COSTS FOR RGSOAR(N) AND QRI(N) METHODS

Cost RGSOAR(n) QRI(n)

Matrix-vector 5n mn +
3(n+1)n

2

N -vector DOT 3n

2 +
(n+1)n

2
(n + 1)2n +

(m2+m)n
2

N -vector SAXPY (n+1)n
2

(m2+m+n+1)n
2

GSOAR(n) method and RGSOAR(n) method with the follow-
ing simple implementation of the restarted Arnoldi method for
solving the QEP via linearization.

Algorithm 3.4: Arnoldi(n): Restarted Arnoldi method

1. Choose n, the maximum size of the subspace, and k,
the desired number of approximate eigenpairs. Choose a
starting vector v = [uT

1 , u
T
2 ]T .

2. Run the well-known Arnoldi process [1] with the matrix
F and the vector v to generate an orthonormal basis
{v1, v2, · · · , vn} of the Krylov subspace Kn(F ; v). Let
Vn = [v1, v2, · · · , vn].

3. Solve the reduced eigenvalue problem

(V ∗
nFVn)g = θg,

and obtain the Ritz pairs (θ, y) of the eigenvalue problem
of the single matrix F , where y = Vng.

4. Extract the approximate eigenpairs (θ, z) of the QEP (1),
and test their accuracy by the residual norms as described
in (15), where z = y(N + 1 : 2N)/‖y(N + 1 : 2N)‖2.
If it is satisfied then terminate, otherwise compute a new
starting vector v [32] and go to 2.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples to
illustrate the effectiveness of the GSOAR(n) method and the
RGSOAR(n) method for solving the QEP (1).

In the following examples, the starting vector u1 of the
GSOAR(n) method and RGSOAR(n) method is chosen as a
vector with all components equal to 1 and u2 = 0. The starting
vector v of the Arnoldi(n) method is chosen as v = [uT

1 , u
T
2 ]T .

The so-called exact eigenvalues of the QEP are computed
by the dense method, namely, the QZ method for computing
all eigenvalues and eigenvectors of the generalized eigenvalue
problem (2).

All numerical experiments are performed on an AMD 1.4
GHz PC with main memory 512 MB. The stop criterion is

max
1≤i≤k

(
‖(θ2iM + θiD +K)zi‖2

|θi|2‖M‖1 + |θi|‖D‖1 + ‖K‖1

)
≤ 10−8,

where k is the number of the desired eigenvalues.

Example 1. For the first test, we compare the convergence
result of SOAR method and RGSOAR(n) method. Let M , D
and K be 200×200 random nonsymmetric matrices. Elements
of these matrices are chosen from a normal distribution with
mean zero, variance one and standard deviation one. The

starting vector u of the SOAR method is chosen as a vector
with all components equal to 1.

The largest magnitude eigenvalue computed by the standard
dense matrix method (for all eigenvalues), and by RGSOAR(n)
with n = 10 and SOAR methods are

λmax = 8.21407509907045 + 12.26001479975082i,
λR

max = 8.21407509903629 + 12.26001479974864i,
λS

max = 8.21407520761109 + 12.26001461539936i,

where n is the reduced dimension of the SOAR method and
i =

√
−1.

We observe that both RGSOAR(n) and SOAR methods
converge to the largest magnitude eigenvalue. The relative
errors are |λR

max − λmax|/|λmax| = 2.32 × 10−12 and
|λS

max − λmax|/|λmax| = 1.45 × 10−8, respectively. The
largest magnitude eigenvalues produced by RGSOAR(n)
method is more accurate than the SOAR method.

Example 2. For this example, we compare the convergence
results of GSOAR(n) method and RGSOAR(n) method. M ,
D and K are also 200× 200 random nonsymmetric matrices.
Elements of these matrices are chosen from a normal distribu-
tion with mean zero, variance one and standard deviation one.
n = 10 and k = 2. The plot of Figure 1 shows the relative
residual norms of the first largest magnitude approximate
eigenpair and the plot of Figure 2 shows the relative residual
norms of the second largest magnitude approximate eigenpair.
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Fig. 1. Convergence plots of GSOAR(10)(dash-dot line) and RGSOAR(10) (solid
line).

Figure 1 shows the cycle number of RGSOAR(10) is 5 and
the cycle number of GSOAR(10) is 15. This example shows
that the convergence rate of RGSOAR(10) is fairly rapid.

Example 3. For the third experiment, we use some struc-
tural engineering matrices from the Harwell-Boeing collection
to compare GSOAR(n) method, RGSOAR(n) method and
Arnoldi(n) method. These matrices all represent dynamic
analysis in structural engineering. M = 3 ∗ I . The data of
matrices D and K are extracted from from bcsstm06 and
bcsstk06, respectively. These matrices are 420 × 420. n = 10
and k = 2. The plot of Figure 3 shows the relative residual
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Fig. 2. Convergence plots of GSOAR(10)(dash-dot line) and RGSOAR(10) (solid
line).

norms of the first largest magnitude approximate eigenpair and
the plot of Figure 4 shows the relative residual norms of the
second largest magnitude approximate eigenpair.
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Fig. 3. Convergence plots of GSOAR(10), RGSOAR(10) and Arnoldi(10).

From Figure 3, we know the cycle number of RGSOAR(10)
is 83, the cycle number of GSOAR(10) is 160 and the cycle
number of Arnoldi(10) is 95, which shows that RGSOAR(10)
converges faster than Arnoldi(10) for this example.

We also test this example by QRI(20) method, but we find
that QRI(20) method didn’t converge for this example.

Example 4. In this example, M = 5 ∗ I , D = 3 ∗
tridiag(−1, 3,−1) and K comes from the Matlab test matrix
bwm200. These matrices are 200×200. We only compute the
largest magnitude eigenvalue, i.e., k = 1. The plot of Figure
5 shows the relative residual norms of the largest magnitude
approximate eigenpair with n = 20. The cycle number and
cputime for RGSOAR(20) are 77 and 5.68, respectively and
the cycle number and cputime for GSOAR(20) are 106 and
6.52, respectively. However, Arnoldi(20) doesn’t converge
after 200 cycles.
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Fig. 4. Convergence plots of GSOAR(10), RGSOAR(10) and Arnoldi(10).
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Fig. 5. Convergence plots of GSOAR(20), RGSOAR(20) and Arnoldi(20).

We also test this example by QRI(n) method and the cycle
number for QRI(20) is 7. In Table II, we list the total operation
requirements for RGSOAR(20) and QRI(20) methods.

Total costs = Costs at each cycle × Cycle number.

It is clear to see from Table II that the major costs used for
the two methods is comparable.

V. CONCLUSIONS AND OUTLOOK

We propose in this paper a restarted generalized second-
order Arnoldi method and a restarted refined general-
ized second-order Arnoldi method for solving a large-scale

TABLE II
TOTAL COSTS FOR RGSOAR(20) AND QRI(20) METHODS

Cost RGSOAR(20) QRI(20)
Matrix-vector 7700 7210

N -vector DOT 108570 91140

N -vector SAXPY 16170 30870
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quadratic eigenvalue problem. Approximations to several
eigenvalues can be found at the same time. Even though
some information is discarded because of restarting, the most
important information is retained. The methods reduce the
large-scale quadratic eigenvalue problem to a QEP of smaller
size by applying the projection technique and also reduce the
storage costs by restarting. Numerical tests presented in this
paper show the effectiveness of the proposed methods. How
to implement the implicitly restarting strategy, remains the
subject of further research.
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